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Flooding with a time-to-live constraint is a popular algorithm in unstructured peer-to-peer
(P2P) networks. However, blind flooding may cause a large amount of network
traffic.Moreover, it cannot guarantee acquiring all required data objects, especially for rare
ones. To mitigate these problems, this paper proposes PercolationNET, a multi-tree
sub-overlay, which is built on top of an existing P2P overlay (named original overlay).
PercolationNET organises peers in a tree-based structure which facilitates reliable and
efficient message dissemination for search. The search process is divided into two stages.
A query message is first propagated on the original overlay, and then broadcast along
the sub-overlay PercolationNET. PercolationNET combines the advantages of fast
coverage speed in flooding-based scheme and low traffic cost in tree-based scheme.
The experimental results of PercolationNET compared with FloodNet confirm the
superiority of PercolationNET in achieving faster coverage speed and lowermessage cost.

Keywords: peer-to-peer network; high coverage search; multi-tree architecture;
sub-overlay; flooding-based scheme; tree-based scheme

1. Introduction

Peer-to-peer (P2P) networks have become a dominant part of the internet traffic owing to

the tremendous success of P2P file-sharing systems such as Gnutella (Gnutella Network

Size, http://www.limewire.com/index.jsp/size, 2007) and KaZaA (http://www.kazaa.com,

2007). P2P overlay networks can be classified into two categories: structured and

unstructured. Structured overlays [13,15] tag the peers with peer identifiers. The

placement of shared data and topology characteristics of the networks are tightly

controlled based on distributed hash tables. In contrast to structured overlays, unstructured

overlays do not follow any specific topology characteristics. Therefore, they do not apply

any clue as to where queried content is located. In spite of the absence of location clue,

unstructured P2P networks have several desirable properties not easily achieved by

structured counterparts – they are highly resilient to node failures and incur low overhead

for peer arrivals and departures. In addition, they are simple to implement and nearly incur

no overhead in topology maintenance. Consequently, unstructured networks are becoming

more and more popular as they are flexible to be optimised for specific applications [3].

The predominating search mechanism in unstructured networks is message flooding

with a time-to-live (TTL) restriction. This simple method does not provide guarantee that
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an object existing in the network can be found. Moreover, flooding does not scale well in

terms of message overhead, since each query may generate a significant amount of traffic,

especially in a system with a high-connectivity topology. Although some schemes have

been proposed to restrict flooding, such as the use of a flexible or alterable TTL value and

selective neighbours, these schemes are only beneficial to popular data objects in the

unstructured networks since the queries are restricted in a certain scope.

Realising the importance of flooding in unstructured P2P networks and its problems,

our work focuses on overlay construction for search with data retrieval guarantees as well

as low traffic cost. We build PercolationNET, a multi-tree sub-overlay, upon the original

overlay. Correspondingly, the search process is divided into two stages. In the first stage, a

query message is flooded with an appropriate TTL value in the original overlay network so

that the message can spread to all trees of the sub-overlay with smaller redundant

messages. Then, in the second stage, the query message is broadcasted along the

sub-overlay, which has low connectivity but ensures that any object existing in the network

can be found. The experimental results show that PercolationNET offers high probabilistic

guarantees of the accessibility of data objects, while incurring minimal overhead.

The rest of the paper is organised as follows. Section 2 describes a survey of related

work. Section 3 details the design of PercolationNET in terms of overlay construction and

maintenance. Section 4 evaluates the performance of the PercolationNET in comparison

with FloodNet [4] through simulation experiments. Section 5 presents the conclusion and

future work.

2. Related work

Many efforts have been devoted to avoid the large volume of unnecessary traffic incurred

by the flooding-based search in unstructured P2P networks. In general, they can be

categorised into three types: modified flooding, caching index or content and overlay

optimisation. The three different kinds of approaches can be used together to complement

each other.

