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AutoTune: Game-based Adaptive Bitrate Streaming in
Cloud-Based Hybrid VoD Systems
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Abstract—Hybrid peer-to-peer assisted cloud-based video-on-demand (VoD) systems augment cloud-based VoD systems with P2P
networks to improve scalability and save bandwidth costs in the cloud. In these systems, the VoD service provider (e.g., NetFlix) relies
on the cloud to deliver videos to users and pays for the cloud bandwidth consumption. The users can download videos from both the
cloud and peers in the P2P network. It is important for the VoD service provider to i) minimize the cloud bandwidth consumption, and ii)
guarantee users’ satisfaction (i.e., quality-of-experience). Though previous adaptive bitrate streaming (ABR) methods improve video
playback smoothness, they cannot achieve these two goals simultaneously. To tackle this challenge, we propose AutoTune, a
game-based adaptive bitrate streaming method. In AutoTune, we formulate the bitrate adaptation problem in ABR as a noncooperative
Stackelberg game, where VoD service provider and the users are players. The VoD service provider acts as a leader and it decides the
VoD service price for users with the objective of minimizing cloud bandwidth consumption while ensuring users’ participation. In
response to the VoD service price, the users select video bitrates that lead to maximum utility (defined as a function of its satisfaction
minus associated VoD service fee). Finally, the Stackelberg equilibrium is reached in which the cloud bandwidth consumption is
minimized while users are satisfied with selected video bitrates. To enhance the performance of AutoTune, we further propose the
reputation-based incentive scheme and the popularity-based cache management scheme. Experimental results from the PeerSim
simulator and the PlanetLab real-world testbed show that compared to existing methods, AutoTune can provide high user satisfaction
and save cloud bandwidth consumption. Also, the proposed enhancement schemes are effective in improving the performance of
AutoTune.

Index Terms—Video streaming; Cloud computing; Bitrate adaptation; Noncooperative Stackelberg game
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1 INTRODUCTION

THE cloud has proved to be an effective infrastructure to
host stable and robust video streaming services [1]–[5].

More and more video-on-demand (VoD) service providers
(e.g., Netflix) are deploying their web applications on the
cloud. Meanwhile, peer-to-peer (P2P) technology has been
applied to various multimedia streaming applications for
P2P video sharing in order to reduce the bandwidth cost
of the server. As a result, hybrid P2P-assisted cloud-based
video-on-demand (hybrid VoD in short) systems that com-
bine P2P and cloud computing have been proposed [6] for
multimedia streaming services, which take advantage of
both systems. LiveSky [6] is a popular live streaming system
that adopts the hybrid VoD approach to serve ten million
users. The potential benefits of such a hybrid approach are
analyzed and validated by previous studies [7]–[10]. Figure
1 demonstrates an overview of the hybrid VoD architecture.
It has three components: servers owned by VoD service
providers, cloud (including cloud storage and its content
delivery network) and VoD users (in this paper, users, video
players, clients, peers and nodes are interchangeably used
based on the context). The VoD service provider stores all
original video files on its servers, and uploads new videos
to the cloud when they are released to users. The cloud is
responsible for storing video files and streaming the videos
to end users across the wide areas, using edges servers that
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Fig. 1: Overview of a P2P-assisted cloud-based VoD archi-
tecture.

are distributed globally. End users can download videos
from both the cloud and peers in the P2P network. The
cloud acts as the main contributor that streams videos to
users. When a user is far from the nearest cloud edge
server or the network connection between the user and the
cloud is not in a good condition, peers are needed to assist
the streaming of videos. The users need to pay the VoD
service provider for using the video streaming service (i.e.,
watching videos). The VoD service provider needs to pay for
users’ bandwidth consumption (i.e., its bandwidth usage)
on the cloud during a period of time [11]–[13]. To maximize
the VoD service provider’s profit and attract more users, it
is important for the VoD service provider to 1) minimize
cloud bandwidth consumption; and 2) guarantee users’
satisfaction (i.e., quality-of-experience) in video watching.

Various adaptive bitrate streaming (ABR) methods have
been proposed for video streaming systems to improve
video playback smoothness. One approach is to adjust us-
er’s video bitrate by examining bandwidth or buffer condi-
tions of the server [2], [14]–[18]. When the server has low
bandwidth and its sending buffer has a small number of



video chunks, it reduces video bitrate in order to deliver
video chunks to the users on time. Otherwise, it increases
video bitrate in order to provide high-quality videos to
users. However, this server-side adaptation approach fails
to guarantee user satisfaction, as it adapts a user’s video
bitrate based on the server’s bandwidth capacity. A user
may get low video bitrate even if there are a large num-
ber of video chunks stored in its buffer and it has high
bandwidth capacity. Another approach is to adjust video
bitrate by estimating a user’s bandwidth capacity based on
the current level of its playback buffer [19]–[23]. It reduces
the bitrate to be more conservative when user’s buffer is
at risk of underrunning, and increases bitrate to be more
aggressive when user’s buffer has stored a large number of
video chunks. As each user aims to maximize its own video
bitrate based on its buffer condition, it leads to a large size
of video downloads from the cloud. Therefore, this client-
side adaptation approach fails to minimize cloud bandwidth
consumption if it is applied to hybrid VoD systems.

To overcome the drawbacks of existing ABR method-
s in achieving the aforementioned goals in hybrid VoD
systems, we propose AutoTune, a game-based adaptive
bitrate streaming method. In AutoTune, we formulate the
bitrate adaptation problem in ABR as a noncooperative
Stackelberg game, where the VoD service provider and users
are players. We then solve the Stackelberg equilibrium in
which cloud bandwidth consumption is minimized while
users are satisfied with the selected video bitrates. To en-
hance the performance of AutoTune, we further propose
the reputation-based incentive scheme to motivate users to
contribute upload bandwidth and serve video requests, and
the popularity-based cache management scheme to increase
the availability of video chunks in the P2P network. We
conducted extensive experiments in the PeerSim simulator
and the PlanetLab real-world testbed. Experimental results
show the effectiveness of AutoTune in achieving a high user
satisfaction and saving cloud bandwidth consumption, and
the effectiveness of the proposed enhancement schemes in
improving the performance of AutoTune.

The remainder of the paper is organized as follows.
Section 2 gives an overview of related work. Section 3 in-
troduces the goal of this work and provides an overview of
AutoTune. Section 4 introduces the detailed design of Auto-
Tune and our proposed reputation-based incentive scheme
and popularity-based cache management scheme. Section 5
presents the performance evaluation on both PlanetLab and
PeerSim. Section 6 concludes the paper with remarks on our
future work.

2 RELATED WORK
LiveSky [6] is the first real-world implementation of P2P-
assisted cloud-based VoD systems. Early works analyzed
the effectiveness of the hybrid VoD systems in reducing
server bandwidth costs and increasing system scalability
through simulations [8]–[10]. To improve the quality-of-
experience for users under unstable network condition in
video streaming systems, many methods have been pro-
posed to adaptively tune video bitrates. Existing ABR meth-
ods can be classified to two groups: server-side adaptation
and client-side adaptation.

In the server-side adaptation approach, the controller
monitors available bandwidth on the server side and assign
video bitrates to all users using the available bandwidth
capacity. Mansy et al. [14] modeled the adaptive streaming
as a linear optimization problem and proposed a prob-
lem solution that allocates a bitrate to a client based on
client’s requested bitrate and upload bandwidth capacity
of the servers, with the goal of maximizing the fraction of
clients that receive their requested bitrates. Cicco et al. [17]
proposed a quality adaptation controller for live streaming
systems, which employs feedback control theory to adjust
video bitrate based on the server’s available bandwidth.
However, these methods fail to consider real time buffer
conditions on the client side, and fail to maximize the users’
satisfaction of the video quality.

