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Abstract—Many Cloud Service Providers (CSPs) provide data storage services with datacenters distributed worldwide. These
datacenters provide different Get/Put latencies and unit prices for resource utilization and reservation. Thus, when selecting different
CSPs’ datacenters, cloud customers of globally distributed applications (e.g., online social networks) face two challenges: i) how to
allocate data to worldwide datacenters to satisfy application SLO (service level objective) requirements including both data retrieval
latency and availability, and ii) how to allocate data and reserve resources in datacenters belonging to different CSPs to minimize the
payment cost. To handle these challenges, we first model the cost minimization problem under SLO constraints using the integer
programming. Due to its NP-hardness, we then introduce our heuristic solution, including a dominant-cost based data allocation
algorithm and an optimal resource reservation algorithm. We further propose three enhancement methods to reduce the payment cost
and service latency: i) coefficient based data reallocation, ii) multicast based data transferring, and iii) request redirection based
congestion control. We finally introduce an infrastructure to enable the conduction of the algorithms. Our trace-driven experiments on a
supercomputing cluster and on real clouds (i.e., Amazon S3, Windows Azure Storage and Google Cloud Storage) show the
effectiveness of our algorithms for SLO guaranteed services and customer cost minimization.
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1 INTRODUCTION

Cloud storage, such as Amazon S3 [1], Microsoft Azure [2]
and Google Cloud Storage [3], has become a popular com-
mercial service. A cloud service provider (CSP) provides da-
ta storage service (including Get and Put functions) using its
worldwide geographically distributed datacenters. Nowa-
days, more and more enterprisers shift their data workloads
to the cloud storage in order to save capital expenditures to
build and maintain the hardware infrastructures and avoid
the complexity of managing the datacenters [4].

Cloud storage service is used by many web applications,
such as online social networks and web portals, to provide
services to clients all over the world. In the web applications,
data access delay and availability are critical, which affect
cloud customers’ incomes. Experiments at the Amazon por-
tal [5] demonstrated that a small increase of 100ms in web-
page load time significantly reduces user satisfaction, and
degrades sales by one percent. For a request of data retrieval
in the web presentation process, the typical latency budget
inside a storage system is only 50-100ms [6]. In order to re-
duce data access latency, the data requested by clients needs
to be handled by datacenters near the clients, which requires
worldwide distribution of data replicas. Also, data replica-
tion between datacenters enhances data availability since it
avoids a high risk of service failures due to datacenter fail-
ure, which may be caused by disasters or power shortages.

However, a single CSP may not have datacenters in
all locations needed by a worldwide web application. Be-
sides, using a single CSP may introduce a data storage
vendor lock-in problem [7], in which a customer may not
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Fig. 1: An example of cloud storage across multiple providers.

be free to switch to the optimal vendor due to prohibitively
high switching costs. Storage providers charge clients for
bandwidth (Transfer), data requests (Get/Put), and Storage.
Thus, a client moving from one CSP to another pays for
Transfer cost twice, in addition to the Storage cost. The
clients are vulnerable to price hikes by vendors, and will
not be able to freely move to new and better options.
The quickly evolving cloud storage marketplace may leave
a customer trapped with an obsolete provider later. The
vendor lock-in problem can be addressed by allocating data
to datacenters belonging to different CSPs. Building such a
geo-distributed cloud storage is faced with a challenge: how
to allocate data to worldwide datacenters to satisfy application
SLO (service level objective) requirements including both data
retrieval latency and availability? The data allocation in this
paper means the allocation of both data storage and Get
requests to datacenters.