Unlike pure flooding, which starts with a fixed TTL and sends query message to all

neighbours, modified flooding takes more dynamic factors into consideration to reduce

traffic overhead while maintaining certain search quality. For example, in Directed BFS

[19], each peer maintains statistic information based on a number of metrics such as the

degree of neighbours. A peer selects a subset of its neighbours, such as the neighbours that

have large degrees, to send its query. In the expanding ring [9], flooding is initiated with

increasing TTLs. A peer starts a flooding with a small TTL, and waits to see if the search is

successful. If it is, the node stops. Otherwise, the node increases the TTL and starts another

flooding operation. The process repeats until the queried object is found. Adaptive

flooding [8] combines the above two schemes. It not only relays a query message to

limited neighbours, but also adjusts TTL value. Although these schemes can save traffic

overhead to some extent and reduce the latency of popular data objects, their performance

could be uncertain for rare or distant ones when the search scope is deepening. In contrast,

our approach can reduce the network traffic with high coverage speed.

The second approach is caching index or content. In local indices [19] policy, each

peer maintains an index of files available in the nodes within given radius r. When a peer

receives a query, it can process the query on behalf of all nodes within the radius r.

Caching file contents (replication) [5,16] has also been studied. The work in [1] evaluates

and compares different replication strategies. The literature [18] researches on how many

replications should be made and where to locate these replications. In uniform index
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caching [17], each peer stores IP addresses of the peers that have the contents whose

queries passed the peer. If the same objects are queried again, the peer stops the flooding

and replies with the location stored in its memory. In this paper, we mainly consider search

scope rather than searching a concrete object. If we integrate the caching strategy into our

approach, the performance in terms of message overhead and response time for object

search can be improved further.

The third approach is overlay optimisation [2,14] that is closely related to what this

paper presents. Mismatch between logic overlay and physic layer is a well-known problem

in P2P networks. Recent efforts including location-aware topology matching (LTM) [6]

and scalable bipartite overlay (SBO) [7] have been made to address the mismatch problem

without sacrificing the search scope. In LTM, each peer issues a detector so that the peers

receiving the detection can record relative delay information as the optimisation basis.

SBO scheme optimises the overlay topology by identifying and replacing the mismatched

connections, and it distributes optimisation tasks in peers with different colours. These two

schemes mainly improve one aspect of the performance – response time. In [4], a

sub-overlay FloodNet is constructed for the purpose of reducing the number of redundant

messages. FloodNet consists of all peers in original overlay and the links between each

peer and its parent who is its neighbour with the maximum secondary degree (i.e. the sum

of the degrees of a peer’s neighbours). Though it can reduce the number of redundant

messages effectively, it needs more hops to reach all peers of the network. Additionally,

the secondary degree of each peer is volatile due to the dynamic characteristic of P2P

networks.

Different from the aforementioned approaches, the proposed sub-overlay in this paper

is constructed depending on the overall characteristic of the original overlay. Since the

search can span the entire network along the sub-overlay with an appropriate TTL value,

we can regard this sub-overlay network with percolation characteristic. Hence, we call the

sub-overlay as PercolationNET. In this paper, we use flooding as an example of searching

in the first stage of our approach. However, other search schemes can be also used as long

as they can spread message to all trees of PercolationNET with a limited TTL.

3. PercolationNET design

FloodNet [4] is built based on the number of each peer’s secondary neighbours (i.e. the

neighbours of a peer’s neighbours). When flooding runs over FloodNet, it can eliminate a

large number of redundant messages. However, the design of FloodNet has the following

disadvantages in practice. Firstly, since each peer chooses one of its neighbours as parent

according to local information, the design of the overlay FloodNet is not optimal in the

global. In addition, calculating the number of the secondary neighbours of each peer will

consume much bandwidth resource. Furthermore, unstructured P2P networks are so

dynamic that the number of the secondary neighbours of each peer is volatile. Last but not

least, in FloodNet, the level of the sub-overlay is very deep, leading to long latency.

Inspired by the pros and cons of the flooding-based search scheme and FloodNet, we

propose PercolationNET – a sub-overlay for providing the guarantee that any object

existing in the network can be found with low cost. In the following section, we will

describe the overlay structure and maintenance of PercolationNET.

3.1 Overlay structure

There are several principles in constructing PercolationNET: (1) Most research on overlay

construction only considered the local information of each peer. Thus, they can achieve
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preferable effect in the local but not globally. In order to achieve optimal effect globally,

the design of PercolationNET relies on the global information of the original overlay.

