
IRM: Integrated File Replication and
Consistency Maintenance in P2P Systems

Haiying (Helen) Shen, Member, IEEE

Abstract—In peer-to-peer file sharing systems, file replication and consistency maintenance are widely used techniques for high

system performance. Despite significant interdependencies between them, these two issues are typically addressed separately. Most

file replication methods rigidly specify replica nodes, leading to low replica utilization, unnecessary replicas and hence extra

consistency maintenance overhead. Most consistency maintenance methods propagate update messages based on message

spreading or a structure without considering file replication dynamism, leading to inefficient file update and hence high possibility of

outdated file response. This paper presents an Integrated file Replication and consistency Maintenance mechanism (IRM) that

integrates the two techniques in a systematic and harmonized manner. It achieves high efficiency in file replication and consistency

maintenance at a significantly low cost. Instead of passively accepting replicas and updates, each node determines file replication and

update polling by dynamically adapting to time-varying file query and update rates, which avoids unnecessary file replications and

updates. Simulation results demonstrate the effectiveness of IRM in comparison with other approaches. It dramatically reduces

overhead and yields significant improvements on the efficiency of both file replication and consistency maintenance approaches.

Index Terms—File replication, consistency maintenance, peer-to-peer, distributed hash table.

Ç

1 INTRODUCTION

OVER the past years, the immerse popularity of Internet
has produced a significant stimulus to peer-to-peer

(P2P) file sharing systems. A recent large-scale characteriza-
tion of HTTP traffic [1] has shown that more than 75 percent of
Internet traffic is generated by P2P applications. The
percentage of P2P traffic has increased significantly as files
such as videos and audios have become almost pervasive.
The study also shows that the access to these files is highly
repetitive and skewed towards the most popular ones. Such
objects can exhaust the capacity of a node, leading to delayed
response. File replication is an effective method to deal with
the problem of overload condition due to flash crowds or hot
files. It distributes load over replica nodes and improves file
query efficiency. File consistency maintenance to maintain
the consistency between a file and its replicas is indispensable
to file replication. Requiring that the replica nodes be reliably
informed of all updates could be prohibitively costly in a large
system. Thus, file replication should proactively reduce
unnecessary replicas to minimize the overhead of consistency
maintenance, which in turn provides guarantee for the
fidelity of consistency among file replicas considering file
replication dynamism. File replication dynamism represents
the condition with frequent replica node generation, deletion,
and failures. Fig. 1 demonstrates the interrelationship
between file replication and consistency maintenance.

Despite the significant interdependencies between file replica-

tion and consistency maintenance, they have been studied

separately. In most current file replication methods, file
owners rigidly specify replica nodes and the replica nodes
passively accept replicas. The methods were designed with-
out considering the efficiency of subsequent file consistency
maintenance. Specifically, these methods replicate files close
to file owners [2], [3], [4], requesters [5], [6], or along a query
path between a file requester and a file owner [7]. These
methods make it difficult to adjust the number of replicas to
the time-varying utilization of replicas and to ensure that all
replicas are fully utilized. The number of replicas has a
significant impact on the overhead of file consistency
maintenance. Large number of replicas needs more updates
hence high consistency maintenance overhead and vice
versa. Therefore, the methods lead to high overhead for
unnecessary file replications and consistency maintenance.

On the other hand, in addition to centralized methods [8],
[9], which are not suitable to decentralized large-scale P2P
systems, most consistency maintenance methods update files
by relying on a structure [10], [11], [12], [13], [14] or message
spreading [15], [16], [17]. Though these methods generally
can be applied to all file replication methods, they cannot be
exploited to their full potential without considering time-
varying and dynamic replica nodes. Structure-based meth-
ods assume relatively stable replica nodes, which does not
hold true in practice due to dynamic replica nodes caused by
file replication. Replica nodes may be continuously and
rapidly generated, deleted, and fail. Such file replication
dynamism will lead to unsuccessful update propagation, and
significantly high overhead for structure maintenance.
System-wide message spreading will generate tremendously
unnecessary redundant messages. In addition, they cannot
guarantee that all replica nodes can receive a update message.
Therefore, without taking into account file replication
dynamism, consistency maintenance generates unnecessary
overhead and cannot help to guarantee the fidelity of replica
consistency. Furthermore, as in file replication, passively

100 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010

. The author is with the Department of Electrical and Computer
Engineering, Clemson University, 313-B Riggs Hall, Clemson, SC
29634. E-mail: shenh@clemson.edu.

Manuscript received 6 Sept. 2008; revised 18 Feb. 2009; accepted 20 Feb. 2009;
published online 5 Mar. 2009.
Recommended for acceptance by K. Hwang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-09-0338.
Digital Object Identifier no. 10.1109/TPDS.2009.43.

1045-9219/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:43 from IEEE Xplore.  Restrictions apply. 



accepting update messages makes it difficult to avoid
unnecessary updates in order to reduce overhead.

Uncoordinated deployment of file replication and
consistency maintenance techniques can negate each
other’s efforts and lead to suboptimal or even low system
performance. As a result, on one hand, file replication is
faced with a challenge to minimize the number of replicas
to reduce the consistency maintenance overhead, without
compromising its efficiency in hot spot and query latency
reduction. On the other hand, consistency maintenance is
faced with a challenge to guarantee the fidelity of replica
consistency in a timely fashion with low overhead
considering file replication dynamism. This makes it
important to integrate the two techniques to enhance their
mutual interactions and avoid their conflicting behaviors,
ensuring that the two techniques can be exploited to their
fullest capacities.

This paper presents an Integrated file Replication and
consistency Maintenance mechanism (IRM) that achieves
high efficiency in file replication and consistency main-
tenance at a significantly lower cost. IRM integrates file
replication and consistency maintenance in a harmonized
and coordinated manner. Basically, each node actively
decides to create or delete a replica and to poll for update
based on file query and update rates in a totally decen-
tralized and autonomous manner. It replicates highly
queried files and polls at a high frequency for frequently
updated and queried files. IRM avoids unnecessary file
replications and updates by dynamically adapting to time-
varying file query and update rates. It improves replica
utilization, file query efficiency, and consistency fidelity. A
significant feature of IRM is that it achieves an optimized
trade-off between overhead and query efficiency as well as
consistency guarantees.

IRM is ideal for P2P systems due to a number of reasons.
First, IRM does not require a file owner to keep track of
replica nodes. Therefore, it is resilient to node joins and
leaves, and thus suitable for highly dynamic P2P systems.
Second, since each node determines its need for a file
replication or replica update autonomously, the decisions
can be made based on its actual query rate, eliminating
unnecessary replications and validations. This coincides in
spirit with the nature of node autonomy of P2P systems.
Third, IRM enhances the guarantee of file consistency. It
offers the flexibility to use different replica update rate to
cater to different consistency requirements determined by
the nature of files and user needs. Faster update rate leads
to higher consistency guarantee, and vice versa. Fourth,
IRM ensures high possibility of up-to-date file responses. A

replica node does not serve a request right away during
polling period. In contrast, in pushing, a node cannot
guarantee the up-to-date status of its response file by
passively accepting update. Within the knowledge of the
author, there is no other work that addresses the problem of
the interrelationship between the file replication and
consistency maintenance. While this paper proposes a
solution for the problem, the author hopes that this work
will stimulate other advanced methods for this crucial
problem in P2P file sharing systems.

We will introduce IRM’s application in structured P2Ps
though it is also applicable to unstructured P2Ps. The rest of
this paper is structured as follows: Section 2 presents a
concise review of representative file replication and con-
sistency maintenance approaches for P2P systems. Section 3
describes the IRM mechanism including file replication and
consistency maintenance algorithms. Section 4 shows the
performance of IRM in static as well as dynamic situations
in comparison with other approaches by a variety of
metrics. Section 5 concludes this paper.

