
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

J. Parallel Distrib. Comput. 68 (2008) 686–702
www.elsevier.com/locate/jpdc

Hash-based proximity clustering for efficient load balancing in
heterogeneous DHT networks

Haiying Shena,∗, Cheng-Zhong Xub

aDepartment of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR 72701, USA
bDepartment of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA

Received 15 May 2007; received in revised form 5 November 2007; accepted 5 November 2007
Available online 12 November 2007

Abstract

Distributed hash table (DHT) networks based on consistent hashing functions have an inherent load uneven distribution problem. The objective
of DHT load balancing is to balance the workload of the network nodes in proportion to their capacity so as to eliminate traffic bottleneck. It
is challenging because of the dynamism, proximity and heterogeneity natures of DHT networks and time-varying load characteristics.

In this paper, we present a hash-based proximity clustering approach for load balancing in heterogeneous DHTs. In the approach, DHT
nodes are classified as regular nodes and supernodes according to their computing and networking capacities. Regular nodes are grouped and
associated with supernodes via consistent hashing of their physical proximity information on the Internet. The supernodes form a self-organized
and churn-resilient auxiliary network for load balancing. The hierarchical structure facilitates the design and implementation of a locality-aware
randomized (LAR) load balancing algorithm. The algorithm introduces a factor of randomness in the load balancing processes in a range of
neighborhood so as to deal with both the proximity and dynamism. Simulation results show the superiority of the clustering approach with
LAR, in comparison with a number of other DHT load balancing algorithms. The approach performs no worse than existing proximity-aware
algorithms and exhibits strong resilience to the effect of churn. It also greatly reduces the overhead of resilient randomized load balancing due
to the use of proximity information.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Load balancing; Peer to Peer; Distributed hash table

1. Introduction

Distributed hash table (DHT) network is a content-
addressable overlay network that maps files to each network
node based on a consistent hashing function. Due to its salient
feature of robustness, DHT network has received much atten-
tion in the past several years. Early studies have resulted in
numerous DHT networks with various routing characteristics
[22,24,27,28,35]. A downside of consistent hashing is uneven
load distribution. In theory, consistent hashing produces a
bound of O(log n) imbalance of file keys between nodes, where
n is network size [16]. In addition, factors like non-uniform
file size, time-varying file popularity and node heterogeneity

∗ Corresponding author. Fax: +1 479 575 5339.
E-mail addresses: hshen@uark.edu (H. Shen),

czxu@wayne.edu (C.-Z. Xu).

0743-7315/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2007.10.005

in capacity make the load balancing problem even more severe
in practice.

The objective of DHT load balancing is to balance the
workload of the nodes in proportion to their capacity so as to
eliminate traffic bottleneck. The workload of a node can be
measured in terms of metrics like file size and traffic volume
incurred in the access to the files. Load balancing in DHT
networks remains challenging because of their two unique
features:

• Dynamism: A defining characteristic of DHT networks is
dynamism/churn. A great number of nodes join, leave and
fail continuously and rapidly, leading to unpredicted network
size. A load balancing solution should be able to deal with
the effect of churn. Popularity of the items may also change
over time. A load balancing solution that works for static sit-
uations does not necessarily guarantee a good performance
in dynamic scenarios. Skewed query patterns may also

Author's personal copy

H. Shen, C.-Z. Xu / J. Parallel Distrib. Comput. 68 (2008) 686–702 687

result in considerable number of visits at hot spots, hindering
efficient item access.

• Proximity: A load balancing solution tends to utilize proxim-
ity information to reduce the load balancing overhead. How-
ever, logical proximity abstraction derived from DHTs does
not necessarily match the physical proximity information in
reality. This mismatch becomes a big obstacle for the deploy-
ment and performance optimization of peer-to-peer (P2P) ap-
plications.

In addition, DHT networks are often highly heterogeneous.
With the increasing emergence of diversified end devices on
the Internet equipped with various computing, networking and
storage capabilities, the heterogeneity of participating peers of a
practical P2P system is pervasive. This requires a load balancing
solution not only to distribute the application load (e.g. file size,
access volume), but also the load balancing overhead among
the nodes in proportion to their capacities.

There are recent studies devoted to the DHT load balanc-
ing problem [14,17,26,28,36]. “Virtual nodes” [14,28,36] and
“item movement” [17] are two general approaches for load bal-
ancing in heterogeneous DHTs. They focus on the distribution
of application load between the network nodes in proportion to
their capacities. Rao et al. [21] and Godfrey et al. [14] proposed
randomized load balancing algorithms for load reassignment
in DHTs with churn. The algorithms treat all nodes equally
in random probing for lightly (or heavily) loaded nodes, with-
out consideration of node proximity information in load bal-
ancing. Zhu and Hu presented a proximity-aware algorithm to
take into account the node proximity information in load bal-
ancing [36]. The algorithm is based on an additional k-ary tree
network constructed on top of Chord. Although the network is
self-organized, it needs extra cost for reconstruction after every
load transfer, and the load balancing algorithm is hardly appli-
cable to DHT with churn. In [26], Shen and Xu proposed local-
ity aware randomized (LAR) load balancing algorithms to deal
with both of the proximity and dynamic features of Cycloid-
structured DHTs. It introduces a factor of randomness in the
probing process in a range of proximity to handle the effect of
churn. Cycloid is a constant-degree DHT based on the network
topology of cube connected cycle. Its hierarchical structure fa-
cilitates the implementation of the LAR algorithms.

In this paper, we present a hash-based proximity clustering
approach to deal with both the proximity and dynamic fea-
tures of DHTs, and take advantage of heterogeneity as well.
The clustering approach distinguishes between supernodes
and regular nodes according to the nodal capacities and con-
structs an auxiliary supernode network for load balancing. The
novelty of the approach lies in the construction of the auxil-
iary network. Existing proximity clustering approaches often
designate static gateways or routers of regular nodes as their
supernodes [13,34]. In contrast, we cluster the nodes and
associate them to supernodes by consistent hashing of their
physical proximity information. Supernodes are designated dy-
namically according to their capacities and consistent hashing
incurs little re-association of regular nodes to the supernodes
as nodes join and leave the system. The auxiliary supernode

network can be physical or virtual. It facilitates the design and
implementation of efficient and churn-resilient LAR load bal-
ancing algorithm. The algorithm takes advantage of the prox-
imity information of the DHTs in node probing and distributes
application load among the nodes according to their capaci-
ties. We evaluated the performance of the clustering approach
with the LAR load balancing algorithm via comprehensive
simulations. Simulation results demonstrate the superiority of
the approach in comparison with a number of other DHT load
balancing algorithms.

The rest of this paper is structured as follows. Section 2
presents a concise review of representative load balancing ap-
proaches for DHT networks. Section 3 details hash-based prox-
imity clustering to construct a auxiliary network to facilitate
load balancing with churn, proximity and heterogeneity con-
siderations. Section 4 presents LAR load balancing algorithm
and how it is implemented on the auxiliary network. Section 5
shows the performance of the hash-based proximity clustering
approach for load balancing in terms of a variety of metrics
in Chord with and without churn. Finally, Section 6 concludes
this paper with remarks on possible future work.

2. Related work

DHT networks have an inherent load balancing problem due
to the use of consistent hashing functions for key ID range
partitioning [16]. Node heterogeneity in P2P networks makes
the load balancing problem even more severe. To alleviate the
problem, Stoica et al. [28] proposed an abstraction of “virtual
servers”, in which each real node runs �(log n) virtual servers,
and the keys are mapped onto virtual servers so that each real
node is responsible for O(1/n) of the key ID space with high
probability. The “virtual server”-based approach for load bal-
ancing is simple in concept. There is no need for the change of
underlying DHTs. However, the abstraction incurs large space
overhead and compromises lookup efficiency. The storage for
each real server increases from O(log n) to O(log2 n) and the
network traffic increase considerably by a factor of �(log n).
Brighten et al. [15] addressed the problem by arranging a real
server for virtual ID space of consecutive virtual IDs. This re-
duces the load imbalance from O(log n) to a constant factor.
Karger and Ruhl [17] coped with the “virtual server” prob-
lem by arranging for each real node to activate only one of its
O(log n) virtual servers at any given time. The real node oc-
casionally checks its inactive virtual servers and may migrate
to one of them if the distribution of load in the system has
changed.

Another group of algorithms achieves load balance by initial
location allocation for a item or a node. Byers et al. [8] uses
“power of 2 choices” method to store an item in the least loaded
node among more than 1 choices leading to log log n/ log d +
O(1) imbalance. On the other hand, other works [1,17,18,20]
let a joining node have �(log n) ID choices and choose the ID
resulting in the best load balance. The approach achieves O(1)

imbalance.
Initial key ID space partitioning is insufficient to guarantee

load balance, especially in DHTs with churn. It is often needed

Author's personal copy

688 H. Shen, C.-Z. Xu / J. Parallel Distrib. Comput. 68 (2008) 686 – 702

to be complemented by dynamic approach. Most recently,
Bienkowski et al. [7] proposed a node leave and rejoin strategy
to balance the key ID intervals across the nodes. In the algo-
rithm, lightly loaded nodes (with short intervals) may leave the
system and rejoin to share the load of heavy ones. In a constant
number of rounds, the algorithm achieves optimal balance with
high probability in theory. Ganesan et al. [12] proposed schemes
to let nodes with short ID space share to get more share from
nodes with long ID space share. Other works proposed load in-
formation aggregation schemes, such as distributed approxima-
tive system information service [3], histograms [6] and partial
tree [33], to help joining nodes to partition heavily loaded
node’s item set, or to move lightly loaded nodes to the loca-
tion of the heavily loaded node. However, the above methods
ignore the heterogeneity nature of nodes or items by assuming
same capacity of each node or same load of each item.