The payment cost of a cloud storage service consists of
the costs for Storage, data Gets/Puts and Transfers [8]. Dif-
ferent datacenters of a CSP or different CSPs offer different
prices for Storage, data Gets/Puts and Transfers. For exam-
ple, in Figure 1, Amazon S3 provides cheaper data storage
price ($0.01/GB and $0.005/1,000 requests), and Windows
Azure in the US East region provides cheaper data Get/Put
price ($0.024/GB and $0.005/100,000 requests). An applica-
tion running on Amazon EC2 in the US East region might
have data dj with a large storage size and few Gets and data



di which is read-intensive. Then, to reduce the total payment
cost, the application should store data dj in Amazon S3, and
store data di into Windows Azure in the US East region.
Thus, for a large-scale application with a large number of
users, it is critical to have an optimal data allocation among
datacenters to achieve the maximum cost saving. Besides the
different prices, the pricing model is even more complicated
due to two charging formats: pay-as-you-go and reserva-
tion. In the reservation manner, a customer specifies and
prepays the number of Puts/Gets per reservation period T
(e.g., one year) and is offered with cheaper unit price for
the reserved usage than the unit price of the pay-as-you-go
manner [8]. Then, the second challenge is introduced: how to
allocate data to datacenters belonging to different CSPs and make
resource reservation to minimize the service payment cost?

Since website visit frequency varies over time [9], un-
expected events may introduce a burst of requests in a
short time. It may affect the accuracy of predicting the
visit frequency. Thus, we need to dynamically adjust the
datacenter Get serving rate to save the payment cost.

In summary, to use a cloud storage service, a customer
needs to determine data allocation and resource reservation
among datacenters worldwide belonging to different CSPs
to satisfy their application requirements on data retrieval
latency and availability, minimize cost, and dynamically
adjust the allocation to adapt to request variation.

Many previous works [10], [11], [12], [13] focus on
finding the minimum amount of resources to support the
application workload to reduce cloud storage cost in a
single CSP. However, there have been only a few works
that studied cloud storage cost minimization for a storage
service across multiple CSPs with different prices. Within
our knowledge, SPANStore [9] is the only work that handles
this problem. It aims to minimize the cloud storage cost
while satisfying the latency and failure requirement across
multiple CSPs. However, it neglects both the resource reser-
vation pricing model and the datacenter capacity limits for
serving Get/Put requests. A datacenter’s Get/Put capacity
is represented by the Get/Put rate (i.e., the number of
Gets/Puts in a unit time period) it can handle. Reserving
resources in advance can save significant payment cost for
customers and capacity limit is critical for guaranteeing
SLOs. For example, Amazon DynamoDB [8] shows a ca-
pacity limitation of 360,000 reads per hour. Also, datacenter
network overload occurs frequently [14], [15], which leads
to packet loss. If the integer program used to create a data
allocation schedule in [9] is modified to be capacity-limit
aware, it becomes NP-hard, which cannot be easily resolved.
Therefore, we need to consider the resource reservation
pricing model and datacenter capacity limits when building
a minimum-cost cloud storage service across multiple CSPs.

To handle the above-stated two challenges, we propose
a geo-distributed cloud storage system for Data storage,
request Allocation and resource Reservation across multiple
CSPs (DAR). It transparently helps customers to minimize
their payment cost while guaranteeing their SLOs. Building
a geo-distributed cloud storage across multiple CSPs can
avoid the vendor lock-in problem since a customer will
not be constrained to an obsolete provider and can always
choose the optimal CSPs for the cloud storage service. We
summarize our contributions below:
•We have modeled the cost minimization problem under
multiple constraints using the integer programming.
•We introduce a heuristic solution including:

(1) A dominant-cost based data allocation algorithm,
which finds the dominant cost (Storage, Get or Put)

of each data item and allocates it to the datacenter
with the minimum unit price of this dominant cost to
reduce cost in the pay-as-you-go manner.

(2) An optimal resource reservation algorithm, which
maximizes the saved payment cost by reservation
from the pay-as-you-go payment while avoiding over
reservation.

•We further propose three enhancement methods to reduce
the payment cost and service latency:
(1) Coefficient based data reallocation, which aims to

balance the workloads among all billing periods in
order to minimize the payment cost by maximizing
the reservation benefit.

(2) Multicast based data transferring, which builds a
minimum spanning tree to create new data replicas in
order to minimize the Transfer cost for replica creation
in a new data allocation deployment.

(3) Request redirection based congestion control, which
redirects Get requests from overloaded datacenters
to underloaded datacenters that have received Gets
more than (or less than) their expected number of
Gets after data allocation to minimize the payment
cost, respectively.