2 RELATED WORK

File replication in P2P systems is targeted to release the load
in hot spots and meanwhile decrease file query latency.
Most traditional file replication methods rigidly determine
the places of replicas and push the replicas to the places.
Generally, the methods replicate files near file owners [2],
[3], [4], file requesters [5], [6], or along a query path from a
requester to a owner [16], [7]. PAST [2], CFS [3], and
Backslash [4] replicate each file on close nodes near the file’s
owner. Backslash also pushes cache one hop closer to
requesters as soon as nodes are overloaded. In LAR [5] and
Gnutella [6], overloaded nodes replicate a file at requesters.
Freenet [16] replicates files on the path from a requester to a
file owner. CFS, PAST, LAR [5] cache routing hints along
the search path of a query. Cox et al. [7] studied providing
DNS service over a P2P network as an alternative to
traditional DNS. The caches index entries, which are DNS
mappings, along search query paths. Overlook [18] deploys
client-access history to place a replica of a popular file on a
node with most lookup requests for fast replica location.
LessLog [19] determines the replicated nodes by construct-
ing a lookup tree based on IDs to determine the location of
the replicated node. In OceanStore [20], files are replicated
and stored on multiple servers for security concern without
restricting the placement of replicas. OceanStore maintains
two-tier replicas: a small durable primary tier and a large
soft-state second tier. Other studies of file replication
investigated the relationship between the number of
replicas, file query latency, and load balance [21], [22],
[23], [24], [25], [26] in unstructured P2P systems. In most of
these methods, file owners rigidly determine replica nodes
and nodes passively accept replicas. They are unable to
keep track replica utilization to reduce underutilized
replicas and ensure high utilization of existing replicas.
Thus, unnecessary replicas lead to a waste of consistency
maintenance. Yang et al. proposed Parity Replication in IP-
Network Storages (PRINS) [27]. PRINS replicates the parity
of a data block upon each write operation instead of the
data block itself. The data block will be recomputed back at

SHEN: IRM: INTEGRATED FILE REPLICATION AND CONSISTENCY MAINTENANCE IN P2P SYSTEMS 101

Fig. 1. Interrelationship between file replication and consistency

maintenance.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:43 from IEEE Xplore.  Restrictions apply. 



the replica storage site upon receiving the parity. PRINS
trades off high-speed computation for communication that
is costly distributed storages. In our previous work, we
proposed an efficient and adaptive decentralized file
replication algorithm in P2P file sharing systems called
EAD [28]. In the method, traffic hubs that carry more query
load and frequently requesters are chosen as replica nodes.
The nodes periodically compute their query load to create
replicas and remove underutilized replicas. IRM is devel-
oped by leveraging EAD. It shares similarity with EAD in
file replication strategies. The novelty of IRM lies in the
observation of the interrelationship between the file
replication and consistency maintenance technologies, and
the harmonic integration of the two technologies. The
autonomous feature of nodes in the file replication
strategies facilitates IRM to flexibly minimize the number
of replicas for low cost in subsequent consistency main-
tenance while maintaining the high effectiveness of file
replication in releasing the load in hot spots and improving
query efficiency.

Replication in a structured P2P system is to decrease file
query time, while replication in an unstructured P2P system
is to decrease the search time. Unstructured P2P systems
allow for more proactive replications of objects, where an
object may be replicated at a node even though the node has
not requested the object. Lv et al. [21] and Cohen and
Shenker [22] showed that replicating objects proportionally
to their popularity achieves optimal load balance but has
varied search latency, while uniform replication has the
same average search latency for all files but causes load
imbalance. Square-Root replication method replicating files
proportionally to the square root of their popularity is such
that both average search size and capacity utilization rate
vary per object, but the variance in utilization is consider-
ably smaller than with uniform replication, and the variance
in average search size is considerably smaller than with
proportional replication. Tewari and Kleinrock [23], [24],
[25] showed that proportional replication can optimize
flooding-based search, download time, and workload
distribution. They also showed that local storage manage-
ment algorithms such as Least Recently Used (LRU)
automatically achieve near-proportional replication and
that the system performance with the replica distribution
achieved by LRU is very close to optimal. APRE [29]
adaptively expands or contracts the replica set of a file in
order to improve the sharing process and achieve a low load
distribution among the providers. To achieve that it utilizes
search knowledge to identify possible replication targets
inside query-intensive areas of the overlay. Rubenstein and
Sahu [26] also discussed the scalability achieved by the fact
that user requests create additional replicas which improves
system performance although they focused on the system’s
ability to find the newly created sources.

Most of the studies focused on protocol design and
implementation to avoid hot spots and enhance file
availability, but did not address the fundamental issues of
how replicas should be managed. File consistency main-
tenance is actually indispensable to file replication. Along
with file replication, numerous file consistency maintenance
methods have been proposed. They generally can be

classified into two categories: structure based [10], [11],
[12], [13], [14] and message spreading based [15], [16], [17],
[6]. Some methods [10], [11] build one structure for each
replicated file. The work in [10] constructs a hierarchical
structure with locality consideration, and SCOPE [11]
constructs a tree for update propagation. Scribe [12] is a
P2P-based publish/subscribe system that provides a decen-
tralized event notification mechanism for publishing sys-
tems. The paths from subscribers to the publisher are
recorded for update notifications. CUP [13] and DUP [14]
propagate update along a routing path. P2P systems are
characterized by churn where nodes join and leave
continuously and frequently. In these methods, if any node
in the structure fails, some replica nodes are no longer
reachable. Moreover, they need high overhead for structure
maintenance especially in churn. In the category of
message-spreading-based methods, Freenet [16] routes an
update to other nodes based on key closeness. Lan et al. [17]
proposed to use flooding-based push for static objects and
adaptive poll for dynamic objects. In hybrid push/poll
algorithm [15], flooding is substituted by rumor spreading
to reduce communication overhead. At every step of rumor
spreading, a node pushes updates to a subset of related
nodes it knows, only providing partial consistency. In these
methods, an update is not guaranteed to reach every
replica, and redundant messages generate high propagation
overhead. Raunak et al. proposed polling method for web
cache consistency [30]. Its context is static, in which the
proxies are always available. Thus, this method is not
applicable for a P2P dynamic environment. Muthitacharoen
et al. [31] proposed lease algorithm for consistency. The
lease is a commitment on the part of the server to notify the
client of any modifications made to that file during the term
of the lease. When the lease has expired, a client must
request the server to transfer the new contents to itself.
rsync [32] is a software application for Unix systems which
synchronizes files and directories from one location to
another while minimizing data transfer using delta encod-
ing when appropriate. An important feature of rsync not
found in most similar protocols is that the mirroring takes
place with only one transmission in each direction. IRM
shares similarity with the work in [30], [17] in employing
linear increase multiplicative decrease algorithm in polling
for consistency. However, the focus of IRM is to integrate
file replication and consistency maintenance to enhance
their mutual interactions and reduce their overhead. IRM
further considers both file update rate and file query rate for
polling frequency determination to reduce overhead and
avoid overloading file owner.

In most of these file replication and consistency main-
tenance methods, nodes passively accept replicas and
update messages. They are unable to keep track the
utilization of replicas to determine the need of file replicas
and replica updates. Minimization of the number of
replicas helps to reduce unnecessary updates in consistency
maintenance, but it should still keep the efficiency of file
replication to release the load in hot spots and to improve
query efficiency. More importantly, despite the significant
interdependencies between file replication and file consis-
tency maintenance, these two issues are typically addressed

102 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:43 from IEEE Xplore.  Restrictions apply. 



separately. There has been a increasingly desire for a
mechanism combining file replication and consistency
maintenance that brings more benefits than overhead.
IRM harmonically integrates file replication and consis-
tency maintenance and determines the need of file replica-
tion and update based on the balance between profit and
cost. In IRM, nodes determine the need of replication of a
file and the frequency of update polling based on the file’s
query rate and update rate in order to provide high
efficiency, and meanwhile avoid unnecessary overhead in
both file replication and consistency maintenance. IRM
shares the similarity with the file replication in unstruc-
tured P2P systems in that file popularity is taken into
account in file replication. However, these file replication
methods cannot be directly applied to structured P2P
systems due to their basic protocol differences.

3 IRM: INTEGRATED FILE REPLICATION AND

CONSISTENCY MAINTENANCE MECHANISM

Instead of passively accepting replicas and update messages,
IRM harmonically integrates file replication and consistency
maintenance by letting each node autonomously determine
the need for file replication and update based on actual file
query rate and update rates. IRM file replication places
replicas in frequently visited nodes to guarantee high
utilization of replicas, and meanwhile reduce underutilized
replicas and overhead of consistency maintenance. IRM
consistency maintenance in turn aims to guarantee file
fidelity of consistency at a low cost with file replication
dynamism consideration. Using adaptive polling, IRM
ensures timely update operation and avoids unnecessary
updates. As a result, IRM achieves high efficiency in both file
replication and consistency maintenance.

The basic idea of IRM is to use file query and update rate
to direct file replication and consistency maintenance. When
a node receives queries for a file frequently or itself queries a
file frequently, placing a replica in the node can improve the
query efficiency and meanwhile make full use of replicas.
When a replica node doesn’t receive queries for its replica
frequently or itself doesn’t query its replica frequently, it
removes the replica. IRM aims to guarantee that a file is the
updated file when visited. Based on this principle, a node
adaptively polls file owner for update based on file query
rate and update date to avoid unnecessary overload.