With the consideration of the heterogeneity, Rao et al. [21]
proposed three schemes to rearrange load based on different ca-
pacities of nodes. Their basic idea is to move load from heavy
nodes to light nodes so that each node’s load does not exceed its
capacity. Their schemes are different primarily in the amount
of information used to decide rearrangement. In a one-to-one
rendezvous scheme, each light server randomly probes nodes
for a match with a heavy one. In a many-to-many scheme,
each heavy server sends its excess virtual nodes to a global
directory, which executes rearrangement periodically. One-to-
many scheme works in a way that each heavy server randomly
chooses a directory which contains information about a num-
ber of light servers. Based on this work, Godfrey et al. [14]
developed churn-resilient algorithm (CRA) for dynamic DHTs
with rapid arrivals and departures of items and nodes. In this
work, when a node’s actual load divided by its capacity ex-
ceeds a predetermined threshold, its excess virtual nodes will
be moved to light ones immediately without waiting for next
periodic balancing. In the load reassignment schemes, a direc-
tory is stored in the node which is responsible for the directory
ID hash value. The node itself may be heavily loaded and does
not have sufficient capacity for directory management and load
rearrangement.

An alternative to “virtual server” migration is “item move-
ment”. Karger and Ruhl [17] proved that the “virtual server”
method could not be guaranteed to handle item distributions
where a key ID interval of length p has more than a �(pl)

fraction of the load (l represents the maximum number of vir-
tual locations of each node). As a remedy, they proposed an
item moving scheme, in which every node occasionally con-
tacts a random other node and moves items between the nodes
for load balancing. In contrast to the “virtual server” approach,
the item moving scheme keeps P2P network scalability and
efficiency. Ahmad and Ghafoor [2] proposed a semi-distributed
approach for load balancing in large parallel and distributed
systems. This method uses a two-level hierarchical control by
partitioning the interconnection structure of a distributed or
multiprocessor system into independent symmetric spheres cen-
tered at schedulers. The schedulers optimally schedule tasks
within their spheres and maintain state information within low
overhead.

Note that the load reassignment schemes assumed a goal of
minimizing the amount of load moved. It neglects the effect of
load moving distance, a main attributing factor to the overhead
requirement for load balancing. Virtual servers or items should
be transferred between physically close heavy nodes and light
nodes with proximity consideration. In addition, node commu-
nication in load balancing is another such attributing factor.

One of the early works to utilize the proximity information
to guide load balancing is due to Zhu and Hu [36]. They sug-
gested to build a k-ary tree structure on top of a DHT overlay.
Each tree node is planted in a virtual server. A tree node reports
its real server load information to its parent, until the tree root
is reached. The root then disseminates final information to all
the virtual nodes. Using this information, each real server can
determine whether it is heavily loaded or not. Light and heavy
nodes report their free capacity, excess virtual node informa-
tion to their leaf nodes, respectively, and the information will
be propagated upward along the tree. When the total length of
information reaches a certain threshold, the tree node would
execute load rearrangement. This approach uses proximity in-
formation to map physically close heavy and light nodes into
the ID space. We note that the k-ary tree-based load balanc-
ing approach has three drawbacks. First, the tree construction
and maintenance are costly, especially in DHTs with churn. In
churn, without timely fixes, a tree will be destroyed, degrading
load balancing efficiency. For example, when a parent fails or
leaves, the load imbalance of its children in the subtree cannot
be solved before its recovery. Besides, the tree needs to be re-
constructed every time after virtual server transferring, which
is imperative in load balancing. Second, a real server cannot
start to determine its load condition until the tree root gets the
accumulated information from all nodes. This centralized pro-
cess is inefficient and hinders the scalability improvement of
P2P systems. Third, it does not distribute load balancing over-
head based on node capacity since all nodes are participating in
load balancing, and some nodes may have not enough capacity
for load information forwarding and load rearrangement.

Shen and Xu proposed LAR load balancing algorithms to
take advantage of the hierarchical structure of Cycloid to cope
with both dynamism and proximity [26]. This paper applies the
concept of proximity-aware randomization for load balancing
in general heterogeneous DHTs. A key component is proximity
clustering that distinguishes between regular nodes from neigh-
boring high-capacity supernodes and builds a self-organized
churn-resilient hierarchical structure to take advantage of the
network heterogeneity and make use of the proximity informa-
tion in load balancing.

3. Hash-based proximity clustering

In general, supernodes are nodes with high capacity and fast
connections and regular nodes are nodes with low capacity and
slower connections. For simplicity, we define a node with ca-
pacity greater than a predefined threshold as supernode; other-
wise a regular node.

Supernode network in DHTs is an auxiliary expressway for
fast routing between the supernodes. Each supernode operates

Author's personal copy

H. Shen, C.-Z. Xu / J. Parallel Distrib. Comput. 68 (2008) 686–702 689

as a server to its associated regular nodes. The supernode net-
works proposed in [13,34] take proximity into account by clus-
tering physically close nodes into one group. They take static
gateways (or routers) as supernodes. Network tools for find-
ing gateway, such as traceroute, are too heavy weight and
intrusive for use by large-scale applications because they gen-
erate excessive load on the network. Xu et al. [30] proposed
to use landmark clustering to generate proximity information.
The proximity information of physically close nodes is stored
in the same or nearby nodes. Based on the proximity informa-
tion, supernodes are connected in an auxiliary expressway for
fast routing. Their expressway construction is constrained by
the logical overlay topology. For a supernode, its direct neigh-
bors are limited to those supernodes in the desired portion of
its ID space. The resultant partially connected expressway does
not make full use of heterogeneity and proximity. Propagating
information in the expressway about node join and departure
and the network condition changes may lead to high mainte-
nance cost. Our proximity clustering approach bears resem-
blance to landmark clustering, in that the nodes are partitioned
into groups according to landmark proximity information. But
our hash-based proximity clustering approach constitutes all
supernodes into a self-organized and churn-resilient DHT for
load balancing.

A crucial step in proximity-aware load balancing is to gather
load information of physically close nodes in a supernode and
ensure that workload be transferred between physically close
heavy nodes and light nodes. Hash-based proximity clustering
generates a resilient auxiliary supernode network, in which su-
pernodes process load balancing on behalf of their assigned
regular nodes. The interconnections between the supernodes
and their associated regular nodes can be defined by their rout-
ing tables. We distinguish the interconnections into two forms:
physical and virtual. A physical cluster, denoted by pCluster,
is a structure in which each node is connected to its physical
closest supernode and all supernodes form a DHT. A virtual
cluster, denoted by vCluster, is a structure in which each node
is connected to logically closest supernode in their ID space.

Before we present the details of the auxiliary networks, let
us introduce a landmarking method to represent node close-
ness on the Internet by indices. Landmark clustering has been
widely adopted to generate proximity information [23,30,31]. It
is based on the intuition that nodes close to each other are likely
to have similar distances to a few selected landmark nodes, al-
though details may vary from system to system. In DHTs, the
landmark nodes can be selected by overlay itself or the Internet.
We assume m landmark nodes that are randomly scattered in
the Internet. Each node measures its physical distances to the m
landmarks, and uses the vector of distances 〈d1, d2, . . . , dm〉 as
its coordinate in Cartesian space. Two physically close nodes
will have similar landmark vectors. Note that a sufficient num-
ber of landmark nodes are needed to reduce the probability of
false clustering where nodes that are physically far away have
similar or close landmark vectors.

We use space-filling curves [4], such as Hilbert curve as in
[30,31], to map m-dimensional landmark vectors to real num-
bers. That is, Rm �−→ R1, such that the closeness relationship

among the points is preserved. This mapping can be regarded as
filling a curve within the m-dimensional space till it completely
fills the space. We partition the m-dimensional landmark space
into 2mx grids of equal size (where m refers to the number of
landmarks and x controls the number of grids used to parti-
tion the landmark space), and number each node according to
the grid into which it falls. We call this number Hilbert num-
ber of the node. The Hilbert number indicates the degree of
physical closeness between nodes on the Internet. The smaller
the x, the larger the likelihood that two nodes will have same
Hilbert number, and the coarser grain the physical proximity
information.

3.1. Physical clustering

pCluster consists of clusters, and all nodes are physically
close to each other within each cluster. Each cluster has a su-
pernode, together with a group of regular nodes, and the su-
pernode operates as a server to the others.