•We conduct extensive trace-driven experiments on a su-
percomputing cluster and real clouds (i.e., Amazon S3, Win-
dows Azure Storage and Google Cloud Storage) to show the
effectiveness and efficiency of our system in cost minimiza-
tion, SLO compliance and system overhead in comparison
with previous systems.

Our dominant-cost based data allocation algorithm finds
the dominant cost (Storage, Get or Put) of each data item.
For example, if a data item is storage dominant, it means
its storage cost is much higher than the sum of other costs.
Therefore, DAR is suitable for the scenarios in which most
customer data items have dominant cost. The rest of the pa-
per is organized as follows. Section 2 depicts the cost mini-
mization problem under the SLO for a geo-distributed cloud
storage system over multiple CSPs. Sections 3 presents
our heuristic solution for the cost minimization problem.
Section 4 presents our enhancement methods to reduce the
payment cost and service latency. Section 5 presents the
infrastructure to realize the algorithms. Section 6 presents
the trace-driven experimental results of DAR compared with
previous systems. Section 7 presents the related work. Sec-
tion 8 concludes our work with remarks on our future work.

2 PROBLEM STATEMENT
2.1 Background
We call a datacenter that operates a customer’s applica-
tion its customer datacenter. According to the operations
of a customer’s clients, the customer datacenter generates
read/write requests to a storage datacenter storing the
requested data. A customer may have multiple customer
datacenters (denoted by Dc). We use ci∈ Dc to denote
the ith customer datacenter of the customer. We use Ds

to denote all datacenters provided by all cloud providers
and use pj ∈ Ds to denote storage datacenter j. A client’s
Put/Get request is forwarded from a customer datacenter
to the storage datacenter of the requested data. One type of
SLO specifies the Get/Put bounded latency and the percent-
age of requests obeying the deadline [7]. Another type of
SLO guarantees the data availability in the form of a service
probability [16] by ensuring a certain number of replicas in
different locations [1]. DAR considers both types to form its
SLO and can adapt to either type easily. This SLO specifies

2



TABLE 1: Notations of inputs and outputs in scheduling.
Input Description Input Description
ci ∈ Dc i

th customer datacenter pj ∈ Ds jth storage datacenter
ζgpj

/ζppj Get/Put capacity of pj A
tk
pj

num. of Gets served by pj
n num. of billing periods in T pspj

/ptpj
unit storage/transfer price

pgpj
/pppj

unit Get/Put price of pj αpj
reservation price ratio of pj

Lg/Lp Get/Put deadline εg/εp % of violated Gets/Puts
Qg/Qp Get/Put SLO satisfaction β minimum num. of replicas
D entire data set dl/sdl data l ∈ D/dl’s size
T reservation time period tk kth billing period in T

v
dl,tk
ci

Get/Put rates on Sg
ci
/Sp

dl
datacenter set satisfying

/u
dl,tk
ci

dl from ci Get/Put deadline
φg
pj

available Get/Put F g
ci,pj

(x) CDF of Get/Put latency
/φp

pj
capacities of pj /Fp

ci,pj
(x)from ci to pj

Output Description Output Description
Rg

pj
/Rp

pj
reserved num. of Gets/Puts X

dl,tk
pj

existence of dl’s replica in pj

H
dl,tk
ci,pj

% of requests on dl from Ct total payment cost
ci resolved by pj in tk

the deadlines for the Get/Put requests (Lg and Lp), the
maximum allowed percentage of data Get/Put operations
beyond the deadlines (εg and εp), and the minimum number
of replicas (denoted by β) among storage datacenters [1].
All the data items from one customer have the same SLO
requirement. If a customer has different sets of data with
different SLOs, then we treat each data set separately in
calculating data allocation schedule. A customer can also
have an elastic deadline requirement (e.g., different SLOs
in different time periods). We can easily accommodate this
requirement by splitting the whole time period to different
periods when specifying the constraints. For a customer
datacenter’s Get request, any storage datacenter holding
the requested data (i.e., replica datacenter) can serve this
request. A cloud storage system usually specifies the request
serving ratio for each replica datacenter of a data item (de-
noted by dl) during billing period tk (e.g., one month).