Fig. 2 shows an example for file replication and consis-
tency maintenance in IRM. The nodes C andG in the middle
observed frequent queries for the file, and nodes J and M
queried for the file frequently. Therefore, they made a copy
of the file in themselves. The replica nodes periodically check
the query rate. When their replicas are underutilized, they
remove the replicas. For consistency maintenance, the
replica nodes actively probe the file server for update. They
probe the server approximately at the rate of file change rate.
However, when their replica is visited at lower frequency
than the file’s change frequency, they probe the server at the
frequency that the replica is visited. This strategy reduces the
overhead of consistency maintenance while still guarantees
the up-to-date status of the visited replicas. In the following,
we first present the IRM mechanism in terms of file

replication and consistency maintenance. We then discuss
how IRM achieves harmonized integration of file replication
and consistency maintenance.

3.1 Adaptive File Replication

IRM is developed by leveraging our previous work of EAD
[28] file replication algorithm. IRM’s file replication compo-
nent shares similarity with EAD. The replication algorithm
achieves an optimized trade-off between query efficiency
and overhead in file replication. In addition, it dynamically
tunes to time-varying file popularity and node interest, and
adaptively determines replica nodes based on query traffic.
In the following, we introduce IRM’s file replication
component by addressing two main problems in file
replication: 1) Where to replicate files so that the file query
can be significantly expedited and the replicas can be fully
utilized? 2) How to remove underutilized file replicas so that
the overhead for consistency maintenance is minimized?

3.1.1 Replica Nodes Determination

In structured P2P systems, some nodes carry more query
traffic load while others carry less. Therefore, frequent
requesters of a file and traffic junction nodes (i.e., hot
routing spots) in query paths should be the ideal file replica
nodes for high utilization of file replicas. Based on this, IRM
replicates a file in nodes that have been very interested in
the file or routing nodes that have been carrying more
query traffic of the file. The former arrangement enables
frequent requesters of a file to get the file without query
routing, and the latter increases the possibility that queries
from different directions encounter the replica nodes, thus
making full use of file replicas. In addition, replicating file
in the middle rather than in the ends of a query path speeds
up file query.

3.1.2 Replica Creation

We define a requester’s query initiating rate for file f ,
denoted by qf , as the number of queries for f sent by the
requester during a unit time, say one second. A file
requester records its qf for each file requested. IRM sets a
threshold for query initiating rate, denoted by Tq. It could
be the product of a constant factor and the normal query
initiating rate in the system. When a requester receives a

SHEN: IRM: INTEGRATED FILE REPLICATION AND CONSISTENCY MAINTENANCE IN P2P SYSTEMS 103

Fig. 2. IRM file replication and consistency maintenance.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:43 from IEEE Xplore.  Restrictions apply. 



file, it checks its qf . If qf > Tq, it makes a replication of the
file. We define a node’s query passing rate of file f , denoted
by lf , as the number of queries for file f received and
forwarded by the node during a unit time. IRM sets a
threshold for query passing rate, denoted by Tl. It could be
the product of a constant factor and the normal query
passing rate in the system. In IRM, when a routing node
receives a query for file f , it checks lf . In the case that lf > Tl
and the node has available capacity for a file replica, it adds
a file replication request into the original file request with
its IP address. After the file destination receives the query, if
it is overloaded, it checks if the file query has additional file
replication requests. If so, it sends the file to the replication
requesters in addition to the query initiator. Otherwise, it
replicates file f to its neighbors that forward the queries of
file f most frequently.

3.1.3 Replica Adaptation

Considering that file popularity is nonuniform and time-
varying and node interest varies over time, some file
replicas become underutilized when there are few queries
for the files. To deal with this situation, IRM lets each replica
node periodically update their query passing rate or query
initiating rate of a file. If the rates are below their thresholds,
the node removes the replica. Therefore, the determination
of keeping file replicas is based on recently experienced
query traffic due to file query rate. If a file is no longer
requested frequently, there will be no file replica for it. The
adaptation to query initiating and passing rate ensures that
all file replicas are worthwhile and there is no waste of
overhead for unnecessary file consistency maintenance.

3.2 File Consistency Maintenance

Maintaining consistency between frequently updated or
even infrequently updated files and their replicas is a
fundamental reliability requirement for a P2P system. P2P
systems are characterized by dynamism, in which node join
and leave continuously and rapidly. Moreover, replica
nodes are dynamically and continuously created and
deleted. The dynamism has posed a challenge for timely
update in structured-based consistency maintenance meth-
ods. On the other hand, consistency maintenance relying on
message spreading generate high overhead due to drama-
tically redundant messages. Rather than relying on a
structure or message spreading, IRM employs adaptive
polling for file consistency maintenance to cater to file
replication dynamism. A poll approach puts the burden of
consistency maintenance on individual nodes. Unlike push,
poll approach can achieve good consistency for distant
nodes and is less sensitive to P2P dynamism, network size,
and the connectivity of a node.

In IRM poll-based consistency maintenance, each replica
node polls its file owner or another node to validate whether
its replica is the up-to-date file, and updates its replica
accordingly. IRM addresses two main issues in consistency
maintenance: 1) How to determine the frequency that a
replica node probe a file owner in order to guarantee timely
file update? 2) How to reduce the number of polling
operations to save cost and meanwhile provide the fidelity
of consistency guarantees?

3.2.1 Polling Frequency Determination

Consider a file’s maximum update rate is 1=4t, which
means it updates every 4t time units, say seconds, in the
highest update frequency. In this case, a file replica node
can ensure that a replica is never outdated by more than
4t seconds by polling the owner every 4t seconds. Since
the rate of file change varies over time as hot files become
cold and vice versa, a replica node should be able to adapt
its polling frequency in response to the variations. In IRM, a
replica node intelligently tailors its polling frequency so that
it polls at approximately the same frequency of file change.
Specifically, like the works in [30], [17], IRM employs a
linear increase multiplicative decrease algorithm. The algo-
rithm has been effectively used in many systems to adapt to
changing system conditions [33]. That is, frequently
modified files are polled more frequently than relatively
static files.

IRM associates a time-to-refresh (TTR) value with each
replica. The TTR denotes the next time instant a node
should poll the owner to keep its replica updated. The TTR
value is varied dynamically based on the results of each
polling. The value is increased by an additive amount if the
file doesn’t change between successive polls

TTR ¼ TTRold þ �; ð3Þ

where �; � > 0, is an additive constant. In the event the file
is updated since the last poll, the TTR value is reduced by a
multiplicative factor:

TTR ¼ TTRold=�; ð4Þ

where �; � > 1, is the multiplicative decrease constant. The
algorithm takes as input two parameters: TTRmin and
TTRmax, which represent lower and upper bounds on the
TTR values. Values that fall outside these bounds are set to

TTR ¼ maxðTTRmin;minðTTRmax; TTRÞÞ: ð5Þ

The bounds ensure that the TTR is neither too large nor too
small. Typically, TTRmin is set to 4t, since this is the
minimum interval between polls necessary to maintain
consistency guarantees. The algorithm begins by initializing
TTR ¼ TTRmin ¼ 4t.

The probed server may depart or fail. In structured P2P
systems, before a node leaves, it transfers its files to the files’
new owners based on the P2P file allocation algorithm.
Therefore, if a replica node has not received the response
from its probed server during a certain period time, it probed
the file’s new owner. If it still has not received response
from the new owner, it assumes that the server fails and
removes the replica correspondingly. Otherwise, it updates
its file according to the information from the new owner.

3.2.2 Poll Reduction

In addition to the file change rate, file query rate is also a
main factor to consider in consistency maintenance. Even
when a file changes frequently, if a replica node does not
receive queries for the file or hardly queries for the file
during a time period, it is an overhead waste to poll the
file’s owner for validation during the time period. However,
most current consistency maintenance methods neglect the
important role that file query rate plays in reducing

104 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:43 from IEEE Xplore.  Restrictions apply. 



overhead. IRM combines file query rate into consideration
for poll time determination. We use TTRquery and TTRpoll to
denote the next time instant of corresponding operation of a
file. IRM assumes that in a certain period of time, the file
query rate does not vary greatly. That is, the pattern of a
user’s file access behavior remains similar.

_____________________________________________________

Algorithm 1. Pseudo-code for the IRM adaptive file

consistency maintenance algorithm

_____________________________________________________

==operation at time instant Tpoll
if there is a query for the file then

include a polling request into the query for file f

else

send out a polling request

if get a validation reply from file owner then{

if file is valid then

TTR ¼ TTRold þ �
if file is stale then{

TTR ¼ TTRold=�

update file replica}

if TTR > TTRmax or TTR < TTRmin then

TTR ¼ maxðTTRmin;minðTTRmax; TTRÞÞ
if TTR � Tquery then

TTRpoll ¼ Tquery
else

TTRpoll ¼ TTRg
_____________________________________________________

Note that IRM polling algorithm uses TTR to approxi-
mately represent file change frequency. When TTR �
TTRquery, that is, when the file change rate is higher than
the file query rate, there is no need to update the replica at
the rate of file change rate. This is because the ultimate goal
of consistency maintenance is to guarantee the received file
is up to state. If a replica is updated soon after its original
file is changed but there is no query for this replica until
after the next update, it is a waste to update the file this
time. For example, a file changes every 1 second while it is
visited every 2 seconds, then updating replica once every
2 seconds can guarantee that the response file from replica
node is the up-to-date file.