In the client-side adaptation approach, video bitrate is
adjusted by available bandwidth or the number of down-
loaded video chunks in the buffer of users. Adobe and Ap-
ple both have developed web-based adaptive video stream-
ing service as a function of flash players [19], [20]. In these
designs, the video client monitors its bandwidth and CPU
conditions and adaptively switches video quality during
playback. Dynamic adaptive streaming over HTTP (DASH)
[2], [15], [16] picks a high bitrate for users to improve video
quality when TCP throughput is high, and switches to a low
bitrate to avoid playback interruptions in order to provide
smooth video streaming service to users. Joint-Family [21]
manages multiple swarms for peers watching a video of
different bitrates. When a peer’s buffer has more than (or
less than) a certain number of video chunks to play and
the last bitrate change is more than several seconds ago,
the peer increases (or decreases) the video bitrate. Huang
et al. [22] designed two separate phases of operation. That
is, when a user’s buffer is growing from empty, it selects a
video rate based on bandwidth capacity estimation; when
its buffer is occupied to a certain range, it picks a video
rate based on its buffer condition. Tian et al. [23] proposed
a method that uses the number of video chunks buffered in
the client-side as a feedback signal, and smoothly increases
video bitrate when the client’s available network bandwidth
increases. However, this client-side adaptation approach
aims to maximize each user’s video bitrate, so it leads
to increased video size downloaded from the cloud if it
is applied to hybrid VoD systems), thus cannot minimize
cloud bandwidth consumption.

Stackelberg games [24] have been applied to video
streaming system to solve the resource allocation problem
[25]–[27]. When mobile users and desktop users both receive
video streaming services from the cloud, they compete
with each other for cloud bandwidth allocation. Nan et
al. [25] formulated the bandwidth allocation problem as
a Stackelberg game, they then proved the existence of a
unique Nash Equilibrium in this game where both mobile
users and desktop users meet their QoS requirements. Wu et
al. [26] developed a Stackelberg game between a VoD service
provider and the peers, where the VoD service provider
uses a rewarding strategy to incentivize peers to contribute
upload bandwidth resource. In order to maximize upload
bandwidth from peers in VoD systems, Mostafavi et al. [27]
formulated a Stackelberg game in which the VoD server is
the leader and peers are followers. The leader decides the
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amount of payment for each peer, the peers then calculate
how much upload bandwidth to contribute accordingly.

To sum up, existing ABR methods either fail to max-
imize the users’ satisfaction of the video quality or can-
not minimize cloud bandwidth consumption. Compared
to the existing ABR methods, our proposed AutoTune is
advantageous in that it can simultaneously minimize cloud
bandwidth consumption and guarantee users’ satisfaction
(i.e., quality-of-experience) in video watching in hybrid VoD
systems. To the best of our knowledge, this is the first work
to apply a Stackelberg game to solve the ABR problem in
hybrid VoD systems.

Previous works study how to provide incentives to en-
courage users to offer their upload bandwidth to serve other
peers in VoD systems [28]–[30]. Wu et al. [28] designed a
mechanism using monetary rewards to motivate peers to
store videos and serve video chunk requests from other
peers. Li et al. [31] proposed a taxation-based mechanism
to incentivize peers with high-bandwidth connections to
contribute more upload bandwidth. Some works [29], [30]
discourage free-riding behaviors by giving high priority to
serve peers who have uploaded a large size of contents to
the system. In this paper, we leverage existing reputation
system techniques and design a practical reputation-based
incentive scheme.

Cache management schemes are designed to improve
the availability of files in the P2P system. Least recently
used (LRU) [32] and First-In-First-Out (FIFO) [33] schemes
replace outdated files in the cache without considering file
popularities. Study in [34] shows that swapping out videos
based on popularity can achieve a high hit rate. In this
paper, we design a popularity-based cache management s-
trategy that considers both video popularity and the amount
of bandwidth demanded from peers.

3 BACKGROUND AND PROBLEM STATEMENT

In a VoD system that provides videos with various bitrates,
each video has a number of distinct files for different bitrates
(i.e., one file at each bitrate). The hybrid VoD system main-
tains a P2P overlay for each bitrate of a video, where peers
exchange video chunks with each other. A peer watching
a video joins different overlays for different bitrates of the
video concurrently and maintains active connections with
its neighbors [21], [35]. As in current P2P applications, users
in this hybrid VoD system are incentivized to contribute
their upload bandwidth in order to download video chunks
from the peers [10]. When a peer switches to a new bi-
trate, it sends out requests to the corresponding overlay
as it downloads and uploads chunks. In the P2P-assisted
cloud-based VoD system, users download video chunks
from two sources, the cloud and peers. The VoD service
provider needs to pay the cloud provider for bandwidth
consumption for users’ video downloading from the cloud
(i.e., bandwidth usage of the VoD service provider), but
does not need to pay for users’ video downloading from
peers. The cloud provider uses a usage-based pay-as-you-go
charging model for the bandwidth usage of the VoD service
provider [11], [12], in which monetary cost is calculated
by the total amount of bytes transferred from the cloud to
users during a period of time. To maximize its profit in a

competitive market, a VoD service provider aims to reduce
cloud bandwidth consumption while guaranteeing users’
satisfaction in video watching.

Using an ABR method is one way to achieve this goal,
but it faces two challenges. On one hand, each user desires
to enjoy a good quality-of-experience and maximize the
bitrate of the video that it is watching. Due to limited
bandwidth capacities of peers, it is hard to find peers that
can supply very high bitrates. Then, the user must down-
load a large-size video file from the cloud and hence in-
creases cloud bandwidth consumption. On the other hand,
the VoD service provider could constrain cloud bandwidth
consumption of users, which however may degrade users’
satisfaction (i.e., quality-of-experience) in video watching.

To tackle the aforementioned challenge, in this paper,
we propose a game-based video bitrate adaptation method
called AutoTune. It leverages an observed fact that users
are satisfied when video bitrate reaches a certain level
and an additional bitrate increase will not further greatly
increase users’ satisfaction. Specifically, a user can enjoy
good quality-of-experience at bitrate 720kbps, and it will
not greatly increase the user’s satisfaction by switching
the bitrate to 1080kbps [36]. As the VoD service provider
is only charged by the total amount of cloud bandwidth
used during a period, to reduce cloud bandwidth payment
cost, it can encourage users to download video chunks from
peers by setting a price for users’ cloud bandwidth usage.
Therefore, users can be motivated to choose a bitrate that
they are satisfied with rather than choosing an excessive
high bitrate and motivated to use peer bandwidth that can
support the bitrate that they are satisfied with.

In this hybrid VoD system, the VoD service provider pe-
riodically estimates the expected cloud bandwidth demand
in the next time period (denoted by Tp). It then accordingly
sets multiple unit prices for cloud bandwidth consumption
when users download video chunks from the cloud with the
objective of encouraging users to select a video bitrate that
has high bandwidth supply from peers. When a user needs
to adjust its bitrate based on its buffer condition, it identifies
multiple possible bitrates (Section 4.1). A Stackelberg game
between users and VoD service provider is formulated as
the following process: 1) based on each of the multiple
unit prices, the user chooses a new bitrate that maximizes
its utility, which is the user’s satisfaction with the video
quality minus the VoD service cost; 2) the VoD service
provider chooses one unit price among multiple unit prices
that maximizes its own revenue. Note that the provider
will not simply choose the highest unit price because it
will discourage users from watching a video at higher
bitrates. Finally, each user chooses a new bitrate based on
this determined unit price (Section 4.2). We will elaborate
each step in Section 4.

4 SYSTEM DESIGN

An overview of our game-based bitrate adaptation process
is shown in Figure 2. A client first determines multiple
possible new bitrates to watch based on its buffer condition
(Section 4.1). Based on multiple prices for each bitrate from
the VoD service provider, the client calculates the bitrate
that maximizes its utility based on each price. The VoD
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Fig. 2: Overview of the game-based bitrate adaptation pro-
cess.

service provider calculates optimal VoD service price that
maximizes its revenue based on the responses from clients.
The client then calculates the optimal video bitrate that max-
imizes its utility (Section 4.2). Important notations used in
this paper are listed in Table 1, in which we use “predefined”
to indicate that the parameter is predefined by the VoD
service provider.