The storage and data transfer are charged in the pay-
as-you-go manner based on the unit price. The Get/Put
operations are charged in the manners of both pay-as-you-
go and reservation. In the reservation manner, the customer
specifies and prepays the number of Puts/Gets per reserva-
tion period T (e.g., one year). The unit price for the reserved
usage is much cheaper than the unit price of the pay-as-
you-go manner (by a specific percentage) [8]. For simplicity,
we assume all datacenters have comparable price discounts
for reservation. That is, if a datacenter has a low unit price
in the pay-as-you-go manner, it also has a relatively low
price in the reservation manner. The amount of overhang
of the reserved usage is charged by the pay-as-you-go
manner. Therefore, the payment cost can be minimized by
increasing the amount of Gets/Puts charged by reservation
and reducing the amount of Gets/Puts for over reservation,
which reserves more Gets/Puts than actual usage. For easy
reference, we list the notations used in the paper in Table 1.

2.2 Problem Formulation
For a customer, DAR aims to find a schedule that allocates
each data item to a number of selected datacenters, allocates
request serving ratios to these datacenters and determines
reservation in order to guarantee the SLO and minimize
the payment cost of the customer. In the following, we
formulate this problem using the integer programming.
Our objective is to minimize the total payment cost for a
customer. In the problem, we need to satisfy i) the dead-
line requirement or SLO guarantee, that is, the Get/Put
requests (Lg and Lp) deadlines must be satisfied, and the
maximum allowed percentage of data Get/Put operations

beyond the deadlines is (εg and εp); ii) the data availability
requirement, i.e., the minimum number of replicas (denoted
by β) among storage datacenters [1]; and iii) the datacenter
capacity constraint, i.e., each datacenter’s load is no more
than its capacity. Below, we introduce the objective and each
constraint in detail.

Payment minimization objective. We aim to minimize
the total payment cost for a customer (denoted as Ct). It
is the sum of the total Storage, Transfer, Get and Put cost
during entire reservation time T , denoted by Cs, Cc, Cg and
Cp: Ct = Cs + Cc + Cg + Cp. (1)

The storage cost in a datacenter is the product of data size
and unit storage price of each datacenter. Then, the total
storage cost is calculated by:

Cs =
∑
tk∈T

∑
dl∈D

∑
pj∈Ds

X
dl,tk
pj ∗ pspj ∗ sdl , (2)

where sdl denotes the size of data dl, pspj denotes the unit
storage price of datacenter pj , and Xdl,tk

pj denotes a binary
variable: it is 1 if dl is stored in pj during tk; and 0 otherwise.

The transfer cost for importing data to storage datacen-
ters is one-time cost. The imported data is not stored in the
datacenter during the previous period tk−1 (Xdl,tk−1

pj = 0),
but is stored in the datacenter in the current period tk
(Xdl,tk

pj = 1). Therefore, we use θdl = Xdl,tk
pj (1 − Xdl,tk−1

pj )
to denote whether data dl is imported to datacenter. Thus,
the data transfer cost is the product of the unit price and the
size if θdl = 1.

Cc =
∑
tk∈T

∑
dl∈D

∑
pj∈Ds

θdl ∗ p
t(pj) ∗ sdl , (3)

where pt(pj) is the cheapest unit transfer price of replicating
dl to pj among all datacenters storing dl. The Get/Put
billings are based on the pay-as-you-go and reservation
manners. The reserved number of Gets/Puts (denoted by
Rgpj and Rppj ) is decided at the beginning of each reservation
time period T . The reservation prices for Gets and Puts are
a specific percentage of their unit prices in the pay-as-you-
go manner [8]. Then, we use α to denote the reservation
price ratio, which means that the unit price for reserved
Gets/Puts is α ∗ pgpj and α ∗ pppj , respectively. The amount
of resource beyond the reserved amount that needs to pay
for is Max{

∑
ci
rtkci,pj ∗ tk −R

g
pj , 0}, where

∑
ci
rtkci,pj ∗ tk is

actually used resource. The Get/Put cost is the sum of this
payment and the reservation payment.