Fig. 3 shows an example of update reduction in
consistency maintenance. Node A has the original file of
two replicas in node B and C, respectively. The original file
is changed every 1 seconds. The query rate of this file in
nodes B and C is once every 2 seconds. Node B updates its
replica soon after its original file is updated. NodeC updates
its replica at the rate equals to the replica query rate. Thus, it
guarantees that the provided file is up to date, and

meanwhile reduces the poll operation and overhead. There-
fore, the polling rate can be equal to file query rate in the case
that replica query rate is slower than the original file change
rate. On the other hand, when TTR > Tquery, that is, the file is
queried at a higher rate than change rate, then the file should
be updated timely based on TTR. As a result, TTRpoll should
be calculated based on the following formula:

TTRpoll ¼
Tquery TTR � Tquery;
TTR TTR > Tquery:

�

Similar to file replication requests, replica nodes try to
include all polling messages along with queries in order to
save the polling overhead. Algorithm 1 shows the pseudo-
code of the adaptive file consistency maintenance algorithm.
As a result, the number of polls and the overhead for file
updates are reduced without compromising the file fidelity
of consistency; that is, there is low possibility that a file is
outdated when visited. IRM consistency maintenance guar-
antees file fidelity of consistency at a significantly lower cost.

3.3 Comparative Discussion of IRM

In IRM, the file replication component and the consistency
maintenance component are integrated in a coordinated
manner. IRM avoids the negative effect between the two
components and enables them to be exploited to their fullest
capacity. On the one hand, file replication helps to minimize
the number of replicas in order to minimize the overhead of
consistency maintenance. On the other hand, consistency
maintenance helps to guarantee the fidelity of consistency
among replicas in file replication dynamism. Briefly, IRM
arranges each node to autonomously determine the need to
replicate a file and update a replica based on its experienced
traffic of the file. This harmonized integration helps IRM
achieve high efficiency and effectiveness in both file
replication and consistency maintenance.

3.3.1 The Impact of File Replication on

Consistency Maintenance

Traditional file replication methods could generate much
more replicas due to a variety of reasons. First, in some
traditional methods [2], [3], servers keep track of the query
forwarding rate of nodes and replicate files in nodes that
frequently forward queries to the servers. The servers
holding popular files already tend to be overloaded due to
the processing of many file requests. Keeping track of the
query forwarding rate generates more load on the servers,
making the servers more likely to be overloaded. This will
result in more replicas since overloaded servers tend to
replicate their files in other nodes to release their load.
Second, in the ClientSide file replication methods that
replicate files in requesters [5], [6], the replicas have low
utilization. A replica is used only when the replica node
queries the file of the replica again, and the replica cannot
be shared by other requesters. If a replica is not visited
frequently, it has low utilization and hence cannot take over
much load from the server. Therefore, the load of servers
cannot be released by a low-utilization replica as much as a
high-utilization replica. Consequently, servers need to
generate more replicas to release their load in ClientSide.
Third, the ServerSide methods replicate files near file owners

SHEN: IRM: INTEGRATED FILE REPLICATION AND CONSISTENCY MAINTENANCE IN P2P SYSTEMS 105

Fig. 3. An example of poll reduction in consistency maintenance.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:43 from IEEE Xplore.  Restrictions apply. 



[2], [3], [4]. Since a server has limited number of neighbors,
disseminating its extra load to the neighbors may also
overload them. Thus, the overloaded neighbors will make
more replicas to make themselves lightly loaded. Fourth,
the Path methods replicate a file along a query path from a
requester to a owner [16], [7], producing much more
replicas. In this case, even though some nodes are not
interested in the file or carry little query traffic of the file,
they still host replicas of the file. Lastly, most traditional
methods did not address the problem of underutilized
replicas due to time-varying file popularity and node
interest. More replicas consume more storage memory
resource and lead to more overhead in subsequent
consistency maintenance. In a large-scale P2P file sharing
system, efficient consistency maintenance with low over-
head is critical to achieving high scalability and efficiency of
the system. Therefore, it is important to proactively reduce
the number of replicas without compromising the efficiency
and effectiveness of file replication in the replication phase.

IRM minimizes the number of replicas while maintain-
ing high efficiency and effectiveness of file replication. First,
without arranging the file server to keep track of the query
rate of nodes in a centralized manner, IRM enables each
node to autonomously keep track of its own load status.
Thus, the file server won’t be overloaded easily, leading to
less replicas. Second, IRM replicates files in nodes with high
query passing rate or query initiating rate. This guarantees
that a request has high probability to encounter a replica
node and every replica is highly utilized. High replica
utilization helps to reduce replicas and the overhead of
consistency maintenance. Third, IRM doesn’t restrict the
options of replica nodes to a small number of nodes, which
makes it less likely that the replica nodes easily become
overloaded nodes. This also helps to reduce replica nodes.
Fourth, IRM doesn’t replicate file in all nodes along a
lookup path, thus avoiding generating redundant replicas
and ensuring every replica is highly utilized. Finally, IRM
addresses the problem of underutilized replicas by taking
into account the time-varying file popularity and node
interest. It arranges each node to periodically check the
utilization of its replicas and remove underutilized replicas.
With all these strategies, IRM produces much less replicas
than the traditional file replication methods while still
keeping high utilization of replicas. This significantly
reduces the overhead of replica update in consistency
maintenance phase, and hence enhances the scalability and
efficiency of P2P file sharing systems.

3.3.2 The Impact of Consistency Maintenance

on File Replication

Most of traditional consistency maintenance methods
arrange the server to send update messages to replica nodes
based on a structure or message spreading. In P2P
dynamism and replication dynamism where nodes and
replica nodes join, leave the system, and fail continuously
and rapidly, the structure maintenance will generate high
overhead especially in high dynamism. More importantly,
the structure may not be able to recover in time which may
lead to unsuccessful update notification. For example, in a
tree structure [11], [13], [14], if a parent leaves or fails, its
children cannot receive the update until the broken link is

recovered. Message spreading methods will generate high
volume of messages flooding in the network. The methods
make nodes easily to be overloaded and only provide partial
consistency. Consistency maintenance should help to guar-
antee the fidelity of replica consistency with low overhead.

In IRM, a replica node polls the file server for update
without the need to construct and maintain a structure. It
avoids the high cost due to structure construction and
maintenance, and meanwhile prevents from generating
redundant messages. In addition, with polling, the situation
that some replica nodes cannot receive the update will not
occur. In other words, all replica nodes can get the update
successfully. Furthermore, IRM consistency maintenance is
not negatively affected by P2P dynamism and replication
dynamism. Although nodes or even the replica nodes join,
leave, and fail continuously and rapidly, by probing server,
every replica node can get the update successfully. Since
replica nodes directly poll the server, there is no delay for
replica updating because of dynamism. Moreover, a server
does not need to keep track of replica nodes for updating
and there is no redundant update message. Each node
decides whether it needs to poll based on whether itself is a
replica node or not.

In addition to reducing cost due to dynamism and
redundant messages in the traditional consistency main-
tenance methods while guaranteeing the fidelity of file
consistency, IRM further novelly reduces the consistency
maintenance overhead. It looses the requirement of con-
sistency maintenance while still achieving the same effec-
tiveness of consistency maintenance in P2P file sharing.
Unlike the previous consistency maintenance methods,
which aim to update replicas soon after the original file is
updated, the objective of IRM consistency maintenance is to
guarantee that a replica file is up to date when being
provided. Thus, a replica node does not need to update its
replica that won’t be queried before its next updating. Recall
that for file replication, each node keeps track of a file’s
query rate for replica creation or deletion. The query rate is
also used for consistency maintenance. Based on the query
rate, a replica node can know if its replica should be updated
or not. Hence, the query rate is measured for dual purposes:
file replication and consistency maintenance, which shows
the coordination of these two components in IRM.