TABLE 1: Table of important notations.
ri video bitrate
R the set of bitrates for each video
tg time gap since the last bitrate change
PRk the set of bitrates that user k can switch to
Zb
u upper bound of # of chunks stored in buffer (predefined)

Zb
l lower bound of # of chunks stored in buffer (predefined)

Zb # of chunks stored in the buffer
F (k) utility function of user k
Us user’s satisfaction degree in watching a video
Up payment cost on cloud bandwidth consumption
si satisfaction parameter for bitrate ri (predefined)
αi scale factor corresponding to bitrate ri (predefined)
p unit price of the VoD service (predefined)
ru joint bandwidth contribution from peers
wk weight of payment cost set by user k
L(p) utility function of the VoD service provider
c̄ base cloud bandwidth usage (predefined)
p̄ base unit price for the cloud bandwidth (predefined)
m # of levels of VoD service prices (predefined)
ni node i
qik reputation score of nk given by node ni

Sd
ik size of video chunks ni downloads from nk

vi a video
θri probability that vi is requested by other users
Su
ji total chunk size of video vi uploaded by nj

Sm
j the maximum value of Su

ji of all videos stored in nj ’ cache
θsji probability of selecting vi to swap out from nj ’ cache
qci compensation reputation for storing video vi

4.1 Client Buffer Based Bitrate Adaptation

We use a set R =< r1, r2..., rB > (r1 < r2 < ... < rB)
to denote different bitrates for each video provided by the
VoD service provider. We use a general set of bitrates for
all videos in this paper for convenience of analysis, and our
design can be easily extended to the scenario where different
videos have various bitrates. A video encoded with a higher
bitrate is larger in size and has a higher quality. The chunk
size is finite (i.e., a number of seconds long regardless of
video bitrate) and a chunk is stored in the player’s buffer
after it is downloaded. To avoid playback interruption, it is
required to have at least one chunk available in the player’s
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Fig. 3: Demonstration of user buffer utilization.

buffer. When downloading chunks, we use the Earliest-
First chunk selection strategy, which is to download the
chunks in order [37]. This strategy allows for a fast start-
up, potentially fewer and shorter playback interruptions,
and smaller wastage of downloaded chunks when a user
abandons viewing a video. The rule for adaptive bitrate
streaming is that when a client’s buffer has few chunks,
the client should be more “conservative” and deliberately
underestimate its bandwidth capacity so as to pick a lower
video bitrate to quickly replenish its buffer, and vice versa.

Figure 3 shows buffer status when a user is playing a
video. A video player downloads video chunks from the
cloud and peers and stores them in its buffer (as shown on
the left side). At the same time, the video player fetches
chunks from the buffer and plays them (as shown on the
right side). In order to guarantee smooth playback of a
video, the video player needs to store a certain amount of
video chunks (called reservoir) to tolerate sudden changes
in network condition. As most browser-based video players
do not have control over the underlying TCP connections,
they cannot cancel the downloading process of an ongoing
video chunk before the completion of downloading. While
the video player is in the middle of downloading a chunk,
if the download speed suddenly slows down due to an
inferior network connection, the reservoir might run empty
before the video player can switch to a lower bitrate. In
this case, video playback is interrupted. Thus, we need to
maintain a buffer level (denoted by Zb seconds of chunks)
that is greater than the reservoir, so that there are enough
video chunks in the buffer to tolerate download bandwidth
variation.

Assume that a video player is currently playing a video
at bitrate ri, it increases bitrate if the following two condi-
tions hold: 1) its buffer has more than Zb

u sequential chunks
to playback, and 2) the last bitrate change was made more
than tl seconds ago. The rationale behind the first condition
is that we need to have a high buffer level to prevent
playback interruption in the process of bitrate adaptation.
Also, as the action of bitrate adaptation will not affect the
buffer status immediately, if multiple consecutive bitrate
adaptations occur within a short time period, it may lead
to excessively high or excessively low bitrates. The second
condition prevents such an excessive reaction by preventing
duplicated bitrate adaptations within a short time. We use
tg to denote the time gap since the last bitrate change, and
use PRk to denote the new set of possible bitrates that video
player k can choose for bitrate increase or decrease.

PRk = {rj : rj ≥ ri ∧
rj − ri
ri

<
Zb − Zb

u

Zb
u

}, if

{
Zb > Zb

u

tg > tl
(1)

An increased bitrate means a larger file and longer down-
load time. rj−ri

ri
<

Zb−Zb
u

Zb
u

guarantees that the size of
excessive buffered chunks can tolerate bitrate increase; that
is, it is long enough to play for the time period when the
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chunks with increased bitrate is being downloaded. Then,
when video bitrate adjusts up, the user will not suffer from
playback interruption. Contrarily, video player k decreases
bitrate if its buffer has less than Zb

l seconds of chunks, and
the last downward bitrate change is more than tl seconds
ago.

PRk = {rj : rj ≤ r1 ∧
ri − rj
ri

<
Zb
l − Z

b

Zb
l

}, if

{
Zb < Zb

l

tg > tl
(2)

Algorithm 1 shows the pseudocode of the client buffer
based bitrate adaptation method. After video player k de-
cides to switch its video bitrate based on its buffer condition
and calculate the new set of bitrates PRk, it picks a suitable
bitrate from PRk by using the price driven bitrate adapta-
tion method introduced in Section 4.2. The newly selected
bitrate should achieve a tradeoff between reducing cloud
bandwidth consumption and guaranteeing user’s quality-
of-experience.

Algorithm 1 The client buffer based bitrate adaptation method.

1: Input: user k’s buffer level Zb; current bitrate ri; time gap since
last bitrate change tg ;

2: Output: new set of video bitrate PRk ;
3: if tg > tl then //time gap since last bitrate change is larger than
tl

4: if Zb > Zb
u then //buffer level exceeds upper bound

5: PRk = {rj : rj ≥ ri ∧
rj−ri

ri
<

Zb−Zb
u

Zb
u
}

6: end if
7: if Zb < Zb

l then //buffer level below lower bound

8: PRk = {rj : rj ≤ r1 ∧
ri−rj

ri
<

Zb
l −Zb

Zb
l

}
9: end if

10: end if
11: return PRk

4.2 Price Driven Bitrate Adaptation

In hybrid VoD systems, content and bandwidth sharing
among peers is desirable for the satisfaction of peers, in
which peers exchange their downloaded videos with each
other. To ensure a long-term streaming quality, peers con-
tribute their bandwidths in a cooperative manner and form
overlays. One peer joins an overlay only if it can receive
high-bitrate video with smooth continuity, and otherwise
it will keep out of the overlay. When upload bandwidth
from a user’s connected peers is not sufficient to support
smooth playback of a video, the user needs to download
video chunks from the cloud.

To reduce cloud bandwidth consumption, the VoD ser-
vice provider can adjust the VoD service price to encourage
users to download videos from peers and discourage them
from choosing an excessively high bitrate. Thus, we can
formulate the ABR problem as a noncooperative Stackelberg
game [38] between the VoD service provider and users.
In our established Stackelberg game, on one hand, the
VoD service provider needs to set a VoD service price for
users with the objective of minimizing cloud bandwidth
consumption while ensuring users’ participation. The VoD
service price should be reasonably high enough so as to
encourage users to download videos from the peers and to
choose a reasonably high bitrate to save cloud bandwidth
consumption. Also, the price should be acceptable for users
to continue using the VoD service. On the other hand, based

on the VoD service price, users select the bitrate of video
that can achieve a tradeoff between their satisfaction and the
associated VoD service cost. Finally, we solve the Stackelberg
equilibrium of the game, i.e., the game reaches a state that
cloud bandwidth consumption is minimized while users
are satisfied with selected video bitrates. Below, we first
introduce the utility of a user, then introduce the utility of
the VoD service provider, and finally present the solution.