Thus, the Get/Put cost is calculated by:
Cg =

∑
tk

∑
pj

(Max{
∑
ci

r
tk
ci,pj ∗ tk −R

g
pj
, 0}+ αRg

pj
) ∗ pgpj , (4)

Cp =
∑
tk

∑
pj

(Max{
∑
ci

w
tk
ci,pj ∗ tk −R

p
pj
, 0}+ αRp

pj
) ∗ pppj , (5)

where rtkci,pj and wtkci,pj denote the average Get and Put rates
from ci to pj per unit time in tk, respectively.

SLO guarantee. To formulate the SLO objective, we
first need to calculate the actual percentage of Gets/Puts
satisfying the latency requirement within billing period
tk. To this end, we need to know the percentage of Gets
and Puts from ci to pj within the deadlines Lg and Lp,
denoted by F gci,pj (Lg) and F pci,pj (Lp). Thus, DAR records
the Get/Put latency from ci to pj , and periodically calculates
their cumulative distribution functions (CDFs) represented
by F gci,pj (Lg)(x) and F pci,pj (Lp)(x). The average Get and
Put rates from ci to pj per unit time in tk (i.e., rtkci,pj and
wtkci,pj ) equal the product of the average Get and Put rates
on each data (denoted by dl) from ci per unit time in tk
(denoted by vdl,tkci and udl,tkci ) and the ratio of requests for
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dl from ci resolved by pj during tk (denoted by Hdl,tk
ci,pj

and Xdl,tk
pj ∈ [0, 1]). For easy Get/Put rate prediction, as

in [17], [9], DAR conducts coarse-grained data division to
achieve relatively stable request rates since a fine-grained
data division makes the rates vary largely and hence dif-
ficult to predict. It divides all the data to relatively large
data items, which of each is formed by a number of data
blocks, such as aggregating data of users in one location [18].
The prediction accuracy depends on the stability of the
Get/Put rate of the applications. High stability leads to more
accurate prediction while low stability leads to less accurate
prediction.

We can calculate the actual percentage of Gets/Puts
satisfying the latency requirement within tk for a customer
(denoted as qtkg and qtkp ) (we omit tk for simplicity below):

qg =

∑
ci∈Dc

∑
pj∈Ds

rci,pj ∗F
g
ci,pj

(Lg)∑
ci∈Dc

∑
pj∈Ds

rci,pj
,

qp =

∑
ci∈Dc

∑
pj∈Ds

wci,pj
∗Fp

ci,pj
(Lp)∑

ci∈Dc

∑
pj∈Ds

wci,pj
.

(6)

To judge whether the deadline SLO of a customer is
satisfied during tk, we define the Get/Put SLO satisfaction
level of a customer, denoted by Qg and Qp.

Qg = Min{Min{qtkg }∀tk∈T , (1− ε
g)}/(1− εg)

Qp = Min{Min{qtkp }∀tk∈T , (1− ε
p)}/(1− εp).

(7)

We see that if
Qg ∗Qp = 1 (8)

i.e., Qg = Qp = 1, the customer’s deadline SLO is satisfied.
Next, we formulate whether the data availability SLO is

satisfied. To satisfy the data availability SLO, there must be
at least β datacenters that store the requested data and sat-
isfy the Get deadline SLO for each Get request of ci during
tk. The set of all datacenters satisfying the Get deadline SLO
for requests from ci (denoted by Sgci ) is represented by:

Sg
ci

= {pj |F g
ci,pj

(Lg) ≥ (1− εg)}. (9)

The set of data items read by ci during tk is represented
by: Gtkci = {dl|vdl,tkci > 0 ∧ dl ∈ D}. Then, the data
availability constrain can be expressed as during any tk,
there exist at least β replicas of any dl ∈ Gtkci stored in Sgci :

∀ci∀tk∀dl ∈ G
tk
ci

∑
pj∈S

g
ci

X
dl,tk
pj ≥ β (10)

Each customer datacenter maintains a table that maps each
data item to its replica datacenters with assigned request
serving ratios.