4 PERFORMANCE EVALUATION

We designed and implemented a simulator for evaluating
the IRM mechanism based on Chord P2P system [8]. We
compared IRM with representative approaches of file
replication and consistency maintenance. Experiment re-
sults show that IRM file replication algorithm is highly
effective in reducing file query latency, the number of
replicas, and file consistency maintenance overhead. IRM
file consistency maintenance in turn provides a guarantee of
file fidelity of consistency even in churn and dramatically
reduces consistency maintenance overhead. Table 1 lists the
parameters of the simulation and their default values. In
practice, a node has various capacities in terms of
bandwidth, memory storage, processing speed, etc. We
assume that different capacities can be represented by one
metric. We assumed bounded Pareto distribution for node
capacities. This distribution reflects the real world where

106 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:43 from IEEE Xplore.  Restrictions apply. 



there are machines with capacities that vary by different
orders of magnitude. The values of �ð� > 0Þ and �ð� > 1Þ
were randomly chosen.

4.1 File Replication

We choose the works in [2], [5], and [7] as representative
works of the three categories of file replication approaches,
ServerSide, ClientSide, and Path, respectively. We compared
the performance of IRM with ServerSide [2], ClientSide [5],
and Path [7] in terms of average lookup path length, hot
spot reduction, and the total number of file replicas versus
the number of replicating operations per file. In each
replicating operation, IRM, ServerSide and ClientSide repli-
cate a file to a single node, while Path replicates a file to a
number of nodes along a query path. To make the
experiment results of different methods be comparable,
we set the same number of replicating operations in IRM,
ServerSide and ClientSide. The values of Tl and Tq were
chosen for this purpose. The file requesters and queried file
IDs were randomly chosen in the experiment, unless
otherwise specified. We use replica hit rate to denote the
percentage of the number of file queries that are resolved by
replica nodes among total queries.

4.1.1 Effectiveness of File Replication Algorithms

Fig. 4a plots the average path length of different ap-
proaches. We can see that Path generates shorter path length
than ServerSide and ClientSide, and IRM leads to approxi-
mately the same path length as Path. Unlike others that
replicate a file only in one node in each file replicating
operation, Path replicates a file in nodes along a query path.

More replicas in lookup path increase the probability that a
file query meets a replica during its way traveling towards
the file’s owner. Therefore, Path produces high replica hit
rate and shorter path length. However, this is outweighed
by its prohibitively high overhead. First, Path needs to keep
track of a query path so that it can replicate a file along the
path. Second, Path needs higher cost for file replication than
others because it replicates a file in all nodes along a path.
Third, Path leads to higher overhead for consistency
maintenance since it has much more replicas to maintain.
Compared to Path, IRM can achieve almost the same lookup
efficiency but with much less replicas. This shows the
effectiveness of IRM to replicate files in nodes with high
query initiating rate and query passing rate. Thus, most
frequent file requesters can get the replicas of the requested
file from themselves and most queries can encounter replica
nodes on their way to the file owners. Therefore, IRM
enhances the utilization of replicas and hence reduces
lookup path length. ServerSide replicates a file close to the
file’s owner such that the file’s request will encounter a
replica node before arriving at the file owner, shortening
lookup path length. However, since the replica nodes locate
close to the file owner, the requests need to travel more
hops than in Path and IRM so that it cannot significantly
reduce lookup path length. ClientSide generates much
longer lookup path length compared to others. It is because
files are replicated in requesters, and the replica nodes may
not request the same file later due to varied node interest.
Consequently, ClientSide is not able to make full use of file
replicas to reduce path length. In contrast, IRM replicates a
file in a requester only when the requester’s query rate
reaches a specified threshold, which increases the utiliza-
tion of replicas and lookup path length.

In order to show the effectiveness of file replication
methods in reducing hot spots, we randomly generated
100 files in different nodes as very popular files that make
their owners become hot spots. We set the number of
replicas for each file as five in ServerSide, ClientSide, and
IRM. We regard load of a hot spot as the number of queries
for its popular file. Fig. 5 shows the percent of reduced
load in each of the hot spots. The figure demonstrates that
Path can reduce around 90 percent-100 percent load, IRM
can reduce 20 percent-40 percent load, and ServerSide can
reduce 10 percent-20 percent load. In ClientSide, most

SHEN: IRM: INTEGRATED FILE REPLICATION AND CONSISTENCY MAINTENANCE IN P2P SYSTEMS 107

TABLE 1
Simulated Environment and Algorithm Parameters

Fig. 4. Performance of file replication algorithms. (a) Average path length and (b) number of replicas.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:43 from IEEE Xplore.  Restrictions apply. 



nodes’ load is not reduced and some nodes’ load is
reduced by 1 percent-3 percent. The better performance of
Path in reducing hot spots is because of its much more
replicas. This is confirmed by the experiment results, which
show that the total number of replicas in Path is 1904, while
it is 500 in others. Though ServerSide, ClientSide, and IRM
have the same number of replicas, IRM reduces more load
of hot spots than ServerSide, while ClientSide hardly reduces
the load of hot spots. This result implies the effectiveness of
IRM by replicating files in traffic hubs. In IRM, queries
toward hot spots are answered by the traffic hubs,
reducing the load in hot spots. Since only five neighbors
of a hot spot have replicas, some queries may not meet
replica nodes. As a result, the load of hot spots reduced by
ServerSide is not as much as IRM. In ClientSide, replicas can
hardly be shared by other requesters. Thus, most queries
are still forwarded to the hot spots, exacerbating the load
status of hot spots.

4.1.2 Efficiency of File Replication Algorithms

We set the number of hot files as 10 and tested the total
number of replicas at a random time instant. Fig. 4b illustrates
the number of replicas versus the number of replicating
operations per file. The figure shows that the number of
replicas increases as the number of replicating operations per
file increases. This is due to the reason that more replication
operations for a file lead to more replicas. The figure also
shows that the number of replicas of Path is excessively higher
than others. It is because in each file replication operation, a
file is replicated in multiple nodes along a routing path in Path
but in a single node in ServerSide, ClientSide, and IRM.

Therefore, Path generates much more replicas, and it needs
much higher overhead for file replications and subsequent
consistency maintenance. We can observe that IRM generates
less replicas than ServerSide and ClientSide. IRM adjusts the
number of file replicas adaptively based on file query
initiating rate and query passing rate such that less popular
or infrequently requested files have less file replicas. When a
replica node no longer requests a file frequently or forwards a
file query frequently, it will delete its replica. This reduces
underutilized replicas and guarantees that all replicas have
high utilization. The results confirm the effectiveness of IRM
on removing unnecessary file replicas and keeping replicas
worthwhile. From the perspective of file consistency main-
tenance, IRM saves consistency maintenance overhead by not
having to maintain replicas for infrequently requested files.

4.1.3 Distribution of File Replicas

In this experiment, we test the distribution of file replicas in
different file replication algorithms. To generate the 50 IDs
of files to lookup, we first randomly chose an ID in the P2P
ID space and then used its succeeding IDs as the lookup file
IDs. Since the file owners locate successively in a small ID
interval, the query traffic for the files flows toward the
interval. We measured the number of replica nodes by
regarding a node holding at least one replica as one replica
node. Fig. 6a plots the number of replica nodes in different
file replication algorithms. The figure shows that ServerSide
generates less replica nodes than IRM, which produces
significantly less replica nodes than Path, and Path
produces fewer replicas than ClientSide. ServerSide repli-
cates a file in the neighbors of the file’s owner. Since the file
owners in this experiment are neighbors, replica nodes are
neighbors close to the file owner. Thus, it is very likely that
many different files are replicated in the same node. It
restricts the scope of replica nodes to a small group of
neighbors of file owners. Therefore, ServerSide generates the
least number of replica nodes. In contrast to ServerSide,
ClientSide replicates a file at the clients that spread all over
the network. It means that replicas are scattered over the
network, which makes it less likely that different files share
the same replica node. Consequently, ClientSide produces
dramatically more replica nodes than ServerSide. Recall that
Path replicates a file in multiple nodes along a path and
others replicate a file in a single node in one replication
operation. It is surprising to see that Path leads to less

108 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010

Fig. 5. Effectiveness of hot spot reduction.

Fig. 6. Distribution of file replicas in different file replication algorithms. (a) Number of replica nodes, (b) number of replicas in a node, and (c) total

number of replicas.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:43 from IEEE Xplore.  Restrictions apply. 



replica nodes than ClientSide when the number of replicat-
ing operations per file is more than 30. Path replicates a file
in nodes along lookup path, and ClientSide only generates
one replica each time. Therefore, Path should generate
much more replica nodes than ClientSide. Because the file
destinations are gathered in a small ID space interval, the
query traffic flows toward the same direction and different
queries will meet at points of juncture. Therefore, many
replicas will be placed in the same query forwarding node,
especially when much more replicas are produced. This is
the reason that Path creates less replica nodes than
ClientSide when there are many replicas. IRM smartly takes
advantage of the points of traffic juncture for replica nodes.
Hence, many files take the same node as their replica nodes,
leading to much less replica nodes. Although IRM produces
slightly more replica nodes than ServerSide, by disseminat-
ing replicas among more nodes, it significantly reduces
lookup path, enhances replica hit rate, and achieves more
balanced load distribution.