4.2.1 Utility Function of a User
For each user k, we define a utility function to quantify the
level of benefit that user k obtains from watching a video. It
equals to the user’s satisfaction degree minus the payment
cost from watching the video:

F (k)(ri, αi, si, p, ru) = Us(ri, αi, si)− wkUp(ri, ru), (3)

where Us(·) is a function to represent a user’s satisfaction
degree in watching a video of a specific bitrate, and Up(·)
is the payment cost function on cloud bandwidth consump-
tion. In Equation (3), ri is the requested video bitrate from
user k; si is the satisfaction parameter associated with a
specific video bitrate ri, which is a measurement of the
satisfaction level a user obtains when watching a video at
bitrate ri; αi is a scale factor corresponding to ri; p is the
unit price of the VoD service; and ru is the joint bandwidth
contribution from peers. For example, if a user is connected
to three peers and each of them has a download bandwidth
of 100kbps, then ru=300kbps. wk ∈ [0, 1] is the weight of
payment cost set by user k. wi=0 means that a user only
aims to maximize its video quality and does not consider
cloud VoD service price; while wi=1 means that a user
aims to save the bandwidth payment cost by sacrificing
satisfaction.

Function Us(·) is considered to be non-decreasing as
each user desires high-quality videos and a video at a higher
bitrate makes a user more satisfied. At the same time, the
marginal satisfaction of a user is non-increasing because a
user’s level of satisfaction gradually gets saturated when the
video bitrate increases [36]. For example, when the video
bitrate increases from 200kbps to 500kbps, a user may get
greatly satisfied because the video quality goes from blurred
to clear. Since the user’s satisfaction is almost saturated,
(s)he will not get much satisfaction when the video bi-
trate increases from 500kbps to 800kbps. Considering these
properties, we design Us(·) as a concave function. Since
the natural logarithmic functions are representative concave
functions [24] that are commonly used to evaluate user
satisfaction [25], [38], we define:

Us(ri, αi, si) = αi ln(1 + siri). (4)

si is a satisfaction parameter associated with ri, in order to
emphasize the influence of ri in calculating Us, we consider
the product of si and ri. A user’s payment cost for watching
a video equals the product of unit VoD service price (p)
and user’s cloud bandwidth consumption for watching the
video, which is its total bandwidth consumption minus
the download bandwidth consumption from peers (i.e., the
upload bandwidth from connected peers). Then,

Up = p(ri − ru). (5)

The price per unit of cloud bandwidth set by the VoD service
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provider affects the utilities of the users; the utility of a user
decreases with a higher price and vice versa. Combining
Equation (4) and Equation (5) into Equation (3), we get:

F (k)(ri, αi, si, p) = αi ln(1 + siri)− wkp(ri − ru). (6)

4.2.2 Utility Function of the VoD Service Provider

A user aims to download video chunks from its peers
as bandwidth resources from the P2P network is free. It
downloads videos chunks from the cloud only when u-
pload bandwidth from the user’s connected peers is not
sufficient to support smooth playback of a video. When a
user downloads a video from the cloud, it is charged by
the VoD service provider only based on download bitrate
from the cloud. The objective of a VoD service providers is
to maximize its revenue, which is calculated by:

L(p) = p
∑
n

(ri − ru), (7)

where n is the number of users watching videos during
a unit time period. Given the cloud bandwidth demand
from each user, the VoD service provider needs to set a
price per unit of cloud bandwidth (p) so that its revenue
is maximized.

4.2.3 Optimal Bitrate Selection

As discussed above, the video bitrate adaptation problem
can be modeled as a Stackelberg leader-follower game. In
this game, the VoD service provider determines a set of
prices based on predicted cloud bandwidth usage in the
next time period. For each price, each user k that needs to
select the bitrate from its PRk that maximizes its utility.
Note that the users’ utility function is a concave function
that causes users to demand less at higher bitrates in order
to reduce the payment cost. Based on the selected bitrates
reported by users, the VoD service provider determines
the price that maximizes its revenue. Finally, based on the
determined price, each user k selects its bitrate. Below, we
introduce the details of each step.

After each time period Tp, the VoD service provider
estimates its cloud bandwidth usage for the next time period
and then sets a set of prices for VoD service accordingly. The
cloud bandwidth consumption for the next time period is
predictable according to previous study [39]. Assuming that
current time is ti, cloud bandwidth consumption during
time interval [ti, ti+Tp] (denoted by c̃ti ) can be estimated by
using an Exponentially Weighted Moving Average (EWMA)
model [40]. That is:

c̃ti = β × cti−1 + (1− β)× c̃ti−1 , (8)

where c̃ti−1
denotes estimated cloud bandwidth consump-

tion and cti−1
denotes actual cloud bandwidth consumption

in time interval [ti − Tp, ti), and β (0 < β < 1) is a constant
used to control the degree of weighting decrease.

The VoD service provider then determines multiple
prices for estimated bandwidth usage in the next time peri-
od. We use c̄ to denote base cloud bandwidth usage and p̄ to
denote base unit price for the base cloud bandwidth, i.e., the
smallest unit price, set by the VoD service provider. Assume
the VoD service provider sets m levels of VoD service prices

for each level of cloud bandwidth usage. We define the m
VoD service prices for estimated cloud bandwidth usage as:

pj = log(j) · p̄ · bc̃i/c̄c, j ∈ [1,m]. (9)

We use V =< p1, p2, ..., pm > to denote m levels of
unit prices for cloud bandwidth usage in the next time
period. The VoD service provider notifies users of V =<
p1, p2, ..., pm >. The unit VoD service price grows with the
total cloud bandwidth consumption of the VoD system. That
is, when expected cloud bandwidth consumption is high,
the VoD service provider sets a relatively higher unit price
for users. In this case, users can either select a video bitrate
that leads to less cloud bandwidth consumption or pay more
money for the cloud bandwidth they used.

As we explained in Section 4.1, a video player k needs
to choose a bitrate in PRk when it wants to increase or
decrease its bitrate based on its buffer condition. For each
pj ∈ P , the video player who acts as a follower chooses a
new bitrate ri that maximizes its utility F (k), denoted by
rij . That is, the selected ri satisfies:

rij = argmax
ri∈RPk

F (k)(ri, αi, si, pj) (10)

Finally, video player k creates a preferred bitrate vector
Rk =< ri1, ri2, ..., rim > and sends Rk to the VoD service
provider.

The VoD service provider acts as the leader and aims
to set a price (denoted by pl) that maximizes its utility L(p)
when it receives the preferred bitrate vectors from all clients.
That is,

pl = argmax
pj∈P

L(pj) = argmax
pj∈P

pj
∑
n

rij . (11)

The VoD service provider then notifies all clients of the
newly set VoD service price pl. Then, each client k picks its
preferred bitrate corresponding to pl in its Rk, i.e., ril. The
process of selecting an optimal bitrate for a user is detailed
in Algorithm 2.

Algorithm 2 Pseudocode for optimal bitrate selection.

1: Input: each user’s new set of bitrates PRk ;
2: Output: new video bitrate ri for each user;
3: VoD service provider sends VoD service unit prices V =<
p1, p2, ..., pM > to users

4: for each user do
5: select Rk =< ri1, ri2, ..., rim > according to Equation (10)
6: send Rk to the VoD service provider
7: end for
8: VoD service provider determines the optimal unit price pl according

to Equation (11)
9: for each user do

10: selects the optimal bitrate in response to pl
11: end for

4.3 Reputation-based Incentive Scheme

In a typical P2P system, each peer is allowed to connect to a
limited number of neighbors, e.g., the number of neighbors
is limited to 80 in BitTorrent. Each user caches video chunks
of multiple video bitrates it has downloaded in its local
machine. Peers watching the same video or storing the same
video in their local machines are organized into an overlay
to share video chunks with each other. Similarly, in this
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hybrid VoD system, a node maintains active connections
to a maximum of Np peers, and shares and receives video
chunks to and from its connected peers (i.e., neighbors).
Each user contacts the cloud when it first joins the system,
the cloud then assigns it a number of peers in the overlays
of the videos that it has stored, so each user can share video
chunks with its neighbors in multiple overlays.