In pCluster, a supernode DHT is constructed on top of the
original DHT. We directly use a node’s Hilbert number as its
logical node ID and let supernodes act as the top-level super-
node DHT nodes and regular nodes as top-level supernode DHT
keys. The top-level supernode DHT can be any type of DHT
such as Chord, Pastry, Tapestry, CAN or Cycloid, with a variant
of consistent hashing key assignment protocol. By the protocol,
a key is stored in a node whose ID is the closest to the key
so that a regular node is assigned to a supernode whose ID is
closest to the node’s ID; that is, regular nodes are connected
to their physically closest supernode since node ID represents
node physical location closeness. As a result, the physically
close nodes will be in the same cluster or in nearby clusters
with supernodes. In the case when a number of supernodes have
the same Hilbert numbers, one supernode is chosen and others
become its backups. The consistent hashing for key assignment
protocol requires relatively little re-association of regular nodes
to dynamically designated supernodes as nodes join and leave
the system.

Algorithm 1. Pseudocode for routing algorithm in pCluster
based on Chord lookup algorithm.

1: //Ask node n to find the supernode whose ID is closest to id

2: n.find_supernode(id) {
3: if supernode!=null then
4: //n is a regular node
5: supernode.find_supernode(id);
6: else
7: //n is a supernode
8: successor=find_successor(id);
9: predecessor=successor.predecessor;

10: //return the closer node to ID
11: if predecessor’s ID is closer to id than successor’s ID then
12: return predecessor;
13: else
14: return successor;
15: end if
16: end if
17: }.

Author's personal copy

690 H. Shen, C.-Z. Xu / J. Parallel Distrib. Comput. 68 (2008) 686 – 702

We use a “proximity-neighbor selection” technique as de-
scribed in [9,29,31] to build each supernode’s routing table in
the supernode DHT. That is, it selects the routing table entries
pointing to the physically nearest among all nodes with IDs
in the desired portion of the ID space. Since Hilbert numbers
represent node physical location closeness, the top-level su-
pernode DHT in pCluster preserves supernode physical prox-
imity in logical ID space. As a result, nodes in one cluster are
physically close to each other, close clusters/supernodes in log-
ical ID space are also physically close to each other, and the
application-level connectivity between the supernodes in the
top-level supernode DHT is congruent with the underlying IP-
level topology.

To find a supernode responsible for an ID, a regular node
forwards a query to its supernode, and the routing algorithm on
supernode DHT is the same as the DHT routing algorithm.
Algorithm 1 shows pseudocode of pCluster routing algorithm
based on the Chord routing algorithm find_successor(id)
in [28]. DHT protocols dealing with node and item joins and
departures can be directly used to handle supernode and regular
node joins and departures in supernode DHT. When a supern-
ode or regular node joins the supernode DHT, it must know at
least one node, and use pCluster routing algorithm to find its
place in pCluster. To maintain the mapping between regular
nodes and supernodes, when a supernode s joins the pCluster,
certain regular nodes previously assigned to s’s successor or
predecessor now become assigned to s if s is closer to them
than their current supernodes. When supernode s leaves the
pCluster, all of its assigned regular nodes are reassigned to s’s
successor or predecessor based on their closeness to its regular
nodes. No other changes in assignment of regular nodes to

Algorithm 2. Pseudocode for node joining in pCluster con-
taining node n′.
1: //For a new arrival node n joining pCluster containing node n′
2: n.join(n′){
3: ID=n.Hilbertnum;
4: //find the supernode closest to n
5: s = n′.find_supernode(n.ID);
6: if n′s capacity<a predefined threshold then
7: //n is a regular node, taking s as its supernode
8: supernode=s;
9: supernode.addto_clientlist(n);

10: else
11: //n is a supernode
12: if n.ID==s.ID then
13: s.addto_backuplist(n);
14: else
15: //join in supernode DHT, initialize neighbors
16: predecessor=nil;
17: //find its successor
18: if s.ID%2d >n.ID%2d then
19: successor=s;
20: else
21: successor=s.successor;
22: end if
23: end if
24: end if
25: }.

Algorithm 3. Pseudocode for node leaving pCluster.

1: //For a node n leaving pCluster
2: n.leave(){
3: if supernode!=nil then
4: //n is a client
5: supernode=nil;
6: else
7: //n is a supernode
8: if backuplist.size>0 then
9: //choose one backup, transfer supernode information to it

10: s=backuplist.getone();
11: n moves routing table to s;
12: n moves backup list to s;
13: //notify its clients to change their supernode
14: for i = 0 up to clientlist.size do
15: client=clientlist[i];
16: supernode_change_notify(client);
17: end for
18: else
19: //no backup supernode, transfer regular nodes accordingly
20: for i = 0 up to clientlist.size do
21: client=clientlist[i];
22: if predecessor is closer to client than successor then
23: move client to predecessor;
24: else
25: move client to successor;
26: end if
27: end for
28: end if
29: end if
30: }.

supernodes need occur. Algorithms 2 and 3 show the pseu-
docode of node join and departure in pCluster, respectively.

Fig. 1(a) shows an example of pCluster in Chord. By tak-
ing Hilbert numbers as their ID and key assignment protocol,
physically close nodes are grouped into a cluster with a su-
pernode and all supernodes constitute a Chord. Each supernode
functions as a node in a flat Chord. If n40 wants to join in the
pCluster, n40 asks its known node n2 to find the supernode
with ID closest to 40 based on Algorithm 1, which is n45. If
n40 is a supernode, n45 moves n41 to n40. The maintenance
of supernode DHT is the same as that of Chord. The joining
execution does not make the rest of the network aware of n40.
It is the responsibility of stabilization to build routing table and
other links for n40, and to update other supernode routing ta-
bles and other neighbors on supernode DHT. If n40 is a regular
node, it becomes a client of n45. If a node, say n45, wants to
leave the system, according to Algorithm 3, it moves n41 to
n34 and n50 to n63. The routing tables which have n45 will
be updated in stabilization. If n41 wants to leave the pCluster,
it only needs to disconnect its link to n45.

Node failure is an important problem in DHT since it leads to
intact topology and degrades DHT performance. As in flat DHT,
pCluster uses stabilization to deal with supernode failures in the
top-level supernode DHT. In Chord, each supernode refreshes
its routing table entries and predecessor periodically to make
sure they are correct. We use lazy update to handle the influence
of a supernode failure on its regular nodes. Each regular node
probes its supernode periodically. If a regular node n does not

Author's personal copy

H. Shen, C.-Z. Xu / J. Parallel Distrib. Comput. 68 (2008) 686–702 691

13

61

41

32
30

25
15

50

62

0

Supernode

DHT

2

45

34

20

63

UofA

Stanford

Berkeley

MIT

Harvard
1531

30

25

13

50

0

Supernode

Regular node1

Original DHT

2

45

32

20

63

1

10

40

60

WSU node,

H-num =56

WSU node,

H-num =56

WSU node,

H-num =56

Load Info. Of WSU

nodes 1, 10, 30

Fig. 1. Example of proximity-aware DHTs. (a) pCluster and (b) vCluster.

get a reply from its supernode s after certain time period T , n
assumes s fails, it uses pCluster node join protocol to connect to
another supernode again. For example, if n41 does not get reply
from n45 after T, by joining algorithm, it will connect to n32.

To use pCluster for load balancing, each node periodically
reports its load information to its supernode. As a result, the
load information of physically close nodes gathers together in
the supernode. For example, nodes n61 and n62 report their
load information to n63 periodically, which does load rear-
rangement, and notify heavy nodes to move excess load to light
nodes.

3.2. Virtual clustering

Physical clustering constructs a top-level supernode DHT in
the routing tables of the nodes. In contrast, virtual clustering
constructs a perception of supernode DHT, vCluster, by record-
ing the proximity information in the original DHT network.
That is, vCluster assigns regular nodes to their logically closest
supernodes in ID space as usual. Although nodes in the same
cluster are not necessarily physically close, physically close
nodes will report their load information to a same supernode
or physically close supernodes in the load balancing process.
Algorithms 4 and 5 show the pseudocode of node join and de-
parture in vCluster, respectively. They ensure that a regular node
always connects to the supernode whose ID is closest to its ID.
Like pCluster, vCluster also uses lazy update to handle super-
node failure. Without an additional structure, vCluster does not
need any other extra construction and maintenance cost.

A question is how to gather load information of physically
close nodes into a same supernode. Recall that, in a DHT, an
object with a DHT key is allocated to a node by the inter-
face of put(key,object). In Chord, the object is assigned
to the first node whose ID is equal to or follows the key in
the ID space. If two objects have similar keys, then they are
stored in close nodes in ID space. Because Hilbert numbers
represent node physical proximity, if nodes put their load in-
formation to the DHT with their Hilbert number as the key by
put(HilbertNum,loadInfo), load information of phys-
ically close nodes with similar Hilbert numbers will reach the
same node or nearby nodes. The nodes further forward the

information to their supernodes. Fig. 1(b) shows an example of
vCluster in Chord. In the example, regular nodes n1, n10 and
n30 send their load information to the DHT with their Hilbert
number 56 as destination. The information will first arrive at
n60 and then is forwarded to n63. The n63 does load rearrange-
ment between physically close nodes n1, n10 and n30.