We also recorded the number of replicas in each replica
node. Fig. 6b plots the median, 1st and 99th percentile of the
number of replicas in a replica node. We can observe that
the median number of replicas of ServerSide is higher than
IRM. The median number of replicas in IRM is higher than
Path, and ClientSide generates the least median number of
replicas. The results in the figure are consistent with those
in Fig. 6a. With the same total number of replicas in
ClientSide, ServerSide, and IRM, more replica nodes lead to
less replicas in a node because the replicas are dispersed
over more nodes. Although ServerSide generates more
replicas, its dramatically large number of replica nodes
share the responsibility for holding replicas and contribute
to the low median number of replicas in a node.

We can also observe that the 1st percentiles of the
number of replicas in all algorithms remain at one, the 99th
percentiles of the number of replicas in ServerSide and IRM
are higher than Path, and that of these algorithms are
considerably higher than ClientSide. Due to the small set of
nodes for replicating in ServerSide, different files share the
same node for replicas, resulting in high 99th percentile. In
IRM, since a file is replicated in a traffic hub and the query
traffic for different files will pass through the same traffic
hub, a replica node has a number of different replicas,
leading to high 99th percentile. As explained that in
ServerSide, many replicas will be in the same query

forwarding nodes. Thus, ServerSide also generates high
99th percentile of the number of replicas. The notably low
99th percentile result of ClientSide is due to its widespread
replica nodes and replicas. It is less likely that a replica node
holds different replicas when replicas’ nodes disperse over
the network, leading to low replicas in a replica node. The
results imply that ServerSide, IRM, and Path have high
replica utilization, while ClientSide has low replica utiliza-
tion though it is less likely to overload replica nodes.
Without taking node load status into account, ServerSide
and Path tend to generate load imbalance and overload
replica nodes. In IRM, a file is replicated in a node with
sufficient capacity to hold the replica and process its
requests. Thus, IRM avoids load imbalance and meanwhile
reduces the overhead for consistency maintenance by
replicating files in traffic hubs.

Fig. 6c demonstrates the total number of replicas in
different replication algorithms. In this experiment, we did
not remove replicas in replica adaptation in IRM in order to
make the test results be comparable between the algorithms.
The figure shows that ServerSide, ClientSide, and IRM have
the same number of total replicas, and Path generates much
more replicas than these algorithms. It is because in one
replicating operation, Path replicates a file in a number of
nodes along a lookup path, while other algorithms only
replicate a file in one node. The results imply that Path
brings about much more overhead due to much more
replica nodes. Moreover, more replica nodes lead to more
overhead in the subsequent file consistency maintenance.

The results in Fig. 6a, 6b, and 6c confirm the motivation
of this work. ServerSide tends to overload the replica nodes
near the file owner, resulting in more replicas. ClientSide
disseminates replicas widely in the network. Its low replica
utilization leads to more replicas. Path generates many
replicas by replicating a file along a lookup path. Therefore,
a high effective and efficient file replication algorithm like
IRM is needed. It reduces replicas, maintains high replica
utilization, and avoids overloading replica nodes. Less
replicas help to reduce the overhead in subsequent
consistency maintenance.

4.1.4 Distribution of Replica Nodes

Fig. 7a shows the cumulative distribution function (CDF) of
the percentage of total replica nodes versus the number of
replicas in a node when the number of replicating operations

SHEN: IRM: INTEGRATED FILE REPLICATION AND CONSISTENCY MAINTENANCE IN P2P SYSTEMS 109

Fig. 7. CDF of total replica nodes in different file replication algorithms. (a) Five replicating operations per file and (b) 50 replicating

operations per file.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:43 from IEEE Xplore.  Restrictions apply. 



per file is five. In ClientSide, 2 percent of replica nodes have
two replicas and 98 percent of replica nodes have only one
replica. This result is in expectation because ClientSide
replicates a file in nodes widely spread over the entire
network. Only when a node requests more than one different
files frequently, it has more than one replicas. In Path, the
percent of nodes holding one replica is 58 percent, the percent
of nodes holding two replicas is approximately 15 percent,
and that of three or more replicas is less than 7.5 percent. Path
replicates a file in nodes along a lookup path and has more
replicas. Thus, the replicas are hosted in many nodes that
forward requests to their destination. Since one file has five
replicas, many replica nodes have only one copy. In IRM,
replicas are more evenly distributed. Each group of nodes
with xðx � 5Þ replicas constitutes around 14 percent of the
total replica nodes. The group of nodes with six and seven
replicas constitutes around 10 percent and 8 percent of the
total replica nodes, respectively. Thus, replicating files in
traffic hubs with node load status consideration helps to
distribute the replication overhead in balance. The curve of
ServerSide jumps when the number of replicas in a node is
five. The figure shows that 98 percent of replica nodes have
five replicas. The results mean that by depending on a small
set of owner neighbors for file replication when there are
many requests for files in close owners, the replica nodes will
be overloaded by considerable number of replicas.

Fig. 7b shows the CDF of the percentage of total nodes
versus the number of replicas in a node when the number of
replicas per file is 50. In ClientSide, 73 percent of nodes have
only one replica and the number of replicas in a node does
not exceed five. In ServerSide, the percents of nodes having
one replica, two replicas, and three replicas are 36 percent,
19 percent, and 11 percent, respectively. Other replica nodes
with different number of replicas are almost evenly
distributed. In IRM, the percents of nodes having one
replica, two replicas, and three replicas are 19 percent,
11 percent, and 9 percent, respectively. Other replica nodes
with different number of replicas are also evenly distrib-
uted. In ServerSide, the percents of nodes with different
number of replicas are almost the same except one node
which has 49 replicas in the jumping point in the curve. The
results mean that many nodes need to hold many replicas.
ServerSide leads to load imbalance among replica nodes, and
it sometimes seriously overloads a few nodes. The relative
performance between the replication algorithms is consis-
tent with that in Fig. 7a due to the same observed reasons in
Fig. 7a. The results show that IRM distributes replicas in a

more balanced manner than other algorithms, leading to less
overloaded replica nodes.

4.1.5 The Effect of File Popularity

This experiment tested the performance of the file replica-
tion methods with difference degrees of file popularity. We
randomly chose one file and a number of nodes to query for
this file. The number of lookups is varied from 100 to 2,100
with increase of 500 in each step. More lookups mean
higher popularity of the file. Fig. 8a illustrates the number
of hits versus the number of lookups. We can observe that
ClientSide produces dramatically less hits than others. Only
when the number of lookups exceeds 1,500, ClientSide leads
to more than 100 hits. Recall that the replicas in ClientSide
are useful only when the replica nodes query for the replica
file again, and they are hardly shared by other nodes.
Therefore, in ClientSide, a hit occurs only when a replica
node requests its replicas, leading to low total number of
hits. Comparing Path, ServerSide, and IRM, we can find that
Path generates a little more number of hits than IRM, and
IRM produces slightly less number of hits than ServerSide.
By replicating the file in all nodes along a path, Path
increases the probability that a query meets a replica node.
ServerSide replicates the file in the neighbors of the file’s
owner. Because a query always passes the file owner’s
neighbors before arriving at the owner, ServerSide leads to
more hits. IRM replicates the file in traffic hubs and
frequently requesters. It cannot provide hits as high as
ServerSide. We also observe that the number of hits of the
three methods grows sharply as file popularity increases.
Higher popularity makes the file owner more easily to be
overloaded, resulting in more replicas and hence more hits.
More number of hits implies more load is released from the
file owner of the popular file. Thus, we can conclude that
Path, ServerSide, and IRM are highly effective than ClientSide
in reducing hot spots due to popular file visits.

Fig. 8b shows the average path length of the file
replication methods versus the number of lookups. The
figure demonstrates that the average path length of Client-
Side is longer than others, and it maintains almost constant.
The reason for this observation is due to the same reason in
Fig. 8a. ClientSide’s less hits lead to longer lookup path
length since less queries can be resolved by replica nodes
before they reach the file owner. The average path lengths
of Path, ServerSide, and IRM decrease as the popularity of
the file increases. This is because higher file popularity
leads to more replicas and more hits, which results in
shorter path length. ServerSide produces longer average

110 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010

Fig. 8. The effect of file popularity on file replication methods. (a) Number of hits, (b) average path length, and (c) total number of replicas.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:43 from IEEE Xplore.  Restrictions apply. 



path length than IRM, and IRM generates marginally longer
average path length than Path. Path has the highest number
of hits, hence it has the shortest path length. It is intriguing
to see that though IRM has slightly less hits than ServerSide,
it produces shorter path length than ServerSide. This is due
to the locations of replicas. The replicas in ServerSide are in
the neighbors of the file owner. Thus, queries are resolved
when they are approaching the file owner. Instead, IRM
enables queries to be resolved in the middle of a path by
replicating the file in traffic hubs.