(2) To guarantee that all required data objects can be found, the sub-overlay should include

all peers in the original overlay. In other words, each peer exists in one tree of

PercolationNET. (3) Because of the high transiency of the unstructured P2P networks,

PercolationNET must be efficiently maintained. Therefore, when peers leave, join or even

fail, only local information is needed for overlay maintenance.

Lv et al. [10] showed that a high-degree node in Gnutella network would most likely

experience high query load. Generally, high-degree nodes have high capability to handle a

great deal of load. Thus, we make two logical assumptions for the sub-overlay. Firstly, the

peers with high degree are high capacity ones, called super-peers in this paper. Super-peers

take over more responsibilities in the sub-overlay. Secondly, super-peers do not leave the

network frequently. Thus, the sub-overlay is relatively stable.

Based on the above principles and assumptions, we construct PercolationNET in three

phases. In the first phase, the tree roots of the sub-overlay need to be found. Previous

studies [2] have shown that P2P overlay topologies follow the power-law properties,

which means that a few peers have high degrees. In PercolationNET, we select

high-degree nodes, the super-peers, as the tree roots of sub-overlay. We can find these

high-degree nodes easily by relying on the degree distribution of peers in the original

overlay. As shown in Algorithm 1, DThres is a threshold value for super-peers, that is, a

peer whose degree larger than DThres is defined as a super-peer. The set S is used to store

all super-peers. Since the discovery of super-peers is based on the global information of

the original overlay, the construction of PercolationNET is from the overall consideration.

In the second phase, each ordinary peer probes its level by Algorithm 2. In Algorithm 2,

the parameter DetectTTL denotes the number of hops each peer detects. The value

of DetectTTL varies with different topology sizes and their average connectivity degrees.

The setting of DetectTTL value needs to ensure that all ordinary peers can find at least one

super-peer. We use the minimum number of hops between each ordinary peer and a certain

super-peer as its level. The level of super-peers is zero.

In the third phase, each ordinary peer selects a neighbour as its parent according to

Algorithm 3. A peer p’s candidate parent peers are its neighbour peers whose level are just

one lower than peer p. Each ordinary peer selects one from its candidate parent peers as its

parent with probability Pr which can be computed by the degree of peers, as shown in

Algorithm 3. Thus, PercolationNET generates multiple unconnected components.

In this paper, the original overlay is generated directly by the topology generation

based on Barabasi–Albert (BA) model. Hence, the degree of peers in this overlay must

obey the power-law distribution. We classify the peers in the original overlay into two

types: super-peers who have high degree and ordinary peers (peers other than super-peers).

Algorithm 1. SELECT_SUPERPEERS

1. N is the set of peers in the original overlay.
2. S is the set of super-peers with the initial value of null.
3. DThres is the threshold value of degree for super-peers.
4. Initialise DThres according to the degree distribution of peers in the original overlay.
5. For each peer q [ N
6. If Degree(q) . DThres

Then put peer q into the set S
7. End for
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As shown in Figure 1(a), there are three super-peers SP1, SP2, SP3 and 19 ordinary peers

Pa, Pb, . . . , Px. In Figure 1(b), the form of each component in the sub-overlay is a tree,

and the root of the tree is a super-peer in original overlay. In the sub-overlay, each tree is

composed of one super-peer in the original overlay, ordinary peers directly or indirectly

connecting with the super-peer, and the original existing links among them. Concretely,

super-peers SP1, SP2 and SP3 in ordinary overlay become the tree roots in the sub-overlay,

and each ordinary peer detects its level and selects a neighbour in the original overlay as its

parent in the sub-overlay according to Algorithms 2 and 3.