3.3. pCluster versus vCluster

Both pCluster and vCluster facilitate locality-aware load bal-
ancing. They achieve the goal in different ways. In pCluster,
the load information of the nodes with same Hilbert number h
is gathered in a supernode whose Hilbert number is closest to
h. In vCluster, the load information will be gathered in a su-
pernode whose ID is closest to h. Therefore, in the case that
node n reports its load information to supernode s, s is n’s phys-
ically closest supernode in pCluster; in vCluster, s is not n’s
physically closest node, and it may be even far away from n
because of the inconsistence between logical topology and un-
derlying physical topology. Similarly, after a supernode com-
pletes load reassignment, its notification to transfer load may
also need to travel a long distance in vCluster. As a result, the
communication cost of pCluster load balancing would be less
than vCluster load balancing. This advantage of pCluster load
balancing is gained at the cost of supernode DHT construction
and maintenance. In a conclusion, pCluster load balancing can
save communication cost in load balancing and speed up load
balancing. In contrast, vCluster can save storage space and cost
for supernode DHT construction and maintenance.

Table 1 shows auxiliary network suitable for load balancing
in each type of DHT networks. Geographic layout proximity-
aware DHTs preserve physical closeness of nodes in logical
topology. In this DHT type, the pCluster load balancing can
be used directly in supernode DHTs. On the other hand, in
flat DHTs, the feature that the physically close nodes are also
close in logical ID space can be taken advantage of to build
pCluster without additional proximity clustering cost. Because
nodes report their load information to their supernodes at less
communication cost than to the supernodes whose logical IDs
are closest to their Hilbert numbers, pCluster is more suitable
to flat networks in geographic layout proximity-aware DHTs.

Author's personal copy

692 H. Shen, C.-Z. Xu / J. Parallel Distrib. Comput. 68 (2008) 686 – 702

Algorithm 4. Pseudocode for node joining in vCluster contain-
ing node n′.
1: //For a new arrival node n joining Chord containing node n′
2: n.joinChord(n′){
3: predecessor=nil;
4: successor=n′.find_successor(n);
5: }
6:
7: //For a new arrival node n joining vCluster containing node n′
8: n.join(n′){
9: n.joinChord(n′)

10: if n’s capacity<a predefined threshold then
11: //n is a regular node
12: suc_supernode=successor.supernode;
13: pre_supernode=successor.predecessor.supernode;
14: //find a closer supernode
15: if pre_supernode is closer to n than suc_supernode then
16: supernode=pre_supernode;
17: else
18: supernode=suc_supernode;
19: end if
20: supernode.addto_clientlist(n);
21: else
22: //n is a supernode
23: successor.supernodejoin_forwardnotify(n);
24: successor.predecessor.supernodejoin_backwardnotify(n);
25: end if
26: }
27:
28: //n get supernode join notification
29: n.supernodejoin_forwardnotify(n′){
30: if n is a regular node then
31: if n is closer to n′ than supernode then
32: supernode=n′;
33: supernode.addto_clientlist(n);
34: successor.supernodejoin_forwardnotify(n′);
35: end if
36: end if
37: }
38:
39: n.supernodejoin_backwardnotify(n′){
40: if n is a regular node then
41: if n is closer to n′ than supernode then
42: supernode= n′;
43: supernode.addto_clientlist(n);
44: predecessor. supernodejoin_backwardnotify(n′);
45: end if
46: end if
47: }.

In a soft-state proximity-aware network, such as the
topology-aware overlay proposed in [31], proximity infor-
mation of nodes is stored on the system itself. Soft-state
proximity-aware supernode network is already vCluster since
physically close nodes can report their information to a same
rendezvous supernode. As to the flat networks in this type,
vCluster can be easily built on it by letting nodes report their
load information to a rendezvous node, which then forwards
the information to its supernode.

In a proximity-oblivious supernode network, all regular
nodes are clients of supernodes, which constitute a DHT net-
work, and its topology is constructed without proximity consid-
eration. It is not necessary to construct another supernode DHT
with close regular nodes in a cluster. The existing supernode

Algorithm 5. Pseudocode for node leaving vCluster.

n.leave(){
1: //For a node n leaving vCluster
2: n.leave(){
3: if n is a supernode then
4: //transfer regular nodes to their closest supernode
5: suc_s=find_supernode_forward();
6: pre_s=find_supernode_backward();
7: for i = 0 up to clientlist.size do
8: client=clientlist[i];
9: if client is closer to suc_s than pre_s then

10: client.supernode_change_notify(suc_s);
11: else
12: client.supernode_change_notify(pre_s);
13: end if
14: end for
15: end if
16: }
17:
18: //n is notified of supernode change
19: n.supernode_change_notify(s){
20: supernode=s;
21: supernode.addto_clientlist(n);
22: }
23:
24: n.find_supernode_forward(){
25: if n is a supernode then
26: return n;
27: end if
28: successor.find_supernode_forward();
29: }
30:
31: n.find_supernode_backward(){
32: if n is a supernode then
33: return n;
34: end if
35: predecessor.find_supernode_backward();
36: }.

Table 1
Auxiliary network for load balancing in each type of DHTs

DHT type Supernode network Flat network

Geographic layout
proximity-aware

pCluster pCluster

Soft-state proximity-aware vCluster vCluster
Proximity-oblivious vCluster pCluster/vCluster

network can be taken advantage of to route load information
of close nodes to a rendezvous supernode so that vCluster
is preferable in this kind of DHTs. Proximity-oblivious flat
DHTs can use either pCluster or vCluster load balancing ap-
proach considering the fact that the costs to build pCluster
and vCluster auxiliary networks are almost the same on this
type DHTs. The choice should depend on each approach’s
advantages based on actual requirements.

4. LAR load balancing

Proximity clustering facilitates the design and implementa-
tion of efficient and churn-resilient load balancing algorithms.
A general method for load balancing is to gather node load

Author's personal copy

H. Shen, C.-Z. Xu / J. Parallel Distrib. Comput. 68 (2008) 686–702 693

information in a number of rendezvous nodes, which arrange
load movement from heavy nodes to light nodes based on their
own load information firstly and then based on the load infor-
mation combined with that of other rendezvous nodes by prob-
ing. To consider either of proximity or churn DHT feature in
load balancing will degrade performance in the other feature.
To take into account proximity, a node needs to contact its spe-
cific physically close nodes. It is not flexible enough to han-
dle churn since physically close nodes are always changing. It
is known that simple randomized load balancing scheme is a
good method to deal with churn as it does not depend on DHT
or auxiliary network maintenance, but it cannot ensure that
the contacted nodes are physically close nodes. In [26], Shen
and Xu proposed LAR algorithms in a Cycloid network, by
taking advantage of Cycloid’s inherent hierarchical structure.
The basic idea of the paper is to let nodes to contact random-
ized nodes within a range of proximity and achieve a tradeoff
between proximity and dynamism.

In the following, we present an implementation of the algo-
rithm in general DHT networks, with the support of pCluster
and vCluster from proximity clustering. Let Li represent the
actual load of a real server i. It is the sum of the load of the
items it stores: Li = ∑mi

k=1 Li,k , assuming the node has mi

items. Let Ci be the capacity of node i; it is defined as a pre-
set target load which the node is willing to hold. We refer to
the node whose actual load is no larger than its target load (i.e.
Li �Ci) as a light node; otherwise a heavy node. We define
node utilization as the fraction of its target capacity that is used:
Li/Ci . A system utilization is the ratio of the total actual load
to the total node capacity.

Each node contains a list of data items, labelled as IDk ,
k = 1, 2, To make full use of node capacity and to
reduce the load balancing overhead, the items chosen to trans-
fer should be with minimum load. We define these items as
excess items of a heavy node. Each supernode has a pair
of donating sorted list (DSL) and starving sorted list (SSL)
which store the load information of all nodes in its clus-
ter. The DSL is for light nodes and the SSL is for heavy
nodes. The free capacity of light node i is defined as �Li =
Ci − Li . Load information of heavy node i includes the
information of its excess items in a set of 3-tuple represen-
tation: 〈Li,1, Di,1, Ai〉, 〈Li,k, Di,k, Ai〉, . . . , 〈Li,m′ , Di,m′ , Ai〉,
in which Ai denotes the IP address of node i. Load information
of light node j is represented in the form of 〈�Lj , Aj 〉. An SSL
is sorted in a descending order of Li,k , and a DSL is sorted
in an ascending order of �Lj . Load rearrangement is executed
between a pair of DSL and SSL, as shown in Algorithm 6. This
scheme guarantees that heavier items have a higher priority to
be reassigned to a light node, which means faster convergence
to a system-wide load balance state. A heavy item Li,k is as-
signed to the most-fit light node with �Lj which has minimum
free capacity left after the heavy item Li,k is transferred to it.
It makes full use of the available capacity.

LAR algorithms run in three phases. First, regular nodes
report their load information to their supernodes. Recall that,
with the help of the auxiliary network, the load information of
physically close nodes gathers together in a supernode or close

Algorithm 6. Supernode performs load rearrangement period-
ically between a pair of DSL and SSL.