Datacenter capacity constraint. Each datacenter has lim-
ited capacity to supply Get and Put service, respective-
ly [19]. Therefore, the cumulative Get rate and Put data
rate of all data in a datacenter pj should not exceed its
Get capacity and Put capacity (denoted by ζgpj and ζppj ),
respectively. Since storage is relatively cheap and easy to
be increased, we do not consider the storage capacity as a
constraint. This constraint can be easily added to our model,
if necessary. Then, we can calculate the available Get and
Put capacities, denoted by φgpj and φppj :

φgpj = Min{ζgpj −
∑

ci∈Dc
r
tk
ci,pj }∀tk∈T

φppj = Min{ζppj −
∑

ci∈Dc
w

tk
ci,pj }∀tk∈T

If both φgpj and φppj are no less than 0, the datacenter
capacity constraint is satisfied. Then, we can express the
datacenter capacity constraint by:

∀pj Min{φgpj , φ
p
pj
} ≥ 0 (11)

Problem statement. Finally, we formulate the problem
that minimizes the payment cost under the aforementioned
constraints using the integer programming.

min Ct (calculated by Formulas (2), (3), (4) and (5)) (12)
s.t. Qg ∗Qp = 1 (8)

∀ci∀tk∀dl ∈ G
tk
ci

∑
pj∈S

g
ci

X
dl,tk
pj ≥ β (10)

∀pj Min{φgpj , φ
p
pj
} ≥ 0 (11)

∀ci∀pj∀tk∀dl H
dl,tk
cl,pj ≤ X

dl,tk
pj ≤ 1 (13)

∀ci∀tk∀dl
∑
pj

H
dl,tk
ci,pj = 1 (14)

Constraints (8), (10) and (11) satisfy the deadline re-
quirement and data availability requirement in the SLO and
the datacenter capacity constraint, as explained previously.
Constraints (13) and (14) together indicate that any request
should be served by a replica of the targeted data.

Operation. Table 1 indicates the input and output pa-
rameters in this integer programming. The unit cost of Get-
s/Puts/Storage/Transfer usage is provided or negotiated
with the CSPs. During each billing period tk, DAR needs
to measure the latency CDF of Get/Put (F gci,pj (Lg)(x) and
F pci,pj (Lp)(x)), the size of new data items dl (sdl ), and the
data Get/Put rate from each ci (vdl,tkci and udl,tkci ). The output
is the data storage allocation (Xdl,tk

pj ), request servicing
ratio allocation (Hdl,tk

ci,pj ) and the total cost Ct. The optimal
Get/Put reservation in each storage datacenter (Rgpj /Rppj ) is
an output at the beginning of reservation time period T and
is an input at each billing period tk in T . After each tk, T is
updated as the remaining time after tk. We use T\{tk} to de-
note the update T . DAR adjusts the data storage and request
distribution among datacenters under the determined reser-
vation using the same procedure. This procedure ensures
the maximum payment cost saving in request rate variation.
The billing period and reservation period are determined
by the cloud customer and cloud provider. Shorter period-
icity (more frequent schedule calculation) generates higher
overhead, while longer periodicity (less frequent schedule
calculation) generates lower overhead.

This integer programming problem is NP-hard. A simple
reduction from the generalized assignment problem [20]
can be used to prove this. We skip detailed formal proof
due to limited space. The NP-hard feature makes the
solution calculation very time consuming. We then propose
a heuristic solution to this cost minimization problem in the
next section.

3 DATA ALLOCATION AND RESOURCE RESERVA-
TION

DAR has two steps. First, its dominant-cost based data
allocation algorithm (Section 3.1) conducts storage and re-
quest allocation scheduling that leads to the lowest total
payment only in the pay-as-you-go manner. Second, its
optimal resource reservation algorithm (Section 3.2) makes
a reservation in each used storage datacenter to maximally
reduce the total payment.
•Dominant-cost based data allocation algorithm. To reduce
the total payment in the pay-as-you-go manner as much
as possible, DAR tries to reduce the payment for each data
item. Specifically, it finds the dominant cost (Storage, Get or
Put) of each data item and allocates it to the datacenter with
the minimum unit price of this dominant cost.
•Optimal resource reservation algorithm. It is a challenge to
maximize the saved payment cost by reservation from the
pay-as-you-go payment while avoiding over reservation. To
handle this challenge, through theoretical analysis, we find
the optimal reservation amount, which avoids both over
reservation and under reservation as much as possible.
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3.1 Dominant-Cost based Data Allocation