Fig. 8c shows the number of replicas in each file
replication method. We can see that ClientSide, ServerSide,
and IRM generate the same number of replicas, while Path
produces significantly more replicas than others. This is due
to the reason that it replicates a file in all nodes along a path.
Though it achieves more hits and least average path length,
it brings about more overhead of more replicas. It implies
the superiority of IRM that achieves slightly less effective-
ness than Path, but generates much less cost.

4.2 File Consistency Maintenance

We use Hierarchy to denote the work in [10] that builds a
hierarchical structure for file consistency maintenance. We
compared the performance of IRM with SCOPE [11],
Hierarchy [10], and Push/poll [15] methods in terms of file
consistency maintenance cost and the capability to keep the
fidelity of file consistency. In Hierarchy, we set the number
of nodes in a cluster to 16. We assumed four types of file:
highly mutable, very mutable, mutable, and immutable.
The percentage of the files in each category and their update
rates were (0.5 percent, 0.15 sec), (2.5 percent, 7.5 sec),
(7 percent, 30 sec), and (90 percent, 100 sec). File queries
were successively generated. The query interval time was
randomly chosen between 1 and 500 seconds.

4.2.1 Efficiency of File Consistency Maintenance

This experiment evaluated the performance of different
consistency maintenance methods with churn in P2P
systems. In the experiment, the number of replica nodes
was set to 4,000 and the failed nodes were randomly chosen.
Fig. 9a shows the average number of update messages per
replica node versus the percentage of failed replica nodes.
We can see that the number of update messages increases as
the percentage of failed replica nodes increases in SCOPE
and Hybrid, but remains constant in IRM and Push/poll.
SCOPE constitutes nodes into a tree structure for file
updating. Hybrid forms nodes into a hierarchical structure.
In the lower level of the structure, a group of regular nodes

connects to a super node. In the upper level, super nodes
constitute a tree structure for file updating. Therefore, when
a replica node fails, SCOPE and Hybrid need to recover their
tree or hierarchical structure and retransmit update mes-
sages, which generate more update messages. The failure of
replica nodes has little effect on IRM and Push/poll due to
their autonomous polling and message spreading nature,
respectively. Without the need of maintaining a structure,
IRM and Push/poll do not need extra messages for structure
recovery and update retransmission. However, the number
of update messages of Push/poll is much higher than other
schemes. Push/poll relies on message spreading, which
means that its churn resilience is achieved at the cost of
high node communication overhead. IRM enables replica
nodes to poll the file owner approximately at the rate of file
update rate. Polling will not generate update failures and
hence update retransmissions. Thus, IRM does not produce
more update messages except polling message. Without
redundant messages and structure maintenance, IRM
achieves churn resilience at a dramatically lower cost.

4.2.2 Effectiveness of File Consistency Maintenance

In file consistency maintenance, if a replica is not updated
in a timely fashion, file requesters may receive stale files.
The efficiency of file consistency maintenance schemes is
important for keeping file replicas’ temporal consistency.
This experiment tested the effectiveness of file consistency
maintenance methods in maintaining the fidelity of file
consistency. Fig. 9b depicts the percentage of stale files
received by requesters versus the percentage of failed
nodes. We can see that the percentages of stale files
received in SCOPE and Hierarchy increase rapidly as the
failed replica nodes grow, while the percentages of stale
files received in IRM and Push/poll keep almost constant
regardless of the percentage of failed replica nodes. The
figure also demonstrates that SCOPE and Hierarchy incur
much higher percentage rates than IRM and Push/poll.
SCOPE relies on tree structure for update propagation, and
if a node fails, all the node’s children cannot get the update
message in time until the tree is fixed. Hierarchy is a
hierarchical structure with super nodes on the upper level
and regular nodes on the lower level. A cluster of regular
nodes connects with a super node, and super nodes
constitute a tree structure. Therefore, if a super node fails,
this super node’s child super nodes and their child’s
regular nodes are unable to receive the updated message
successfully. Update failures make some file requesters
receive stale files. In contrast, IRM and Push/poll do not
depend on a structure for file update. They respectively use

SHEN: IRM: INTEGRATED FILE REPLICATION AND CONSISTENCY MAINTENANCE IN P2P SYSTEMS 111

Fig. 9. Performance of file consistency maintenance algorithms. (a) Number of messages with churn and (b) stale file responses with churn.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:43 from IEEE Xplore.  Restrictions apply. 



autonomous polling and rumoring that are highly resilient
to churn. The figure also shows that Push/poll leads to
higher percentage of stable file responses than IRM. It is
because rumoring cannot guarantee that all replica nodes
can receive a update message. In addition, an update
message may traverse a number of hops before it arrives a
replica node. Such indirect updating cannot provide timely
update. Therefore, it is very likely that a replica node
cannot provide up-to-date file upon a request in Push/poll.
Moreover, the high churn resilience of Push/poll is out-
weighed by its high cost of redundant update messages. In
IRM, direct updating by polling the file owner provides
quick replica update once a file is update. Furthermore,
when a replica node receives a request during replica
validation, it can wait until it receives the update message
before it replies to the requester. The experiment results
imply that IRM outperforms other methods with regard to
the consistency maintenance overhead and the capability to
guarantee fidelity of consistency in churn.

4.2.3 Overhead of File Consistency Maintenance

Recall that IRM considers file query rate to reduce the
number of file updates in file consistency maintenance. This
experiment tested the effect of IRM in poll reduction.
Specifically, we tested the update rate and the number of
update messages versus file query rate. We chose a file and
set its update rate to 0.5 second per update. We varied the
query rate of a replica of this file from 0.5 to 4 seconds per
query with 0.5 second increment in each step. The query
rate changes every 5 seconds. That is, the replica is queried
every 0.5 second at first, and after 5 seconds, i.e., after
10 queries, it is queried every 1 second, and so on. The
update rate is set to 0.5 second per update. Fig. 10a shows
the average update rates of the replica in each consistency
maintenance algorithm with different file query rates. We
can observe that the update interval time of SCOPE,
Hierarchy, and Push/poll remains at 0.5, while that of IRM
increases as the query interval time increases. In SCOPE,
Hierarchy, and Push/poll, a file owner sends updates to
replica nodes once the file is changed. Thus, the replica is
updated at the rate of the file update rate regardless of the
replica’s query rate. IRM employs polling for replica
update. When a replica’s query rate is slower than its
update, the replica node polls the file owner according to its
query rate. This is based on the fact that even though the
replica is updated, if there is no query for it, the update is
not necessary. As a result, the replica’s update interval time
increases as its query interval time grows. We find that the

replica’s update interval time doesn’t equal to its query
interval time. This is because there is a latency before the
replica node observes the query rate change.

Fig. 10b plots the number of update messages versus the
replica query interval time. In this test, the query rate
changes every 50 seconds. The figure shows that the
number of messages in SCOPE, Hierarchy, and Push/poll
remains at 100, while that of IRM decreases as the replica’s
query interval time increases. Because the file is updated
every 0.5 second, thus there are 50=0:5 ¼ 100 updates
during the 50 second period in these algorithms, resulting
in 100 update messages. Unlike these algorithms, IRM
adapts its update rate to replica query rate in consistency
maintenance. Slow query rate leads to slow update rate by
polling. Therefore, IRM’s update rate decreases with the
increase of the query interval time. Hence, the number of
IRM’s update messages decrease as the query interval time
increases. The experiments confirm the effectiveness of IRM
in reducing consistency maintenance overhead by flexibly
adjusting a replica’s update rate to its query rate.

5 CONCLUSIONS

In spite of the efforts to develop file replication and file
consistency maintenance methods in P2P systems, there has
been very little research devoted to tackling both challenges
simultaneously. This is unfortunate because they are inti-
mately connected: File replication needs consistency main-
tenance to keep the consistency between a file and its replicas,
and on the other hand, the overhead of consistency
maintenance is determined by the number of replicas.
Connecting the two important components will greatly
enhance system performance. In addition, traditional file
replication and consistency maintenance methods either are
not sufficiently effective or incur prohibitively high overhead.