1: for each item k in SSL do
2: for each item j in DSL do
3: if Li,k <= �Lj then
4: item k is arranged to be transferred from i to j;
5: if �Lj − Li,k > 0 then
6: put < (�Li − Li,k), ip_addr(i) > back to DSL;
7: end if
8: end if
9: end for

10: end for.

supernodes. Second, the supernodes arrange load movement.
A supernode with nonempty starving list firstly arranges load
movement between its own DSL and SSL, which is called local
load balancing. The supernode then probes another supernode
and arranges load movement between their SSL and DSL until
its SSL becomes empty, which is called global load balancing.
This scheme can be extended to perform load rearrangement
between one SSL and multiple DSLs for improvement.

In DHTs, each node has a routing table and neighbor list,
such as successor list in Chord, and leaf sets in Pastry, Tapestry
and Cycloid, for item query routing. Supernode s in supernode
n’s routing table is generally physically closer to n in pCluster,
and logically closer to n in vCluster than a randomly chosen
supernode in the entire network. Based on this principle, in
global load balancing, in order to move load between relative
closer nodes, randomized locality-aware probing is used. In
LAR probing, each supernode contacts its supernode neighbors
or supernodes of its neighbors. After all neighbors are probed, if
the supernode’s SSL is still nonempty, the supernode randomly
contacts other supernodes in the entire ID space.

The third phase of load balancing process is load move-
ment. The load balancing algorithm is based on item movement
instead of “virtual servers” to save cost. When an item D is
transferred from heavy node i to light node j, node i will have a
forward pointer in D location pointing to the item D in j’s place;
item D will have an backward pointer to node i indicating its
original host. When queries for item D reach node i, they will
be redirected to node j with the help of forward pointer. As to
each transferred item, two pointers should be maintained.

Cai et al. [10] indicated two aspects of the load balancing
problem: evenly and skewed load distribution among nodes.
Since LAR maps physically close heavy nodes and light nodes
first and then maps nodes in the entire ID space by randomized
probing, it can deal with both evenly and skewed load distri-
butions in DHT networks.

In a randomized probing policy, each supernode probes other
supernodes randomly for load rearrangement. A simple form
is one-way probing, in which a supernode, say node i, probes
other supernodes one by one to execute load rearrangement be-
tween SSLi and DSLj , where j is a probed node. The random-
ized probing in our load balancing framework is similar to load
balancing problem in other contexts: competitive online load
balancing and supermarket model. Competitive online load bal-
ancing is to assign each task to a server online with the objec-
tive of minimizing the maximum load on any server, given a set

Author's personal copy

694 H. Shen, C.-Z. Xu / J. Parallel Distrib. Comput. 68 (2008) 686 – 702

of servers and a sequence of task arrivals and departures. Azar
et al. [5] proved that, in competitive online load balancing, al-
lowing each task to have 2 server choices to choose a less loaded
server instead of just 1 choice can exponentially minimize the
maximum server load and result in a more balanced load distri-
bution. Supermarket model is to allocate each randomly incom-
ing task modelled as a customer with service requirements to
a processor (or server) with the objective of reducing the time
each customer spends in the system. Mitzenmacher et al. [19]
proved that allowing a task 2 server choices and to be served
at the server with less workload instead of just 1 choice leads
to exponential improvements in the expected execution time of
each task. But a poll size larger than two gains much less sub-
stantial extra improvement. The randomized probing between
the lists of SSLs and DSLs is similar to the above competitive
load balancing and supermarket models if we regard SSLs as
tasks and DSLs as servers. However, the randomized probing
approach in P2P systems has a general workload and server
models. Specifically, in P2P systems, servers are dynamically
composed with new ones joining and existent ones leaving, and
they are heterogeneous with respect to their capacities. Tasks
are of different sizes and arrive in different rates. In [11], we
proved that the random probing is equivalent to a generalized
supermarket model and showed the following results.

Theorem 4.1. Assume servers join in a Poisson distribution.
For any fixed time interval [0, T], the length of the longest
queue in the supermarket model with d = 1 is ln n/ ln ln n

(1 + O(1)) with high probability; the length of the longest
queue in the model with d �2 is ln n/ ln d + O(1), where n is
the number of servers.

The theorem implies that two-way probing could achieve a
more balanced load distribution with faster speed even in churn,
but d-way probing, d > 2, may not result in much additional
improvement.

5. Performance evaluation

We designed and implemented a simulator in Java for eval-
uation of the LAR algorithm based on pCluster (pLAR) and
vCluster (vLAR) on Chord DHT and compared their perfor-
mance with CRA [14] and KTree method [36]. CRA can deal
with DHT churn by randomized probing in load balancing
and KTree is a proximity-aware load balancing method that
maps physically close heavy nodes and light nodes for load
transfer. We compared the different load balancing schemes in
Chord without churn in terms of proximity-aware load balanc-
ing achievement, load balancing cost, heterogeneity considera-
tion, and also compared the resilience of the schemes in Chord
with churn. In CRA, we set 16 directories as in [14]. We set
the load information size threshold for load balancing in each
KTree node as 15; that is, when the total size of load informa-
tion of a node reaches 15, it executes load rearrangement.

We use two transit-stub topologies generated by GT-ITM
[32]: “ts5k-large” and “ts5k-small” with approximately 5,000
nodes each. “ts5k-large” has 5 transit domains, three transit

Table 2
Simulated environment and algorithm parameters

Environment parameter Default value

System utilization 0.5–1
Object arrival location Uniform over ID space
Number of nodes 4096
Node capacity Bounded Pareto: shape:2

Lower bound: 25,000, upper bound: 25,000*10
Supernode threshold 50,000
Number of items 20,480
Existing item load Bounded Pareto: shape:2

Lower bound: mean item actual load/2
Upper bound: mean item actual load/2*10

nodes per transit domain, 5 stub domains attached to each
transit node and 60 nodes in each stub domain on average.
“ts5k-small” has 120 transit domains, five transit nodes per
transit domain, 4 stub domains attached to each transit node
and two nodes in each stub domain on average. “ts5k-large” has
a larger backbone and sparser edge network (stub) than “ts5k-
small”. “ts5k-large” is used to represent a situation in which
DHT overlay consists of nodes from several big stub domains,
while “ts5k-small” represents a situation in which DHT over-
lay consists of nodes scattered in the entire Internet and only
few nodes from the same edge network join the overlay. To ac-
count for the fact that interdomain routes have higher latency,
each interdomain hop counts as 3 hops of units of latency while
each intradomain hop counts as 1 hop of unit of latency. We
assumed bounded Pareto distribution for the load of nodes and
items. This distribution reflects real world where there are ma-
chines with capacities that vary by different orders of magni-
tude. Table 2 lists the parameters of the simulation and their
default values.

5.1. Effectiveness of pLAR and vLAR algorithms

In this section, we will show the effectiveness of LAR
load balancing algorithms on pCluster and vCluster. First,
we present the impact of pLAR and vLAR on the alignment
of the skews in load distribution and node capacity when
the system is fully loaded. Because the results of pLAR and
vLAR are almost the same, we use results of pLAR to rep-
resent both. From Fig. 2(a) and (b), we can see that many
nodes are overloaded before load balancing and after load
balancing they become light by transferring excess items to
light nodes. Fig. 2(c) shows the scatterplot of loads according
to node capacity. These figures show that the load balancing
frame assigns load to nodes based on their capacity with the
consideration of node heterogeneity.

Load movement factor is the total load transferred due to load
balancing divided by the system actual load. We measured the
load movement factors due to different load balancing schemes,
pLAR, vLAR, KTree and CRA, on systems of utilization from
0.5 to 1 at a step size of 0.05. Fig. 3 plots the load movement
factors. We can see that the schemes require the same amount of
load movement in total for load balance. This is consistent with

Author's personal copy

H. Shen, C.-Z. Xu / J. Parallel Distrib. Comput. 68 (2008) 686–702 695

10

9

8

7

6

5

4

3

2

1

0

10

9

8

7

6

5

4

3

2

1

0

N
o
d
e
 U

ti
liz

a
ti
o
n

N
o
d
e
 U

ti
liz

a
ti
o
n

0 1000 2000 3000 4000 5000

Node sequence

0 1000 2000 3000 4000 5000

Node sequence

250000

250000

150000

150000

50000

50000

200000

200000 300000

100000

100000
0

0

N
o
d
e
 L

o
a
d

Node Capacity

Fig. 2. Effect of pLAR and vLAR load balancing. (a) Before load balancing, (b) after load balancing and (c) utilization of nodes after load balancing.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.5 0.6 0.7 0.8 0.9 1

System utilization

L
o
a
d
 m

o
v
e
m

e
n
t
fa

c
to

r

pLAR

vLAR

KTree

CRA

Fig. 3. Load movement factor in different load balancing schemes.

the observations by Rao et al. [21] that the load moved depends
only on distribution of loads, and the target to be achieved,
but not on load balancing schemes. This result suggests that
better load balancing schemes should explore how to move
the same amount of load along shorter distance to reduce item
transfer cost; in other words, how to achieve locality-aware load
balancing. In the following, we will examine the performance of
various load balancing schemes in terms of other performance
metrics.