In this hybrid VoD system, it is important to incentivize
users to be honest and selfless. That is, the users report the
optimal bitrates truthfully and contribute bandwidth to the
P2P network. Users are motivated to report optimal bitrates
honestly due to two facts. When a user reports his/her op-
timal bitrate, if he/she reports a higher bitrate than his/her
actual optimal bitrate, he/she needs to pay a higher price for
the reported bitrate; if he/she reports a lower bitrate than
his/her actual optimal bitrate, he/she will receive a poorer
video quality than he/she desires. However, free-riding
is a common phenomenon in the P2P systems that some
selfish nodes download much more video chunks than the
video chunks they uploaded. Selfish peers may deliberately
limit their upload bandwidths or reject download requests
from other peers, which leads to increased cloud bandwidth
consumption. Therefore, a scheme is needed to encourage
peer contribution to reduce the load of the cloud.

The reputation-based incentive scheme requires no mon-
etary costs from the VoD service provider. There are a
variety of ways to incentivize peers to contribute upload
bandwidth. For example, the VoD service providers can give
discounts on the payment cost of watching a video for peers
based on the amount of video chunks uploaded by them to
other peers, i.e., reducing the value of Up in Equation (5). To
this end, we propose a reputation-based incentive scheme.
In this scheme, nodes evaluate the bandwidth contribution
of their neighbors by assigning each neighbor a reputation
score, which represents the capacity and willingness of a
neighbor in providing requested video chunks. When a
node receives a number of concurrent chunk requests, it
serves the requests based on the highest-reputation-first
manner. In this way, in order to get served by peers in the
P2P network and reduce the payment cost of cloud band-
width consumption, each user is motivated to contribute
upload bandwidth and earn reputation scores.

4.3.1 Calculation of Reputation Scores

A node ni maintains a reputation score towards every
other node in the system, which is stored in a vector
Q(i)={qi1, qi2, ..., qin−1}. qik means the reputation score of
nk given by node ni from its point of view. qik is calculated
by the cloud, which jointly considers two factors: the size
of video chunks ni downloads from nk and the total size of
video chunks nk contributes to the P2P network.

qik = γSd
ik + (1− γ)

∑n

j=1
Sjk. (12)

In Equation (12), Sd
ik denotes the size of video chunks

ni downloads from nk within a certain time period (e.g., a
month);

∑n
j=1 Sjk represents the accumulated size of video

chunks nk sends to other peers. γ ∈ [0, 1] is a factor to
control how much weight ni places on its own judgement,
i.e., γ = 1 means ni evaluates nk’s reputation only based on
its own experience and γ = 0 means ni evaluates nk’s rep-

utation based nk’s overall contribution. Each node records
the cumulated size of video chunks it downloads from every
other node and reports this information to the cloud. The
cloud collects download information from all nodes and
calculates reputation scores for each node, and then sends
the reputation scores of all other nodes to each node in the
system. As each node maintains a reputation score towards
another node that is calculated according to its interaction
experience, this method is effective in preventing collusion
in which a collective of nodes falsely report high bandwidth
contribution for each other.

4.3.2 Reputation Oriented Chunk Request Management
In this hybrid VoD system, when a user is watching a
video, it requests video chunks according to their time
sequence, i.e., a user always uses the earliest-first chunk
selection strategy and downloads the chunks in order. The
user first broadcasts a chunk request to all of its neighbors.
If it cannot receive a chunk needed from its neighbors, it
will download the missing chunk from the cloud. Each
peer has finite upload bandwidth and can serve a limited
number of peers concurrently. We use service capacity Cs to
denote the maximum number of users a peer can support
simultaneously. Each peer sets the maximum number of
peers it supports when it joins the VoD system.

In order to incentivize peers to contribute upload band-
width and earn reputation scores, we use a reputation ori-
ented chunk request management scheme. When a number
of concurrent chunk requests are received by a peer, it serves
the requests based on the highest-reputation-first manner.
That is, the video chunks requester with high reputation
score will get response earlier. If the number of video
requests exceeds a peer’s service capacity Cs, the peer will
serve requests with top Cs reputation scores and discard
other chunk requests.

4.4 Popularity-Based Cache Management

4.4.1 Replacing Videos with Low Popularity and Contribu-
tion
In this hybrid VoD system, after a user finishes watching
a video, the video is stored in the user’s cache to serve
video requests from other users. Since videos have differ-
ent popularities, the probability that a video is requested
by a peer can be predicted based on its popularity. The
cloud records the number of views for each video during
a certain time period (e.g., one week), it then calculates the
probability that each video in this hybrid VoD system will
be requested based on its popularity. Specifically, the cloud
first ranks the videos based on the number of views during
a time period; the video with rank 1 has a higher viewing
frequency than the video with rank 2. It then calculates the
probability that video vi with rank k is requested by the
users in the VoD system (denoted by θri ), which equals the
ratio of the number of views of vi over the total number of
views for all videos in this hybrid VoD system [41]. That is,

θri =
1

k
/
∑n

d=1

1

d
= 1/(k ·

∑n

d=1

1

d
), (13)

where k is the rank of vi and n is the number of videos in
the VoD system. The videos are ranked from 1 through n.

7



After the cloud calculates θri for each video, this information
is sent to all users storing the video in their caches.

Assume user nj has stored a list of videos in its local
machine, V =(v1, v2, ...vm). When the user’s cache is full,
it swaps an existing video out from V with the newly
downloaded video. To increase the availability of videos
in the P2P network, these are two cases that we need to
consider when selecting an outdated video to swap out of
the cache. First, for videos with high popularities, they are
likely to receive a large number of video requests, so we
need to increase the availability of these videos in the P2P
network. That is, we need to let a large number of users
cache popular videos in their memories. Therefore, videos
with high popularities should have high probabilities to stay
in the cache. Second, if a user has shared a large number of
video chunks of a specific video (i.e., high contribution) with
other users, this video is likely to be requested by other users
in the future. Therefore, the videos with high contribution
should have high probabilities to stay in the cache so as to
provide video chunks to others. In some P2P file sharing
applications such as BitTorrent, each client records the total
size of chunks of each video that the client has uploaded
to the P2P network, which is an indicator of how much
bandwidth is demanded from peer contribution for each
video. We use Su

ji to denote the total size of chunks of video
vi uploaded by user nj to the P2P network during a specific
period of time.

Considering these two factors in increasing a video’s
availability in the P2P network, we define the probability
to select video vi to swap out from user nj ’s cache (denote
by θsji) in Equation (14) as:

θsji = 1− θri × Su
ji/S

m
j , (14)

where Sm
j is the maximum value of Su

ji of all videos stored
in user nj ’s cache. From Equation (14), we can infer that if
vi has a higher probability to be watched and larger size of
video chunks of vi has been uploaded to the P2P network,
it has a small probability to be replaced in the cache. For
an unpopular video that a user , it has a high probability to
be swapped out of the cache. After we have determined the
probabilities to be selected for all videos stored in the user
cache, we select a video to swap out of nj ’s cache based on
these probabilities. The selected video will be replaced by
the newly downloaded video.

Algorithm 3 describes the process of selecting a video
to swap out of a user’s cache. The algorithm first sorts all
videos stored in a user’s cache based on the videos’ popu-
larity (Line 3). For each video stored in the user cache, the
algorithm then calculates the probability that it is requested
by other users in the VoD system (Line 5). The algorithm
then calculates the probability to select a video to swap out
from the user cache based on its rank among all videos in
the cache (Lines 6). The algorithm finally selects an outdated
video based on the calculated probability (Lines 9-15). The
computation complexity of Algorithm 3 isO(m), wherem is
the number of videos in a user cache. This popularity-based
cache management strategy increases video availability in
the P2P network by considering video popularity when
replacing outdated videos from a user’s cache.