For example, the 13 ordinary peers Pa, Pd, Pe, Pg, Ph, Pk, Pl, Pm, Pj, Pn, Pr, Pt and Px

have direct links with one of three super-peers. Therefore, their level is 1.Pa, Pd and Pe only

Algorithm 2. DETECT_LEVEL(p)

1. N is the set of peer p’s neighbours.
M is a null set. //M is used to store the temporary information

2. S is the set of super-peers.
3. Initialise DetectTTL;

j ¼ 1;
flag ¼ false

4. While j , DetectTTL and flag ¼ false
5. For each peer q [ N
6. If q [ S then Level( p) ¼ j;

flag ¼ true;
break;

//If q is a super-peer, the level of peer p is the circular parameter j and the cycle process
terminates

7. else put the neighbours of peer q into set M
//If q is not a super-peer, the neighbours of q will be detected, so M is used to express the set of
the neighbours of q

8. End For
9. set N ¼ M;

M ¼ B;
jþþ

10. End While

Algorithm 3. FIND_PARENT(p)

1. N is the set of peer p’s neighbours.
M is a null set. //M is used to store the candidate parent peers of peer p

2. Obtain the level information of all peers in set N
3. For each peer q [ N
4. If Level(p) 2 Level(q) ¼ ¼ 1 then
5. put peer q into set M
6. End For
//some of peer p’s neighbour peers whose level are just one lower than peer p are put into set M

7. Obtain the degree information of all peers in set M
8. For each peer k [ M
9. compute the probability Prk ¼

DegreeðkÞP

i[M

DegreeðiÞ

10. End For
11. Select a neighbour j from M as its parent with probability Prj
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have direct link with one super-peer SP1, so they select SP1 as their parent undoubtedly.

Similarly, Pk, Pl, Pm select SP2 as their parent, and Pn, Pr, Pt, Px select SP3 as their parent.

However, as to peers Pg, Ph and Pj, they have direct links with two super-peers. Thus, they

have to choose one as their parent according to the probability Pr described in Algorithm 3.

The six ordinarypeersPb,Pc,Pf,Po,Pi andPs need twohops to reach one super-peer.Hence,

their level is 2. In all neighbours of peerPc, only the level of peerPa is just one lower than peer

Pc. Hence, Pc selects Pa as its parent undoubtedly. Similarly, Ps selects Pt as its parent.

However, as to peersPb,Pf,Po andPi, they havemore than one choice, because they all have

two neighbours whose levels are just one lower than them. Hence, they need to choose one as

their parent according to the probability Pr as well.

3.2 Overlay maintenance

3.2.1 Joining

A typical unstructured P2P system provides several permanent well-known bootstrap

hosts to maintain a list of on-line peers so that a new incoming peer can find an initial host

to start its connection by contacting the bootstrap hosts. In an original overlay, a bootstrap

host will provide the joining peer a list of active peers with their information. The joining

Figure 1. Original overlay structure of P2P network and sub-overlay structure of PercolationNET.
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peer tries to construct connections to these peers, and then detects its level by Algorithm 2.

In PercolationNET, the new joining peer selects one of its neighbours in original overlay

as its parent by Algorithm 3. The peers (except the father of the new peer) who are

connected by the new peer will detect their level over again. Once the level of a peer is

updated, the level of its children will be updated accordingly. The algorithm of a new peer

joining is shown in Algorithm 4.

Figure 2(a),(b) shows the process of a new peer joining the original overlay and

sub-overlay, respectively. The peer P chooses four peers P1, P2, P3 and P4 to establish the

connection in the original overlay. In the sub-overlay, it selects peer P1 from the four peers

as its father according to Algorithm 3. Additionally, the rest peers P2, P3 and P4 need to

detect their level afresh.

3.2.2 Leaving

There are two types of peers in PercolationNET: super-peer and ordinary peer.

The ordinary peer can be further classified into leaf peer and middle peer. When a

super-peer leaves the network, the sub-overlay needs to be reconstructed according to the

construction of PercolationNET. When a middle peer leaves the network, it has to inform

its parent and children by sending a leave message. Each peer of the informed children

detects its level by Algorithm 2 over again, and then selects another neighbour in the

original overlay as its parent by Algorithm 3. When a leaf peer leaves the network, it has to

inform its parent by sending a leave message. The algorithm of leaving network for a peer

is shown in Algorithm 5.

Figure 3(a),(b) shows the process of a leaf peer and a middle peer leaving the

sub-overlay, respectively. In Figure 3, P1 is the father of peer P and P2, P3 are its children.

We can see that once a middle peer P leaves the network, its children P2 and P3 need to

find new peers as their parents by Algorithms 2 and 3. Additionally, the children of P2 and

P3 are also need to update their level accordingly.