5.2. Proximity-aware load balancing

In this section, we will show how pCluster and vCluster help
LAR to achieve high proximity-aware performance. Fig. 4(a)
and (b) shows the cumulative distribution function (CDF) of the
percentage of total moved load versus moving distance in each
load balancing scheme when system utilization approaches 1 in
“ts5k-large” and “ts5k-small”, respectively. This performance
metric represents the load movement cost for load balance. The
more the load moved along the shorter distances, the less the
load balancing costs. We can see that, in “ts5k-large”, pLAR,
vLAR and KTree are able to transfer 95% of total moved load
within 10 hops, while CRA moves only about 15% within 10
hops. Almost all load movements in pLAR, vLAR and KTree
are within 15 hops, while CRA scheme moves only 75% within
15 hops. The results show that pLAR, vLAR and KTree move
most load in short distances while CRA moves most load in long
distances. From Fig. 4(b), we can have the same observations as
in “ts5k-large”, although the performance difference between
the schemes is not so significant as in “ts5k-large”. The more
the load moved in the shorter distance, the higher the proximity-
aware performance of a load balancing scheme with less load
balancing cost. The results indicate that proximity-aware load
balancing schemes pLAR, vLAR and KTree perform better
than CRA with regard to proximity-aware performance. The
results of pLAR and vLAR are comparable to KTree means
that pLAR and vLAR are as efficient as KTree to guide heavy
nodes to transfer load to physically close light nodes either

Author's personal copy

696 H. Shen, C.-Z. Xu / J. Parallel Distrib. Comput. 68 (2008) 686 – 702

0

20

40

60

80

100

0 10 15 20

Physical distance by hops

pLAR

vLAR

KTree

CRA

P
e
rc

e
n
ta

g
e
 o

f
to

ta
l
m

o
v
e
d
 l
o
a
d
 (

%
)

5

0

20

40

60

80

100

0 10 15 20

Physical distance by hops

P
e
rc

e
n
ta

g
e
 o

f
to

ta
l
m

o
v
e
d
 l
o
a
d
 (

%
)

pLAR
vLAR
KTree
CRA

5

Fig. 4. CDF of total moved load distribution of different load balancing schemes. (a) ts5k-large and (b) ts5k-small.

when nodes are from several big subdomains or when nodes
are scattered in the entire Internet.

5.2.1. Breakdown of load movement cost
In general, a load balancing process needs to gather node

load information in a number of rendezvous nodes, which ar-
range load movement. Fig. 5 shows the breakdown of total
moved load in percentage of the moved load in local or in global
load balancing phase. We find that most load is moved in the
local phase in pLAR, vLAR and CRA, while KTree moves
most load in global phase. The LAR algorithm takes proximity
into account in global load balancing phase. The hash-based
proximity clustering facilitates it to achieve better performance
in both local and global load balancing phases. KTree con-
structs an auxiliary k-ary tree structure, so that the load in-
formation of physically close nodes can be forwarded upward
along the tree and be gathered for load balancing in global
phase.

The figures show that CRA moves more load in local balanc-
ing phase than pLAR and vLAR. It has 16 rendezvous nodes,
and our simulation results show that pLAR has 60 and vLAR
has 90 rendezvous nodes. Less rendezvous nodes mean more
load information gathered in a node, and more excess load can
be solved in local load rearrangement. However, it comes with
the cost of proximity-aware performance degradation because
excess items may be assigned to a remote node caused by coarse
grain load information. Though rendezvous node number has
only a small effect on load balance achievement as claimed in
[14], this number has a significant impact on proximity-aware
load balancing.

5.2.2. Communication cost
In addition to load movement cost, communication cost con-

stitutes a main part of load balancing overhead. The cost is
directly related with message size and physical path length of
the message travelled; we use the product of these two fac-
tors of all exchanging messages to represent the cost. It is as-
sumed that the size of a message asking and replying for load
information is 1 unit. To let the results be comparable between
different schemes, we did not count the communication cost

for heavy node or light node determination in KTree. Fig. 6(a)
and (b) plots the communication cost of pLAR, vLAR, KTree
and CRA in “ts5k-large” and “ts5k-small”, respectively. From
these figures, we can see that the communication cost increases
with the system load, and that of KTree is much more higher
than the others. We also find that pLAR incurs much less com-
munication cost than vLAR and CRA. Note that the load in-
formation communication cost is due to information reporting
(to rendezvous nodes) and node probing in global load balanc-
ing phase (or information propagation in KTree). Fig. 7 gives
breakdown of the cost when the system is heavily loaded. The
figure shows that the reporting costs of vLAR, KTree and CRA
are almost the same. The high communication cost of KTree
is caused by load information indirect propagation in the k-ary
tree. KTree constructs a tree-structured auxiliary network to
help gather load information of physically close nodes. Though
KTree facilitates a node to communicate its physically close
nodes for load balancing, it requires nodes to report their load
information upward step by step to the tree root. This is the
main cause for the high total communication cost. In contrast,
randomized probing in pLAR, vLAR and CRA directly reduces
the cost.

Recall that pLAR enables nodes to report their load infor-
mation to their physically closest supernode directly, while the
information has to be routed based on routing algorithm on
the original DHT to reach its destination supernode in other
schemes. Therefore, pLAR costs less in the reporting phase.
The figure also shows that pLAR needs less probing cost than
vLAR and CRA costs the least in probing phase. It is because
a supernode probes its peers in top-level supernode DHT with
short path length in pLAR; but, in other schemes, the probing
process is run in the original DHT and their probing message
passes though regular nodes to reach other supernodes. Due to
the fact that almost all excess load is solved in local load bal-
ancing as shown in Fig. 5, CRA has less probing cost in global
load balancing.

In summary, pLAR and vLAR achieve the goal of load bal-
ancing as KTree at much less communication cost. pLAR in-
curs less communication overhead than vLAR and CAR, but the
benefit comes with the cost of supernode DHT maintenance.

Author's personal copy

H. Shen, C.-Z. Xu / J. Parallel Distrib. Comput. 68 (2008) 686–702 697

30

40

50

60

70

80

90

100

pLAR vLAR CRA KTree

B
re

a
k
d
o
w

n
 o

f
to

ta
l
m

o
v
e
d
 l
o
a
d
 (

%
)

Global Local

25

35

45

55

65

75

85

95

pLAR vLAR CRA KTree

B
re

a
k
d
o
w

n
 o

f
to

ta
l
m

o
v
e
d
 l
o
a
d
 (

%
)

Fig. 5. Breakdown of total moved load of different load balancing schemes. (a) ts5k-large and (b) ts5k-small.

10000

100000

1000000

10000000

0.5 0.6 0.7 0.8 0.9 1

System utilization

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t

pLAR

vLAR

KTree

CRA
10000

100000

1000000

10000000

0.5 0.6 0.7 0.8 0.9 1

System utilization

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t

pLAR

vLAR

KTree

CRA

Fig. 6. Communication cost of different load balancing schemes. (a) ts5k-large and (b) ts5k-small.

5.3. Churn-resilient load balancing

In P2P networks with churn, a great number of nodes and
items join, leave and fail continuously and rapidly. This gives
load balancing schemes a challenge because it is hard to achieve
the objective of load balance under churn. For example, a
node becomes overloaded if it cannot provide sufficient capac-
ity for the load transferred by its leaving neighbors; fast and
continuous item joins in a specific node make the node over-
loaded; when rendezvous nodes for load rearrangement sud-
denly leave or fail, some nodes may not be able to shed their
load in time. In addition to using randomized probing to han-
dle churn like CRA, pCluster and vCluster have maintenance
algorithms to deal with churn. They let regular nodes peri-
odically probe their supernode to handle supernode failures
and let supernodes help their regular nodes to find another su-
pernode before leaving. As we mentioned that KTree is not
flexible enough to handle churn because if a parent fails or

leaves without timely fix, the load imbalance of its children
cannot be solved. What is more, the tree needs to be recon-
structed every time after load transfer, degrading load balancing
efficiency.

We evaluated the efficiency of the pLAR and vLAR in dy-
namic situations with respect to a number of performance fac-
tors. Simulation results verified the superiority of pLAR and
vLAR in DHTs with churn, in comparison with CRA and
KTree. In this experiment, we run each trial of the simulation
for 20T simulated seconds, where T is a parameterized load
balancing period, and it was set to 60 s in our test. The item
join/departure rate was modelled by a Poisson process with a
rate of 0.4; that is, there were one item join and one item de-
parture every 2.5 s. We ranged node interarrival time from 10
to 90 s, with 10 s increment in each step. A node lifetime is
computed from arrival rate and number of nodes in the system.
For example, when node interarrival time is 10 s, if we fix the
steady-state number of nodes in the system to 4096, then the

Author's personal copy

698 H. Shen, C.-Z. Xu / J. Parallel Distrib. Comput. 68 (2008) 686 – 702

1

10

100

1000

10000

100000

1000000

10000000

pLAR vLAR KTree CRA

Load info. reporting cost Probing/propagation cost

1

10

100

1000

10000

100000

1000000

10000000

pLAR vLAR KTree CRA

Fig. 7. Breakdown of total communication cost of different load balancing schemes. (a) ts5k-large and (b) ts5k-small.

node lifetime is about 4096 × 10 s. The system utilization was
set to 0.8. We adopted the same metrics as in [14]:

(1) Maximum load movement factor: We measure the load
movement factor after each load balancing period T in sim-
ulation and take the maximum of those results over a 20T

period as the maximum load movement factor.
(2) Maximum and average 99.9th percentile node utilizations:

We measure the maximum 99.9th percentile of the utiliza-
tions of the nodes after each load balancing period T in
simulation and take the maximum and average of those re-
sults over a 20T period as the maximum and average 99.9th
percentile node utilizations.