Algorithm 3 Pseudocode of selecting an existing video from
a user cache.

1: Input: a list of videos V =(v1, v2, ...vm); sum=0; acc=0;
2: Output: a video to be replaced by the newly download one;
3: sort the videos in V in descending order of popularities.
4: for each video vi in V do
5: calculate θri according to Equation (10)
6: calculate θsji according to Equation (14)
7: add θsji to sum //calculate the sum of probabilities
8: end for
9: generate a random number ran within range [0,sum]

10: for each video vi in V do
11: add θsji to acc //calculate accumulated probability
12: if acc>ran //accumulated probability is higher than

the random number
13: return vi //select the current video
14: end if
15: end for

4.4.2 Compensating Users For Storing Videos with Repu-
tation Scores
As users earn reputation scores by contributing upload
bandwidth to peers, if a user stores an unpopular video in
its caches, it has a low probability to earn reputation by
sharing this unpopular video with other peers. Therefore,
we need to compensate a user for storing an unpopular
video by rewarding it with a certain reputation. Recall that
the cloud records the number of views for each video. The
cloud calculates the compensation reputation qci for storing
video vi by:

qci = ρ× (1− θri ), (15)

where θri is the probability that video vi is requested by
other users, and ρ denotes the factor of rewards given to
the user for storing a video. We can see from Equation
(15) that higher compensation reputation is endowed for
storing a video that is unlikely to be requested by users,
which guarantees that a user can get certain rewards if it
cannot earn rewards by contributing upload bandwidth of
an unpopular video to peers. Each time when user nj enters
the VoD system, the cloud calculates its total compensation
reputation qc(j). qc(j) is calculated by summing up all
compensation reputation of videos stored in nj ’s cache.
Suppose V =(v1, v2, ...vm) is a list of videos stored in nj ’s
cache, qc(j) is calculated by:

qc(j) =
∑m

i=1
qci . (16)

The cloud then adds qc(j) to qkj calculated in Equation
(12) to update the reputation score of nj . It then sends nj ’s
updated reputation score to all other users.

5 PERFORMANCE EVALUATION

We conducted experiments in the PeerSim [42] simulator
and the PlanetLab [43] real-world testbed to evaluate the
performance of AutoTune in comparison with other system-
s. The PeerSim simulation can test a large-scale network
while PlanetLab can provide a real-world testing environ-
ment (e.g., real packet transmission delay). We measured
the performance in cloud bandwidth consumption, users’
average bitrate, user satisfaction and playback continuity.
We compared AutoTune with the server-side adaptation
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(a) Results in PeerSim.
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(b) Results in PlanetLab.

Fig. 4: Cloud bandwidth consumption at different time
intervals.
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(a) Results in PeerSim.
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(b) Results in PlanetLab.

Fig. 5: Average video bitrate at different time intervals.

method [14] (denoted by Server-side) and client-side adapta-
tion [21] (denoted by Client-side) in the hybrid VoD system.
These two methods do not consider the pricing policies.
In both PeerSim simulation and PlanetLab experiment, we
have implemented the client buffer based bitrate adaptation
method to determine if a user needs to tune its video bitrate.
We then implemented the price driven bitrate adaptation
strategy to determine which bitrate a user would choose that
maximizes its utility. In this strategy, each user calculates the
optimal bitrates corresponding to different cloud bandwidth
unit prices. The VoD service provider, acts as the leader,
determines the optimal unit price that maximizes its utility.
Each user then selects its desired bitrate according to the
price set by the VoD service provider.

TABLE 2: Experiment default parameters.
Parameter Default value (simulation/PlanetLab)
Number of nodes 10,000/350
Number of videos 1,000
Video length (10, 120] minutes
Video bitrates [100, 3600] Kbps
Number of cloud servers 10/1

5.1 Experimental Settings

Table 2 shows key settings in our experiments. We used
1,000 videos which are ranked by their number of views in
descending order. As views of videos tend to follow Zipf’s
distribution with the characteristic exponent s = 1 [44], a
user watches video with rank i with probability 1/i∑N

n=1 1/n
,

where N is the number of videos. The length of each video
was randomly selected from (10, 120] minutes. As Netflix
serves videos in bitrates between 100Kbps and 3600Kbps
[2], in this experiment, we defined 11 bitrates for each video
from 100Kbps to 3600Kbps with 350Kbps increment in each
step. We set the default size of a video chunk to 1KB [45].
Each user is randomly assigned a weight of payment cost
in [0,1], scale factor αi is randomly selected in [0,1]. Other
parameter settings included: tg=30 second, Zb

u=10, Zb
l =3

and m=10. We used binary files to represent video files and
let nodes receive and delete the binary files to simulate the
process of watching a video.

We used the statistics in [46], [47] for the distribution
of download bandwidth in the simulation. We varied the
upload bandwidth capacities of all nodes in the system.
In real applications such as BitTorrent, uses can specify
the maximum upload bandwidth based on how much they
would like to contribute to the P2P network. Specifically,
20% of nodes have an upload capacity of 256kbps, 25%
of nodes have 384kbps, 35% of nodes have 512kbps, and

20% have 1024kbps on both PeerSim and PlanetLab [48]. In
order to simulate dynamics of users, users join the system
following the Poisson distribution with an average rate of
5 users per second [35]. Each user leaves the system after
it finishes watching a video and joins the system after 10
minutes. As in [49]–[52], the capacities of nodes follow the
Pareto distribution with a mean of 5 and a shape parameter
of 1. In the PeerSim simulation, we deployed 10,000 nodes
as VoD users, and deployed 10 nodes as cloud servers. In
the PlanetLab experiments, we used 350 distributed nodes
nationwide to simulate video service users. We used one
cloud server, which is functioned by the node with IP
128.112.139.43 in Princeton University. In this experiment,
each user watched 2 videos, and the intermediate time
between watching 2 consecutive videos is 10 minute. We
let each user cached up to 10 videos regardless of the size of
videos.

5.2 Overall Performance of AutoTune
Figure 4(a) and Figure 4(b) show the cloud bandwidth
consumption of the whole system over time in PeerSim and
PlanetLab, respectively. The cloud bandwidth consumption
was calculated by the total amount of bytes transferred
from the cloud to users by the time indicated in the X-
axis. We see that AutoTune consumes the least volume of
cloud bandwidth due to the reason that the VoD service
provider encourages users to download video chunks from
peers by setting a price on cloud bandwidth consumption,
and users minimize their cloud bandwidth consumption in
order to increase the utility. Server-side and Client-side do not
have control over cloud bandwidth consumption and they
achieve comparable performance. Comparing Figure 4(a)
and Figure 4(b), we see that the cloud bandwidth consump-
tion in PeerSim is generally higher than that in PlanetLab
because the cloud needs to support a larger number of users.

We then present experimental results on average video
bitrate among all users. Figure 5(a) and Figure 5(b) show the
average video bitrate at different time intervals in PeerSim
and PlanetLab, respectively. Figure 6(a) and Figure 6(b)
show the average video bitrate at different cloud bandwidth
capacities in PeerSim and PlanetLab, respectively. In Figure
6(a), we manually limited cloud bandwidth capacity in
[12.5, 62.5] Gbps; while in Figure 6(b) we manually limited
cloud bandwidth capacity in [6.25, 31.25] Gbps. We then
tested the performance of each method under different
cloud bandwidth capacity restrictions. This experiment aims
to test the performance of different methods under limited
cloud bandwidth capacity though the VoD service provider
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(a) Results in PeerSim.
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(b) Results in PlanetLab.

Fig. 6: Average video bitrate at different cloud bandwidth
capacities.
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(a) Results in PeerSim.
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(b) Results in PlanetLab.