3.2.3 Failure recovery

The failure of a peer in PercolationNET is detected when one of its children misses a

sequence of three messages. In the case where a peer detects its parent’s failure, it refreshes

its level by Algorithm 2, and then selects another neighbour in the original overlay as its

parent by Algorithm 3. Additionally, its children need to update their level accordingly.

Figure 2. Peer joining process in original overlay and sub-overlay.
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Although a number of peers may fail at the same time, the query message can still span

the entire network. This is because many seeds which will be described in Section 4.2 can

be created during the first stage search of a message. The departure or failure of individual

peers does not have a disruptive impact on the overlay topology since messages are routed

by many parallel routes in the proposed two-stage search scheme. Therefore, the two-stage

search scheme is robust against volatile peers.

3.2.4 Adjustment

Since the unstructured P2P networks are self-organised, an individual peer may come,

go or fail frequently. As a result, a peer’s parent may be not the optimal one in

PercolationNET. Therefore, each peer needs to update its parent information periodically.

A short update interval can produce accurate information about the PercolationNET

topology, but frequently updating messages consumes extra bandwidth resource. A long

Algorithm 5. Leaving(P)

1. If (P is a leaf peer)
2. Peer P notices its parent;
3. Its parent deletes the information of the leaving peer;

//If the leaving peer is a leaf peer, the peer only needs to notice its parent to update its
information.

4. Else If (P is a super-peer)
5. The sub-overlay PercolationNET will be reconstructed according to the

construction of PercolationNET;
6. Else

//The leaving peer is a middle peer.
7. Put the children of peer P into a set M;
8. For each peer Pj [ M
9. Detect its level according to Algorithm 2;
10. Select a neighbour peer as its parent according to Algorithm 3;
11. Alter the level of descendants of peer Pj;
12. End For
13. End If

Algorithm 4. Joining(P)

1. Randomly choose m nodes {P1, P2, . . . , Pm} in original overlay as the new peer P’s neighbours;
2. Detect the level of peer P using the DETECT_LEVEL function in Algorithm 2;
3. Peer P selects a neighbour peer Pi from {P1, P2, . . . , Pm} as its parent according to Algorithm 3;
4. Define a set S ¼ {P1, P2, . . . , Pm} 2 {Pi};
//S is the set of the peers (except the father Pi of the new peer P) who are connected by the new peer

5. For each peer Pj [ S
6. If (Level(Pj) . Level(P) þ 1) then
7. Parent(Pj) ¼ P;

//alter the parent node of Pj
8. Level(Pj) ¼ Level(P) þ 1;

//alter the level information of Pj
9. Alter the level of descendants of peer Pj;
10. End If
11. End For
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update interval has lower communication costs but may not reflect the latest network

topology. In reality, it is important to find a balanced point since the network condition is

dynamic.

However, a short update interval will only consume a small bandwidth resource

because the adjustment of level and parent for each peer only needs the degree information

in the original overlay. At the same time, a large update interval will not cause significant

performance degradation owing to the two-stage search scheme.

3.3 Message routing

Each peer needs to store two aspects of information: the information of neighbour peers in

the original overlay and the information of its father and children in the sub-overlay

PercolationNET. Correspondingly, the routing process for query messages is divided into

two stages. In the first stage, a query message is flooded in the original overlay network.

Then, in the second stage, the query message is broadcasted along the sub-overlay. Hence,

each query message needs two initial TTLs: Q( firstTTL, secondTTL), where firstTTL

denotes the broadcasting hops of message in the first stage and secondTTL means the

propagating hops of message in the second stage. There are four situations as described in

the following when a peer receives a query message.

(1) When a peer receives a message Q(i, secondTTL), 0 , i # firstTTL, it will reduce

i by 1, and transmit this message to all its neighbours along original overlay.

As shown in Figure 4(a), P1, P2, P3, P4, P5 and P6 are all neighbours of peer P

Figure 3. Peer leaving process in sub-overlay.
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in original overlay. If peer P receives a message Q(i, secondTTL), 0 , i #

firstTTL, it will transmit the message Q(i 2 1, secondTTL) to P1, P2, P3, P4, P5

and P6.

(2) When a peer receives a message Q(0, secondTTL), it will stop the propagation of

this message in original overlay and judge whether the message is a new message.