(3) Load movement rate, defined as the total load moved in-
curred due to load balancing divided by the total load of
items moved due to node joins and departures in the sys-
tem.

Figs. 8 and 9 plot the performance due to pLAR, vLAR,
KTree and CRA versus node interarrival time. Fig. 8(a) and (b)
shows that the average 99.9th percentile node utilizations of
pLAR, vLAR and CRA are around 1.1, the maximum 99.9th
percentile node utilizations are slightly higher than the average
and kept no more than 1.2, but both of them are between 1.6
and 2 in KTree. The observation that pLAR and vLAR keep
the node utilizations close to 1 implies that on average they
can achieve the load balancing goal of keeping each node’s
load below its capacity even in churn. The result that pLAR
and vLAR are comparable to CRA implies that they are as
efficient as CRA to deal with churn. In contrast, higher node
utilization of KTree means that it is not resilient enough to
cope with churn. pLAR, vLAR and KTree are all auxiliary
networks for load balancing. However, because KTree is not
reliable in churn, it cannot achieve load balancing goal to keep
nodes lightly loaded in churn. In contrast, pLAR and vLAR
generated by hash-based proximity clustering are resilient to
churn with its self-organization.

Fig. 9(a) shows that the maximum load movement factors
of pLAR, vLAR, CRA and KTree are kept between 20% and
25%, which means that all schemes move almost the same sys-
tem load to achieve load balance. This result suggests that a
better load balancing scheme should explore how to move the
same amount of load in time under churn; that is, let nodes
shed their excess load timely in order to keep their load below
their capacities. Fig. 9(b) illustrates the load movement rate.
We can observe that the load moved due to load balancing is
very small compared with the load moved due to node joins
and departures, and it is up to 35% for LAR and 45% for CRA
and KTree. When the node interarrival time is 10, the rate is
the highest in pLAR and vLAR. It is because faster node joins
and departures generate much higher load imbalance, therefore
more load transfer is needed to achieve load balance. The ob-
servation that the results of pLAR and vLAR are comparable
to, or even better than, CRA implies that pLAR and vLAR
schemes are as efficient as CRA to handle churn by moving a
small amount load. In summary, in the face of rapid arrivals
and departures of items of widely varying load and nodes of
widely varying capacity, pLAR and vLAR achieve load bal-
ance fast while moving almost the same amount of load as
other schemes, up to 23% of the load that arrives into the sys-
tem. However, KTree cannot handle churn as effectively as the
pLAR, vLAR and CRA.

To evaluate the capability of pLAR and vLAR to deal with
node failures, we tested their performance in node failures.
Because the results of pLAR are almost the same as vLAR,
we use one group of results to represent both. Fig. 10 plots
the relationship between 99.9th percentile node utilization and
load movement factor versus interval time of node failures with
and without item joins and departures. Fig. 10(a) shows that,
without item joins and departures, pLAR and vLAR keep every
node light loaded under node failures by transferring about
30% total system load. Fig. 10(b) shows that, with item joins
and departures, the 99.9th percentile node utilization remains at
about 1.1 by transferring almost the same total system load. It

Author's personal copy

H. Shen, C.-Z. Xu / J. Parallel Distrib. Comput. 68 (2008) 686–702 699

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10 20 30 40 50 60 70 80 90

Node interarrival time

T
h
e
 a

v
e
ra

g
e
 9

9
.9

th
 p

e
rc

e
n
ti
le

n
o
d
e
 u

ti
liz

a
ti
o
n

pLAR

vLAR

KTree

CRA
0.6

0.8

1

1.2

1.4

1.6

1.8

2

10 20 30 40 50 60 70 80 90

Node interarrival time

T
h
e
 m

a
x
im

u
m

 9
9
.9

th
 p

e
rc

e
n
ti
le

n
o
d
e
 u

ti
liz

a
ti
o
n

pLAR

vLAR

KTree

CRA

Fig. 8. Node utilizations of different load balancing schemes in DHT networks with churn. (a) Average node utilization and (b) maximum node utilization.

0

0.05

0.1

0.15

0.2

0.25

0.3

10 30 50 70 90

Node interarrival time

M
a
x
im

u
m

 l
o
a
d
 m

o
v
e
m

e
n
t
fa

c
to

r

pLAR

vLAR

CRA

KTree

0

0.1

0.2

0.3

0.4

0.5

10 30 50 70 90

Node interarrival time

L
o
a
d
 m

o
v
e
m

e
n
t
ra

te

pLAR

vLAR

CRA

KTree

Fig. 9. Load movement overhead of different load balancing schemes in DHT networks with churn. (a) Maximum load movement factor and (b) load movement
rate.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Interval time of node failure

0 20 40 60 80 100

Interval time of node failure

Max. load movement fac.

Ave.99.9th percentile node utilization

Max.99.9th percentile node utilization

0

0.2

0.4

0.6

0.8

1

1.2

Max. Load Movement Fac.

Ave. 99.9th percentile node utilization

Max 99.9th percentile node utilization

Fig. 10. Effect of pLAR and vLAR load balancing in DHT networks with node failures. (a) Without item join and departure and (b) with item join and departure.

Author's personal copy

700 H. Shen, C.-Z. Xu / J. Parallel Distrib. Comput. 68 (2008) 686 – 702

0

2

4

6

8

10

12

14

0.5 0.6 0.7 0.8 0.9 1

System utilization

N
o
d
e
 c

a
p
a
c
it
y
 x

 1
0
0
0
0

Least cap.:

pLAR

vLAR

KTree

CRA

Most loaded:

pLAR

vLAR

KTree

CRA

0

2

4

6

8

10

12

14

16

0.5 0.6 0.7 0.8 0.9 1

System utilization
N

o
d
e
 c

a
p
a
c
it
y
 x

 1
0
0
0
0

Fig. 11. Capacity of the rendezvous node with the least capacity/most load balancing overhead in different load balancing schemes. (a) ts5k-large and (b)
ts5k-small.

implies that a number of nodes are slightly overloaded. This is
because sometimes pLAR and vLAR cannot deal with excess
load caused by extra joining items instantly. In conclusion,
pLAR and vLAR load balancing are robust in that they still
can achieve load balance under node failures.

5.4. Heterogeneity consideration in load balancing

Generally, in load movement load balancing, load informa-
tion of nodes is gathered in a number of rendezvous nodes,
and the rendezvous nodes do load rearrangement from heavy
nodes to light nodes. Consequently, the rendezvous nodes af-
ford more load balancing overhead due to load information
maintenance and load rearrangement. A rendezvous node may
be already heavily loaded and does not have sufficient capacity
for load balancing overhead, making the load imbalance prob-
lem even more severe, so that an effective load balancing algo-
rithm should not only distribute application load but also load
balancing overhead, based on node heterogeneous capacities.
To evaluate the performance of load balancing schemes with
regard to heterogeneity consideration, we recorded the capacity
of least capacity rendezvous node among all rendezvous nodes,
and the capacity of the rendezvous node affording most load
balancing overhead measured in terms of the number of nodes
reporting their load information to the rendezvous node, in each
load balancing scheme. Higher capacity of the least capacity
rendezvous node means that higher capacity nodes, rather than
low-capacity nodes, are assigned as rendezvous nodes to main-
tain load information and arrange load movement. Higher ca-
pacity of the most loaded rendezvous node implies that higher
capacity nodes are responsible for more load balancing over-
head. They provide a guarantee of effective load balancing

operation, and prevent heavy nodes from more load assignment
caused by load balancing itself. Fig. 11(a) and (b) shows the
experiment results in “ts5k-large” and “ts5k-small”, respec-
tively. We can see from the figures that the capacities of the
least capacity and most loaded rendezvous nodes in pLAR and
vLAR are higher than that of KTree and CRA. The results con-
firm that, with the help of pCluster and vCluster, pLAR and
vLAR consider heterogeneity in load balancing by distinguish-
ing regular nodes from supernodes, and let supernodes afford
more load balancing overhead.

6. Conclusions

Unlike existing supernode clustering approaches which des-
ignate a static gateway of regular nodes as their supernode, this
paper presents a hash-based proximity clustering approach to
construct a self-organized churn-resilient auxiliary supernode
network for load balancing in heterogeneous DHT networks.
The auxiliary network can be physical or virtual. In the physi-
cal network pCluster, regular nodes connect to their physically
close supernodes and periodically report their load informa-
tion to their supernodes. In the virtual network vCluster, regu-
lar nodes connect to their logically close supernodes as in the
original proximity-oblivious DHT network; physically close
nodes put their load information together by routing their load
information to a rendezvous supernode or close supernodes.
The auxiliary network facilitates the design and implementa-
tion of LAR load balancing algorithm. Simulation results show
the superiority of the approach, in comparison with a num-
ber of other randomized and proximity-aware load balancing
algorithms. Benefits of proximity clustering come at the cost
of cluster maintenance. Although pCluster and vCluster are

Author's personal copy

H. Shen, C.-Z. Xu / J. Parallel Distrib. Comput. 68 (2008) 686–702 701

self-organized, there is still need for minimum maintenance as
in DHT networks.