Fig. 7: Average playback continuity at different time inter-
vals.
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(a) Results in PeerSim.
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(b) Results in PlanetLab.

Fig. 8: Average playback continuity at different cloud band-
width capacities.
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(a) Results in PeerSim.
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(b) Results in PlanetLab.

Fig. 9: Average user satisfaction at different time intervals.

can consume as much cloud bandwidth as its users desire.
We see that Server-side generates the least average video
bitrate among all three comparison methods. This is because
when cloud bandwidth capacity is not sufficient to support
download bandwidth of all users when receiving a number
of bitrate change requests, the cloud tries to maximize the
number of users who can switch to their required bitrate.
Thus, it cannot increase the average bitrate as some users are
not able to increase their video bitrates. Client-side produces
higher average video bitrate than Server-side as it lets users
actively switch bitrate based on their buffer condition, so
that users are more likely to receive high bitrate videos.
AutoTune generates the highest average video bitrate as it
encourages users to download video chunks from peers
by adjusting the VoD service price on cloud bandwidth
consumption. Therefore, given the same volume of cloud
bandwidth capacity, users in AutoTune are more likely to get
high video bitrate as they can receive high peer bandwidth
contribution. The results also demonstrate the effectiveness
of AutoTune in reducing cloud bandwidth consumption, as it
can achieve the same level of average video bitrate using the
least cloud bandwidth capacity. The average video bitrate in
PlanetLab is lower than that in PeerSim. This is due to the
reason that there are fewer users in PlanetLab, so the video
availability in the P2P network is lower and users will select
lower bitrates to maximize their utilities.

Video playback continuity is a crucial metric for user
quality-of-experience. When there are not enough video
chunks stored in a video player’s buffer, it suffers from
playback interruption until new chunks are downloaded.
We divided the playing time length of each video into a
sequence of time slots by using a 5-minute window, and
recorded whether there is a playback interruption during
each time slot. We then measured playback continuity by
dividing the number of time slots without playback inter-
ruptions by the total number of slots. Figure 7(a) and Figure
7(b) show average playback continuity among all users at

different time intervals in PeerSim and PlanetLab, respec-
tively. Figure 8(a) and Figure 8(b) show average playback
continuity among all users at different cloud bandwidth
capacities in PeerSim and PlanetLab, respectively. We see
that Server-side generates higher playback continuity than
Client-side because it rejects some bitrate increase requests
when cloud bandwidth capacity is not sufficient to sup-
port download bandwidth. AutoTune generates the highest
playback continuity due to the reason that it achieves a
tradeoff between minimizing cloud bandwidth consump-
tion and guaranteeing users’ satisfaction. Thus, users are
able to find sufficient peer contribution when switching to
a new bitrate. Note that the average playback continuity
cannot reach 1 as the playback is interrupted when a user
cannot download video chunks in time due to the reason
that cloud bandwidth capacity is not sufficient to support
all chunk requests. The average video playback continuity
in PlanetLab is lower than that in PeerSim. This is due to
the reason that the video availability in the P2P network
is lower in PlanetLab and users will suffer from playback
interruptions when the bandwidth capacity from the cloud
and peers is not sufficient to support download bandwidth.

We measure the a user’s satisfaction when watching a
video with bitrate ri by ln(1 + ri)/ln(1 + 3600) (shown
in Equation (4)), 3600 is the maximum bitrate set in the
experiment. Figure 9(a) and Figure 9(b) show average user
satisfaction among all users at different time intervals in
PeerSim and PlanetLab, respectively. Figure 10(a) and Fig-
ure 10(b) show average user satisfaction among all users at
different cloud bandwidth capacities in PeerSim and Planet-
Lab, respectively. We see that AutoTune generates the highest
user satisfaction as it aims to maximize users’ satisfaction
and at the same time minimize cloud bandwidth consump-
tion. Each user selects a new video bitrate that guarantees
its satisfaction and has high peer bandwidth contribution.
Server-side and Client-side produce smaller user satisfaction
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(a) Results in PeerSim.
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Fig. 10: Average user satisfaction at different cloud band-
width capacities.
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Fig. 11: Average playback continuity for different types of
nodes.
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(b) Results in PlanetLab.

Fig. 12: Cloud bandwidth consumption.
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(b) Results in PlanetLab.

Fig. 13: Average video bitrate.

as they cannot maximize peer bandwidth contribution and
failed to maximize video bitrate in return.

5.3 Performance of Reputation-Based Incentive
Scheme

This experiment was divided into 10 sessions, and we used
a warmup period of 9 sessions to accumulate reputation
scores for all nodes. The cloud records the amount of upload
bandwidth contribution of each node after each session, and
then calculates the reputation score of each node and sends
the reputation scores to all nodes at the beginning of the next
session. In this experiment, we have implemented AutoTune
with the proposed reputation-based incentive scheme. We
define a selfish node as a node who throttles its upload
bandwidth to 50% of its upload capacity. In the following
figures, We use S-x% to mean that x% nodes in the P2P
network are selfish, while other nodes are normal ones who
do not throttle their upload bandwidth.

In our reputation-based incentive scheme, video chunks
requesters with higher reputation scores will have higher
priorities in receiving chunks from peers, which increases
their video playback continuity. In this experiment, we set
the percentage of selfish nodes in the system to 30%. Figure
11(a) and Figure 11(b) show the average playback continuity
for two groups of nodes: normal nodes and selfish nodes in
PeerSim and PlanetLab, respectively. We see that the normal
nodes have higher playback continuity than selfish nodes
due to the reason that normal nodes earn high reputation
scores by contributing their upload bandwidths. Conse-
quently, selfish nodes have lower priorities in receiving
chunks from peers than normal nodes, and may suffer from
playback interruption when chunks providers are serving
multiple nodes. In order to increase the video playback
continuity, nodes are motivated to contribute their upload
bandwidth to earn reputation scores.

Figure 12(a) and Figure 12(b) show the cloud bandwidth
consumption with different percentage of selfish nodes

in PeerSim and PlanetLab, respectively. We see that the
cloud bandwidth consumption increases drastically from 40
minute to 120 minute, and the rate of increase slows down
after 120 minute. This is due to the reason that when time
evolves, more users finish watching videos and more videos
are stored in their caches. So users can download video
chunks from each other and cloud bandwidth consumption
is reduced. We also see that the cloud bandwidth consump-
tion increases when the percentage of selfish nodes increases
from 0% to 50 %; S-0% consumes the least volume of cloud
bandwidth while S-50% consumes the largest volume of
cloud bandwidth. This is due to the reason that when there
are more selfish nodes in the VoD system, the bandwidth
contribution from the P2P network gets smaller and users
need to download more video chunks from the cloud.

Figure 13(a) and Figure 13(b) plot the average video
bitrate with different percentage of selfish nodes in PeerSim
and PlanetLab, respectively. We see that when the percent-
age of selfish nodes increases from 0% to 50%, the average
video bitrate decreases, which means that the quality of
video is low. When the bandwidth contribution from the
P2P network is smaller, users must resort to the cloud for
their requested videos. However, uses have higher payment
cost on cloud bandwidth consumption. In order to reduce
the payment cost and maximize utility based on Equation
(5), a user needs to select lower bitrates that lead to smaller
cloud bandwidth consumption. The experimental results
imply that nodes are incentivized to be cooperative in order
to reduce their payment and increase their video quality.

Figure 14(a) and Figure 14(b) show the average play-
back continuity with different percentage of selfish nodes
in PeerSim and PlanetLab, respectively. We see that the
average playback continuity decreases when the percentage
of selfish nodes increases from 0% to 50 %. This is due to
the reason that when bandwidth contribution from the P2P
network is reduced, more users resort to the cloud for video
chunks. Because users need to download video chunks from
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(a) Results in PeerSim.
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(b) Results in PlanetLab.