If it is the first time that P receives the message Q, the peer will become a seed (we

use the term ‘seed’ to describe the new node reached in the last hop of firstTTL)

and further transmit the message along the sub-overlay. Otherwise, the search will

be terminated. As shown in Figure 4(b), P1 is the father of peer P and P2, P3, P4

are its children in the sub-overlay. If peer P receives a message Q(0, secondTTL)

and it is the first time to receive the message Q, it will transmit the message to its

father P1 and children P2, P3, P4. However, if P has ever received the message Q,

the search will be terminated.

(3) When a peer receives a message Q(0, j), 0 , j , secondTTL, it will transmit this

message to all its neighbours along the sub-overlay, as shown in Figure 4(c).

(4) When a peer receives a message Q(0, 0), it will stop the search process, as shown

in Figure 4(d).

4. Performance evaluation

4.1 Simulation setup

We use the simulator PeerSim [12] for evaluating the performance of PercolationNET.

In our simulation, we construct two overlays: original overlay and sub-overlay. Using

BRITE (http://www.cs.bu.edu/brite/, 2007) [11], we generate the original overlay based

on the BA model with 10,000 nodes. In order to learn how the connectivity of an overlay

Figure 4. Search process in original overlay and sub-overlay.

R. Li et al.82

D
ow

nl
oa

de
d 

by
 [

C
le

m
so

n 
U

ni
ve

rs
ity

] 
at

 1
6:

38
 1

1 
O

ct
ob

er
 2

01
2 



topology affects the performance of PercolationNET, we use different average number of

links 2, 3, 4, named Top1, Top2 and Top3, respectively. The node degree distributions of

the three overlay topologies are shown in Figure 5. Based on each original overlay, we also

construct the corresponding sub-overlay by the scheme described in Section 3, where we

define the threshold value of degree for super-peers’ DThre as 100 in Top1, 141 in Top2

and 178 in Top3. Therefore, there are eight super-peers for these three topologies in our

experiments.

For each experiment in the following, every peer, in turn, starts a searching procedure

and broadcasts a query message to the network by using flooding with ( firstTTL,

secondTTL). Each peer stores the information of its neighbours in the original overlay and

the information of its parent and children in PercolationNET overlay. In the first stage, the

message is propagated in the original overlay with firstTTL. When the value of hops in the

first stage is equal to the value of firstTTL, the peers who receive the message in the last

hop will stop broadcasting the message in the original network. Then, the message will be

broadcasted using flooding along the sub-overlay PercolationNET with secondTTL.

The seeds who are the new nodes reached in the last hop of firstTTL are the source nodes of

the message in the second stage. When the hops in the second stage reach the value of

secondTTL, the search process will stop. It does not need to search a concrete object while

broadcasting the message in the network, for the purpose of our evaluation is to obtain the

statistics of search scope and message overhead. All data shown in the following figures

are average values.

In this paper, we mainly focus on two performance metrics: message overhead and

coverage scope within a certain hops. Additionally, we analyse the performance of

PercolationNET compared with FloodNet, in terms of coverage rate, coverage growth rate

and message efficiency.

4.2 Seeds and super-peers

From the previous description, we can see that the number of seeds is an important

parameter for message propagation along PercolationNET. Figure 6 shows the number of

seeds with different value of firstTTL in the three topologies. We can observe that seed

amount first increases and then decreases with the increase of firstTTL. This is because

flooding in power-law networks is efficient only in earlier stages (with low hops). In the

latter stages, the number of the new nodes reached does not increase like the initial stages.

This motivates us to use an appropriate firstTTL in the first stage, which can produce

enough seeds for the second stage. Moreover, the higher the connectivity of the overlay

topology is, the smaller the value of firstTTL for producing the most seeds will be. From the

Figure 5. Degree distribution in different topologies.
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figure, we can see that the optimal value of firstTTL for producing enough seeds is no more

than 5 in Top1, 4 in Top2 and Top3.