Acknowledgments

The authors are grateful to the anonymous reviewers for
their valuable comments and suggestions. This research was
supported in part by US Acxiom Corporation, US NSF Grant
CCF-0611750, DMS-0624849, CNS-0702488, CRI-0708232
and NASA Grant 03-OBPR-01-0049. An early version of this
work [25] was presented in the Proceedings of IPDPS’06.

References

[1] M. Adler, E. Halperin, R.M. Karp, V. Vazirani, A stochastic process on
the hypercube with applications to peer-peer networks, in: Proceedings
of STOC, 2003.

[2] I. Ahmad, A. Ghafoor, Semi-distributed load balancing for massively
parallel multicomputer systems, IEEE Trans. Software Eng. 17 (10)
(1991).

[3] K. Albrecht, R. Arnold, M. Gähwiler, R. Wattenhofer, Aggregating
information in peer-to-peer systems for improved join and leave, in:
Proceedings of the 4th International Conference on P2P Computing,
2004.

[4] T. Asano, D. Ranjan, T. Roos, E. Welzl, P. Widmaier, Space filling
curves and their use in geometric data structure, Theoret. Comput. Sci.
181 (1) (1997) 3–15.

[5] Y. Azar, A. Broder, et al., Balanced allocations, in: Proceedings of
STOC, 1994, pp. 593–602.

[6] A.R. Bharambe, M. Agrawal, S. Seshan, Mercury: supporting scalable
multi-attribute range queries, in: Proceedings of ACM SIGCOMM, 2004.

[7] M. Bienkowski, M. Korzeniowski, F.M. auf der Heide, Dynamic load
balancing in distributed hash tables, in: Proceedings of IPTPS, 2005.

[8] J. Byers, J. Considine, M. Mitzenmacher, Geometric generalizations of
the power of two choices, in: Proceedings of ACM SPAA, 2004.

[9] M. Castro, P. Druschel, Y.C. Hu, A. Rowstron, Topology-aware routing
in structured peer-to-peer overlay networks, in: Future Directions in
Distributed Computing, 2002.

[10] A. Chervenak, M. Cai, M. Frank, A peer-to-peer replica location
service based on a distributed hash table, in: ACM/IEEE Conference on
Supercomputing (SC), 2004.

[11] S. Fu, H. Shen, C. Xu, Power of two for randomized selections in
generalized supermarket models, Technical Report, ECE Department,
Wayne State University, 2006.

[12] P. Ganesan, M. Bawa, H. Garcia-Molina, Online balancing of range-
partitioned data with applications to peer to peer systems, in: Proceedings
of the 30th VLDB Conference, 2004.

[13] L. Garces-Erice, E.W. Biersack, K.W. Ross, P.A. Felber, G. Urvoy-Keller,
Hierarchical p2p systems, in: Proceedings of ACM/IFIP International
Conference on Parallel and Distributed Computing (Europar), 2003.

[14] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, I. Stoica, Load
balancing in dynamic structured P2P systems, Performance Evaluation
63 (3) (2006).

[15] B. Godfrey, I. Stoica, Heterogeneity and load balance in distributed hash
tables, in: Proceedings of INFOCOM, 2005.

[16] D. Karger, E. Lehman, T. Leighton, M. Levine, et al., Consistent hashing
and random trees: distributed caching protocols for relieving hot spots
on the World Wide Web, in: Proceedings of STOC, 1997, pp. 654–663.

[17] D.R. Karger, M. Ruhl, Simple efficient load balancing algorithms for
peer-to-peer systems, in: Proceedings of IPTPS, 2004.

[18] G. Manku, Balanced binary trees for ID management and load balance
in distributed hash tables, in: Proceedings of PODC, 2004.

[19] M. Mitzenmacher, On the analysis of randomized load balancing
schemes, in: Proceedings of SPAA, 1997.

[20] M. Nar, U. Wieder, Novel architectures for p2p applications: the
continuous–discrete approach, in: Proceedings of ACM SPAA, 2003.

[21] A. Rao, K. Lakshminarayanan, et al., Load balancing in structured P2P
systems, in: Proceedings of IPTPS, 2003.

[22] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable
content-addressable network, in: Proceedings of ACM SIGCOMM, 2001,
pp. 329–350.

[23] S. Ratnasamy, M. Handley, R. Karp, S. Shenker, Topologically-aware
overlay construction and server selection, in: Proceedings of INFOCOM,
2002.

[24] A. Rowstron, P. Druschel, Pastry: scalable, decentralized object location
and routing for large-scale peer-to-peer systems, in: Proceedings of
Middleware, 2001.

[25] H. Shen, C. Xu, Hash-based proximity clustering for load bancing in
heterogeneous DHT networks, in: Proceedings of IPDPS, 2006.

[26] H. Shen, C. Xu, Locality-aware and churn-resilient load balancing
algorithms in structured peer-to-peer networks, IEEE Trans. Parallel and
Distributed Systems 18 (6) (2007) 849–862.

[27] H. Shen, C. Xu, G. Chen, Cycloid: a scalable constant-degree p2p
overlay network, Performance Evaluation 63 (3) (2006) 195–216 (an
early version appeared in Proceedings of IPDPS’04).

[28] I. Stoica, R. Morris, et al., Chord: a scalable peer-to-peer lookup protocol
for Internet applications, IEEE/ACM Trans. Networking 11 (1) (2003)
17–32.

[29] M. Waldvogel, R. Rinaldi, Efficient topology-aware overlay network, in:
Proceedings of HotNets-I, 2002.

[30] Z. Xu, M. Mahalingam, M. Karlsson, Turning heterogeneity into an
advantage in overlay routing, in: Proceedings of INFOCOM, 2003.

[31] Z. Xu, C. Tang, Z. Zhang, Building topology-aware overlays using global
soft-state, in: Proceedings of ICDCS, 2003.

[32] E. Zegura, K. Calvert, et al., How to model an Internetwork, in:
Proceedings of INFOCOM, 1996.

[33] C. Zhang, A. Krishnamurthy, R.Y. Wang, Brushwood: distributed trees
in peer-to-peer systems, in: Proceedings of IPTPS, 2005.

[34] B. Zhao, Y. Duan, L. Huang, A. Joseph, J. Kubiatowicz, Brocade:
landmark routing on overlay networks, in: Proceedings of IPTPS, 2002.

[35] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, et al., Tapestry: an
infrastructure for fault-tolerant wide-area location and routing, IEEE J.
Select. Areas in Commun. 12 (1) (2004) 41–53.

[36] Y. Zhu, Y. Hu, Efficient proximity-aware load balancing for dht-based
p2p systems, IEEE Trans. Parallel and Distributed Systems 16 (4) (2005)
(an early version appeared in Proceedings of IPDPS’04).

Haiying Shen received the B.S. degree in Com-
puter Science and Engineering from Tongji Uni-
versity, China, in 2000, and the M.S. and Ph.D.
degrees in Computer Engineering from Wayne
State University in 2004 and 2006, respectively.
She is currently an Assistant Professor in the
Department of Computer Science and Com-
puter Engineering of University of Arkansas.
Her research interests include distributed and
parallel computer systems and computer net-
works, with an emphasis on peer-to-peer and
content delivery networks, mobile computing,
high-performance cluster and grid computing.
She is a member of IEEE and ACM.

Cheng-Zhong Xu received the B.S. and M.S.
degrees from Nanjing University in 1986 and
1989, respectively, and the Ph.D. degree from
the University of Hong Kong in 1993, all in
Computer Science. He is a Professor in the De-
partment of Electrical and Computer Engineer
of Wayne State University and the Director
of the Center of Networked Computing Sys-
tems. His research interest includes distributed
and parallel systems, in particular, reliable
and secure Internet services and architecture,
energy-efficient mobile and embedded systems,

and resource management in cluster and grid computing. He has pub-
lished more than 120 peer-reviewed articles in journals and confer-
ences in these areas. He is the author of “Scalable and Secure Internet

Author's personal copy

702 H. Shen, C.-Z. Xu / J. Parallel Distrib. Comput. 68 (2008) 686 – 702

Services and Architecture” (Chapman & Hall/CRC Press, 2005) and the
leading co-author of “Load Balancing in Parallel Computers: Theory
and Practice” (Kluwer Academic, 1997). He serves on a number of ed-
itorial boards, including IEEE Transactions on Parallel and Distributed
Systems, J. of Parallel and Distributed Computing, J. of Parallel, Emer-
gent, and Distributed Systems, J. of Computers and Applications, and
International J. of High Performance Computing and Networking. He was

a founding co-Chair of International Workshop on Security in Systems and
Networks (SSN), a general co-Chair of 2006 International Conference on
Embedded and Ubiquitous Computing (EUC’06), and a PC member of nu-
merous conferences. He was a recipient of the “Faculty Research Award”
of Wayne State University in 2000, the 2002 “President’s Award for Excel-
lence in Teaching,” and the 2003 “Career Development Chair Award.” He is
a senior member of the IEEE and a member of ACM.