Fig. 14: Average playback continuity.
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(b) Results in PlanetLab.

Fig. 15: Average user satisfaction.

700

800

900

1000

1100

1200

1300

40 80 120 160 200
Timeline (min.)

Least-Pop LRU
Hybrid-Pop FIFO

Cl
ou

d 
ba
nd

w
id
th
 

co
ns
um

pt
io
n 
(G
B)
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(b) Results in PlanetLab.

Fig. 16: Cloud bandwidth consumption.
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(b) Results in PlanetLab.

Fig. 17: Average video bitrate.

the cloud that is physically far from them, which leads to
longer latency. As a result, the playback is more likely to be
interrupted when users are watching videos.

Figure 15(a) and Figure 15(b) show the average user
satisfaction with different percentage of selfish nodes in
PeerSim and PlanetLab, respectively. We see that S-0% gen-
erates the highest user satisfaction while S-50% generates
the lowest user satisfaction. This is due to the reason that a
higher percentage of selfish nodes in the system lead to low-
er average video bitrate as shown in Figure 13(a) and Figure
13(b). As we can see from Equation (4), a user’s satisfaction
in watching a video has a positive correlation with the video
bitrate, therefore, the average user satisfaction drops when
the average video bitrate is reduced.

In our proposed reputation based incentive scheme,
users with higher reputation scores are served by other
peers with higher priorities, so users are encouraged to con-
tribute upload bandwidth to earn reputation scores. Thus,
the system with a small percentage of selfish nodes (e.g., S-
0% and S-10%) represents the system with our proposed
reputation based incentive scheme, while system with a
large percentage of selfish nodes (e.g., S-30% and S-50%)
represents the system without our proposed reputation
based incentive scheme. The experimental results show that
the proposed reputation-based incentive scheme is effective
in reducing cloud bandwidth consumption and increasing
users’ average video bitrate, user satisfaction and playback
continuity.

5.4 Performance of Popularity-Based Cache Manage-
ment Strategy
In this experiment, we have implemented AutoTune with
the popularity-based cache management strategy. As it con-
siders both video popularity and how much bandwidth is
demanded from peer contribution when selecting an old
video to swap out, we denoted the proposed strategy by
Hybrid-Pop. We have also implemented two comparison
methods. When a peer’s cache is full, FIFO (First-in-First-
out) selects the video that is first downloaded and replaces

it with the new video; LRU selects the video that is least-
recently visited and replaced it with the new video; Least-
Pop selects the least popular video and replaced it with
the new video. When AutoTune is not enhanced with any
cache management strategy, we assume that it uses the
FIFO method to replace videos in user caches. Thus, we
can observe the effectiveness of the popularity-based cache
management strategy by comparing Hybrid-Pop and FIFO.

Figure 16(a) and Figure 16(b) show the cloud bandwidth
consumption at different time intervals in PeerSim and Plan-
etLab, respectively. We see that the relative performance of
different methods follows: FIFO>LRU>Least-Pop>Hybrid-
Pop. In FIFO, the first downloaded videos are replaced by
the new videos without considering the video popularities.
It cannot increase the availability of popular videos in the
P2P network since it does not consider the video popularity
when swapping out a video from the user cache. As a result,
more users request video chunks from the cloud and it leads
to the highest cloud bandwidth consumption. LRU replaces
the least recently visited video. As we mention earlier, views
of videos tend to follow Zipf’s distribution. So users tend to
watch popular videos, and the least recently visited video in
a user’s cache is likely to be a less popular video. Thus, LRU
is able to outperform FIFO with smaller cloud bandwidth
consumption. Least-Pop generates less cloud bandwidth con-
sumption than LRU as it replaces the least popular video in
the cache, which increases the availability of popular videos
in the P2P network. Hybrid-Pop generates the least cloud
bandwidth consumption. This is due to the reason that
besides video popularity, it also considers the bandwidth
demand from the P2P network of each video when replacing
an old video from user cache. In Hybrid-Pop, popular videos
or videos whose chunks are frequently downloaded by
other users have a small probability to be swapped out of
the cache, so users are more likely to download chunks they
need from the P2P network.

Figure 17(a) and Figure 17(b) plot the average video
bitrate at different time intervals in PeerSim and Planet-
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(a) Results in PeerSim.
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(b) Results in PlanetLab.

Fig. 18: Average playback continuity.
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(b) Results in PlanetLab.

Fig. 19: Average user satisfaction.

Lab, respectively. We see that the results follow FIFO<
LRU<Least-Pop<Hybrid-Pop. This is because when the cloud
bandwidth is increased, in order to maximize his/her utility,
users have to select lower video bitrate to reduce payment
cost on cloud bandwidth consumption.

Figure 18(a) and Figure 18(b) plot the average playback
continuity at different time intervals in PeerSim and Planet-
Lab, respectively. We see that the relative performance of
different methods follows: FIFO<LRU<Least-Pop<Hybrid-
Pop. This is due to the same reason as explained in Figure
16(a) and Figure 16(b). FIFO and LRU replace an old video in
the cache without considering the video popularities, which
may reduce the availability of popular videos in the P2P
network and increase the number of chunk requests to the
cloud. Some users may suffer from playback interruption as
they need to download video chunks from the cloud that is
physically far from the user. On the other hand, Least-Pop in-
creases the availability of popular videos in the P2P network
so that users are more likely to download video chunks
they need from nearby peers in time. Hybrid-Pop is effective
in increasing the availability of videos in the P2P network,
which enable users to download video chunks from nearby
peers instead of the long-distance cloud. Therefore, users
can download video chunks with short latency.

Figure 19(a) and Figure 19(b) plot the average us-
er satisfaction at different time intervals in PeerSim and
PlanetLab, respectively. We see that the results follow FI-
FO<LRU<Least-Pop<Hybrid-Pop. As shown in Figure 17(a)
and Figure 17(b), the average video bitrate of different
methods follows FIFO<LRU<Least-Pop<Hybrid-Pop. At the
same time, the user satisfaction has a positive correlation
with the video bitrate. Thus, the relative performance of
different methods in the average user satisfaction mirrors
that in Figure 17(a) and Figure 17(b).

Comparing Hybrid-Pop and FIFO, we can see the perfor-
mance difference when AutoTune is implemented with and
without the popularity-based cache management strategy.
We see that Hybrid-Pop is effective in reducing cloud band-
width consumption and increasing users’ average video
bitrate, user satisfaction and playback continuity.

6 CONCLUSIONS

In this paper, we study a problem of how to achieve a
tradeoff between minimizing cloud bandwidth consump-
tion and guaranteeing users’ satisfaction (i.e., quality-of-
experience) in hybrid VoD systems. To solve this problem,
we modeled it as a Stackelberg game and proposed a game-
based adaptive bitrate streaming method called AutoTune.
In AutoTune, the VoD service provider sets the VoD service

price so that each client is encouraged to select the bitrate
that it is satisfied with rather than selecting excessively
high bitrates. The client can then find more peers to supply
sufficient bandwidth to upload its requested video instead
of relying on the cloud. As a result, the specified VoD service
price by the VoD service provide and selected bitrates of
the clients minimize cloud bandwidth consumption and
guarantee users’ satisfaction. To enhance the performance of
AutoTune, we further proposed the reputation-based incen-
tive scheme and the popularity-based cache management
scheme to further increase the bandwidth contribution from
peers and reduce the cloud bandwidth consumption.

We conducted extensive experiments in the PeerSim
simulation and the PlanetLab real-world testbed. The exper-
imental results show that AutoTune outperforms previous
adaptive bitrate streaming methods in terms of cloud band-
width consumption, users’ average bitrate, user satisfaction
and playback continuity. The experimental results also show
the effectiveness of the proposed enhancement schemes
in improving the performance of AutoTune. In our future
work, we will further study how to determine parameters
such as weight wk to meet different user requirements and
how to encourage peers to contribute bandwidth through
incentives of better cloud service.
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