Figure 7 shows the average number of super-peers reached in the first stage. From the

figure, we can see that the higher the connectivity is, the quicker the super-peers are

covered. In addition, all super-peers are covered in the first stage when the value of

firstTTL is 5 in Top1, 4 in Top2 and Top3. If the coverage scope of flooding in the first

stage includes all super-peers, seeds will spread over all trees of PercolationNET

unquestionably. Consequently, the search can spread to all peers with a low secondTTL in

the second stage. However, though not all super-peers are included in the coverage scope

of the first stage, the seeds can also spread over all trees as long as they are sufficiently

decentralised. We will further test it by experiments in the following.

4.3 Message overhead

The goal of PercolationNET is to reduce the message overhead as much as possible while

retaining the same coverage scope. Figure 8 lists the average message overhead per query

with the increase of secondTTL in the second stage for different arrangements ( firstTTL, *)

in three topologies. According to analysis of seeds and super-peers in the above section,

we know that the optimal value of firstTTL is not more than 5 in Top1, 4 in Top2 and Top3.

Hence in the following experiments, we use (1, *), (2, *), (3, *), (4, *), (5, *) in Top1, (1, *),

(2, *), (3, *), (4, *) in Top2 and Top3. Furthermore, the whole coverage of the network

Figure 6. Seed amount in the first stage.

Figure 7. Super-peer amount in the first stage.
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is used as the baseline to set the stopping hops in the second stage (except for (1, *) and

(2, *) which cannot spread to all nodes).

From the figure, we can make the following observations. First, as the firstTTL

increases, the average message overhead increases exponentially, especially in the

high-connectivity topology Top3. In contrast, once the flooding is switched from the

original overlay in the first stage to PercolationNET in the second stage, the rising speed of

message overhead is slow. Therefore, this means that PercolationNET is able to eliminate

a large number of redundant messages by introducing several additional hops. Second,

the bigger the value of firstTTL is, the larger the message overhead becomes. For example,

the simulation shows that the final message overhead of (5, *) is twice as much as that of

(3, *) on topology Top1, and the final message overhead of (4, *) is nearly three times as

much as that of (3, *) on topology Top3. Third, at the latter hops of all arrangements in this

figure, the message overhead nearly stops rising. The reason is that PercolationNET is

made of trees. When the message reaches the leaf nodes, it will not be broadcasted

anymore. Lastly, at the first hop of (4, *) in three topologies and (5, *) in Top1, the

increment of message overhead is comparatively large. This phenomenon can be

explained with the reason that all of seeds produced in the first stage broadcast the query

message to all of their neighbours along PercolationNET at the initial one hop in the

second stage, thus generating many message overheads. In fact, the phenomenon can also

be observed in (3, *). However, the seeds in (3, *) are much less than that of (4,*) in these

three topologies, as shown in Figure 6, so it is not obvious.

4.4 Coverage rate

Coverage rate measures the ratio of the coverage to the whole number of peers in the

network. Figure 9 lists the coverage growth with the increase of secondTTL for different

( firstTTL, *) arrangements. Based on the figure, we can carry out the following

observations. First, in each topology, the smaller value of firstTTL is, the bigger value of

secondTTL is needed to obtain a similar coverage. For example, in Top3, (2, *) takes six

hops to reach the whole coverage, whereas (4, *) takes only two hops to retain the same

coverage. This is because a mass of seeds produced in the first stage can saturate the

network very quickly.

Besides, among different arrangements ( firstTTL, *), not every firstTTL value can

reach the whole coverage. For example, in Top1, (1, *) can only achieve 39% of the whole

coverage, whereas (2, *) only has about 82% of the whole coverage. The reason is that

PercolationNET is formed by multiple trees. If the number of seeds is not large enough,

Figure 8. Message overhead in the second stage.

International Journal of Parallel, Emergent and Distributed Systems 85

D
ow

nl
oa

de
d 

by
 [

C
le

m
so

n 
U

ni
ve

rs
ity

] 
at

 1
6:

38
 1

1 
O

ct
ob

er
 2

01
2 



seeds cannot be dispersed into all trees during the first stage. Finally, combination of this

figure and the above Figure 8, we can see that the arrangements of (4, *) strike a good

balance between message overhead and search coverage in Top1 and (3, *) that of Top2

and Top3. For instance, in Top3, the message overhead of (4, 2) is 35,200, whereas the

message overhead of (3, 3) is only 14,000 with the same coverage.