This paper proposes an IRM that achieves high efficiency
at a significantly lower cost. Instead of passively accepting
replicas and updates, nodes autonomously determine the
need for file replication and validation based on file query
rate and update rate. It guarantees the high utilization of
replicas, high query efficiency and fidelity of consistency.
Meanwhile, IRM reduces redundant file replicas, consis-
tency maintenance overhead, and unnecessary file updates.
Simulation results demonstrate the effectiveness of IRM in
comparison with other file replication and consistency
maintenance approaches. Its low overhead and high

112 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010

Fig. 10. Effectiveness of IRM in overhead reduction. (a) Update rate and (b) number of update messages.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:43 from IEEE Xplore.  Restrictions apply. 



effectiveness are particularly attractive to the deployment of

large-scale P2P systems.
We find that IRM relying on polling file owners still

cannot guarantee that all file requesters receive up-to-date

files, although its performance is better than other consis-

tency maintenance algorithms. We plan to further study

and explore adaptive polling methods to fully exploit file

popularity and update rate for efficient and effective replica

consistency maintenance.

ACKNOWLEDGMENTS

This research was supported in part by US National Science

Foundation (NSF) grants CNS-0834592 and CNS-0832109.

An early version of this work [34] was presented in the

Proceedings of ICCCN ’08.

REFERENCES

[1] R. Kumar, J. Liang, and K.W. Ross, “The FastTrack Overlay: A
Measurement Study,” Computer Networks, vol. 50, no. 6, pp. 842-
858, 2006.

[2] A. Rowstron and P. Druschel, “Storage Management and Caching
in PAST, a Large-Scale, Persistent Peer-to-Peer Storage Utility,”
Proc. ACM Symp. Operating Systems Principles (SOSP), 2001.

[3] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I. Stocia,
“Wide Area Cooperative Storage with CFS,” Proc. ACM Symp.
Operating Systems Principles (SOSP), 2001.

[4] T. Stading, P. Maniatis, and M. Baker, “Peer-to-Peer Caching
Schemes to Address Flash Crowds,” Proc. First Int’l Workshop Peer-
to-Peer Systems (IPTPS), 2002.

[5] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher,
“Adaptive Replication in Peer-to-Peer Systems,” Proc. 24th Int’l
Conf. Distributed Computing Systems (ICDCS), 2004.

[6] Gnutella Home Page, http://www.gnutella.com, 2008.
[7] R. Cox, A. Muthitacharoen, and R.T. Morris, “Serving DNS Using

a Peer-to-Peer Lookup Service,” Proc. First Int’l Workshop Peer-to-
Peer Systems (IPTPS), 2002.

[8] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer
Lookup Protocol for Internet Applications,” IEEE/ACM Trans.
Networking, vol. 11, no. 1, pp. 17-32, Feb. 2003.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network,” Proc. ACM SIGCOMM,
pp. 329-350, 2001.

[10] G. Xie, Z. Li, and Z. Li, “Efficient and Scalable Consistency
Maintenance for Heterogeneous Peer-to-Peer Systems,” IEEE
Trans. Parallel and Distributed Systems, vol. 19, no. 12, pp. 1695-
1708, Dec. 2008.

[11] X. Chen, S. Ren, H. Wang, and X. Zhang, “SCOPE: Scalable
Consistency Maintenance in Structured P2P Systems,” Proc. IEEE
INFOCOM, 2005.

[12] P. Druschel, M. Castro, A.-M. Kermarrec, and A. Rowstron,
“Scribe: A Large-Scale and Decentralized Application-Level
Multicast Infrastructure,” IEEE J. Selected Areas in Comm., vol. 20,
no. 8, pp. 1489-1499, Oct. 2002.

[13] M. Roussopoulos and M. Baker, “CUP: Controlled Update
Propagation in Peer to Peer Networks,” Proc. USENIX Ann.
Technical Conf., 2003.

[14] L. Yin and G. Cao, “DUP: Dynamic-Tree Based Update Propaga-
tion in Peer-to-Peer Networks,” Proc. 21st Int’l Conf. Data Eng.
(ICDE), 2005.

[15] A. Datta, M. Hauswirth, and K. Aberer, “Updates in Highly
Unreliable, Replicated Peer-to-Peer Systems,” Proc. 23rd Int’l Conf.
Distributed Computing Systems (ICDCS), 2003.

[16] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet: A
Distributed Anonymous Information Storage and Retrieval
System,” Proc. Int’l Workshop Design Issues in Anonymity and
Unobservability, pp. 46-66, 2001.

[17] J. Lan, X. Liu, P. Shenoy, and K. Ramamritham, “Consistency
Maintenance in Peer-to-Peer File Sharing Networks,” Proc. Third
IEEE Workshop Internet Applications (WIAPP), 2003.

[18] M. Theimer and M. Jones, “Overlook: Scalable Name Service on
an Overlay Network,” Proc. 22nd Int’l Conf. Distributed Computing
Systems (ICDCS), 2002.

[19] K. Huang, T. Huang, and J. Chou, “LessLog: A Logless File
Replication Algorithm for Peer-to-Peer Distributed Systems,” Proc.
18th Int’l Parallel and Distributed Processing Symp. (IPDPS), 2004.

[20] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D.
Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C.
Wells, and B. Zhao, “OceanStore: An Architecture for Global-Scale
Persistent Storage,” Proc. Int’l Conf. Architectural Support for
Programming Languages and Operating Systems, 2000.

[21] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
Replication in Unstructured Peer-to-Peer Networks,” Proc. 16th
Int’l Conf. Supercomputing (ICS), 2001.

[22] E. Cohen and S. Shenker, “Replication Strategies in Unstructured
Peer-to-Peer Networks,” Proc. ACM SIGCOMM, 2002.

[23] S. Tewari and L. Kleinrock, “Analysis of Search and Replication in
Unstructured Peer-to-Peer Networks,” Proc. ACM SIGMETRICS,
2005.

[24] S. Tewari and L. Kleinrock, “On Fairness, Optimal Download
Performance and Proportional Replication in Peer-to-Peer Net-
works,” Proc. IFIP Networking, 2005.

[25] S. Tewari and L. Kleinrock, “Proportional Replication in Peer-to-
Peer Network,” Proc. IEEE INFOCOM, 2006.

[26] D. Rubenstein and S. Sahu, “Can Unstructured P2P Protocols
Survive Flash Crowds?” IEEE/ACM Trans. Networking, vol. 13,
no. 3, pp. 501-512, June 2005.

[27] Q. Yang, W. Xiao, and J. Ren, “PRINS: Optimizing Performance of
Reliable Internet Storages,” Proc. 26th Int’l Conf. Distributed
Computing Systems (ICDCS), p. 32, 2006.

[28] H. Shen, “EAD: An Efficient and Adaptive Decentralized File
Replication Algorithm in P2P File Sharing Systems,” Proc. Eighth
Int’l Conf. Peer-to-Peer Computing (P2P ’08), 2008.

[29] D. Tsoumakos and N. Roussopoulos, “APRE: An Adaptive
Replication Scheme for Unstructured Overlays,” Proc. 14th Int’l
Conf. Cooperative Information Systems (CoopIS), 2006.

[30] M. Raunak, P. Shenoy, B. Urgaonkar, A. Ninan, and K.
Ramamritham, “Maintaining Mutual Consistency for Cached
Web Objects,” Proc. 21st Int’l Conf. Distributed Computing Systems
(ICDCS), 2001.

[31] A. Muthitacharoen, B. Chen, and D.M. Eres, “A Low-Bandwidth
Network File System,” Proc. ACM Symp. Operating Systems
Principles (SOSP), pp. 174-187, 2001.

[32] rsync, http://en.wikipedia.org/wiki/Rsync, 2009.
[33] W.R. Stevens, TCP/IP Illustrated, vol. 1, Addison-Wesley, 1994.
[34] H. Shen, “IRM: Integrated File Replication and Consistency

Maintenance in P2P Systems,” Proc. IEEE 17th Int’l Conf. Computer
Comm. and Networks (ICCCN), 2008.

Haiying (Helen) Shen received the BS degree in
computer science and engineering from Tongji
University, China, in 2000, and the MS and PhD
degrees in computer engineering from Wayne
State University in 2004 and 2006, respectively.
She is currently an assistant professor in the
Department of Electrical and Computer Engi-
neering, and the director of the Pervasive
Communications Laboratory of Clemson Univer-
sity. Her research interests include distributed

and parallel computer systems and computer networks, with an emphasis
on peer-to-peer and content delivery networks, wireless networks,
resource management in cluster and grid computing, and data mining.
Her research work has been published in top journals and conferences in
these areas. She was the program cochair for a number of international
conferences and member of the Program Committees of many leading
conferences. She is a member of the IEEE, the IEEE Computer Society,
and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SHEN: IRM: INTEGRATED FILE REPLICATION AND CONSISTENCY MAINTENANCE IN P2P SYSTEMS 113

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:43 from IEEE Xplore.  Restrictions apply. 