To compare the performance of PercolationNET with FloodNet, we carry out the

contrasting experiments using (4, *) in Top1, (3, *) in Top2 andTop3, as shown in Figure 10.

Obviously, we can see that the performance of coverage rate in PercolationNET is superior

to that of FloodNet all the time. This is because the level in FloodNet is much deeper than

that of PercolationNET. Hence, it is slow for a message to spread to the whole network.

What is more, with the increase of topology connectivity, the performance differences

increase between PercolationNET and FloodNet. In other words, PercolationNET is

more suitable for the topology with high connectivity than FloodNet.

4.5 Coverage growth rate

The coverage growth rate compared with seeds represents the ratio of the growth of the

number of peers reached between (i, j) and (i, 0) hops to the number of seeds when

firstTTL equals i. The graph in Figure 11 shows the coverage growth rate at various

arrangements (2, *), (3, *) and (4, *) in Top1 with low connectivity. The seeds are 60, 525

and 2376 in (2, *), (3, *), and (4, *), respectively, as shown in Figure 6(a). It is clear that

the increase in PercolationNET is more obvious than that of FloodNet with (3, *) and (4, *).

However, in (2, *), when secondTTL equals 6, the coverage growth rate in FloodNet

exceeds that of PercolationNET. This is because seeds are not large enough to disperse

Figure 9. Coverage rate in the second stage.

Figure 10. Coverage rate of PercolationNET in comparison with that of FloodNet.
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into all trees in PercolationNET. However, once the seeds are enough in (3, *) and (4, *),

the performance of coverage growth rate in PercolationNET will be superior to that of

FloodNet all the time.

Carefully examining the figure, we observe that the coverage growth for the first

several hops is faster than that of the latter in PercolationNET, especially in (3, *) and

(4, *). This is because Percolation is made of several trees. After several hops of flooding

along original overlay in the first stage, the query messages reach most of tree roots in (3, *)

and (4, *), as shown in Figure 7. Starting from the next hop along PercolationNET in the

second stage, the tree roots start flooding the message down to their entire trees.

4.6 Message efficiency

Message efficiency is the ratio between the number of peers reached and the number

of forwarded messages. The optimal efficiency is one if there are no redundant messages.

Figure 12 shows the message efficiency using (4, *) in Top1, (3, *) in Top2 and Top3. In the

figure, we can see that PercolationNET is superior to FloodNet in message efficiency,

especially in the topology with high connectivity. Another observation is that the efficiency

becomesworsewith the first hop in the second stage, and then it becomes better and better. For

example, in Figure 12(a), themessage efficiency is nearly 75% in (4, 0), whereas it is less than

65% in (4, 1). This is consistent with what we have observed in Section 4.3.

The last observation from Figure 12(b),(c) is that the higher the connectivity is, the

worse the message efficiency is. This is because high connectivity can cause more

messages in the first stage, so the chance of message collision is higher for (3, *) in Top3.

Figure 11. Coverage growth rate of PercolationNET in comparison with that of FloodNet.

Figure 12. Message efficiency of PercolationNET in comparison with that of FloodNet.
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5. Conclusion and future work

In this paper, we build PercolationNET, a multi-tree sub-overlay, upon the existing P2P

overlay. We apply the information of super-peers in the existing overlay to construct

the multi-tree sub-overlay, while the super-peers are regarded as the tree roots in

PercolationNet. Accordingly, the search process is divided into two stages. In the first

stage, a query message is propagated in the original overlay so that the message can spread

to all trees of the sub-overlay with a limited TTL value. Then, the message is broadcasted

by flooding along the sub-overlay in the second stage, which ensures that the message can

span the entire network with several additional hops. The experiments show that the

proposed sub-overlay structure is more efficient than the existing FloodNet scheme,

including coverage scope and message efficiency.

Although we propose a promising sub-overlay comparing with FloodNet, and use

flooding scheme to investigate its efficiency, there are still further problems to be explored.

Firstly, we can take other search schemes into account since we only need to spread query

message to all trees of PercolationNET in the first stage. In addition, we research how

the parameters ( firstTTL, secondTTL) and the topology connectivity would affect the

performance of our approach, but not exploit how the size of P2P overlay affects its

performance. We will address these issues in our future work.
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