A valid data allocation schedule must satisfy Constraints
(8), (10), (11), (13) and (14). To this end, DAR first identifies
the datacenter candidates that satisfy Constraint (8). Then,
DAR selects datacenters from the candidates to store each
data item requested by ci to satisfy other constraints and
achieve Objective (12). We introduce these two steps below.

Datacenter candidate identification. Constraint (8) guar-
antees that the deadline SLO is satisfied. That is, the percent-
age of data Get and Put operations of a customer beyond the
specified deadlines is no more than εg and εp, respectively.
To satisfy this constraint, some Get/Put response datacen-
ters can have service latency beyond the deadlines with
probability larger than εg and εp, while others have the
probability less than εg and εp. Since finding a combination
of these two types of datacenters to satisfy the SLO is
complex, DAR simply finds the datacenters that have the
probability less than εg and εp. That is, if pj serves Get/Put
from ci, pj has F gci,pj (Lg) ≥ 1− εg and F pci,pj (Lp) ≥ 1− εp:

∀tk ∈ T ∀ci ∈ Dc, r
tk
ci,pj > 0→ F g

ci,pj
(Lg) ≥ 1− εg (15)

∀tk ∈ T ∀ci ∈ Dc, w
tk
ci,pj > 0→ F p

ci,pj
(Lp) ≥ 1− εp (16)

Then, by replacing F gci,pj (Lg) with 1−εg in Equation (6), we
can have qtkg ≥ 1− εg which ensures the Get SLO. The same
applies to the Put SLO. Therefore, the new Constraints (15)
and (16) satisfy Constraint (8).

Accordingly, for each customer’s datacenter ci, we can
find Sgci using Equation (9), a set of storage datacenter-
s that satisfy Get SLO for Gets from ci. For each data
dl, we can find another set of storage datacenters Spdl =
{pj |∀ci∀tk, (udl,tkci > 0) → (F gci,pj (Lg)(L

p) ≥ 1 − εp)} that
consists of datacenters satisfying Put SLO of dl. To allocate
dl requested by ci, in order to satisfy both Get and Put delay
SLOs, we can allocate dl to any pj ∈ Sgci ∩ S

p
dl

.
Min-cost storage datacenter selection. After the data-

center candidates Sgci ∩ S
p
dl

are identified, DAR needs to
further select datacenters that lead to the minimum payment
cost. For this purpose, we can use a greedy method, in which
the cost of storing data item dl in each pj ∈ Sgci ∩ S

p
dl

(denoted as Cdlci,pj ) is calculated based on Equation (1)
and the pj with the lowest cost is selected. However, such
a greedy method is time consuming. Our dominant-cost
based data allocation algorithm can speed up the datacenter
selection process. Its basic idea is to find the dominant cost
among the different costs in Equation (1) for each data item
dl requested by each ci and stores dl in the datacenter that
minimizes the dominant cost.

If one cost based on its minimum unit price among
datacenters is larger than the sum of the other costs based
on their maximum unit prices among datacenters, we con-
sider this cost as the dominant cost. We do not consider
the transfer cost for importing data when determining the
dominant cost of a data item since it is one-time cost and
comparatively small compared to other three costs, and then
is less likely to be dominant in the total cost of a data item.

We classify each dl requested by ci into four different
sets: Put dominant, Get dominant, Storage dominant and
balanced. Data blocks in the balanced set do not have an
obvious dominant cost. A data item should be stored in the
datacenter in the candidates Sgci ∩ S

p
dl

that has the lowest
unit price in its dominant resource in order to reduce its
cost as much as possible. Finding such a datacenter for each
data item dl requested by a given ci is also time-consuming.
Note that Sgci is common for all data items requested by ci.
Then, to reduce time complexity, we can calculate Sgci only

Algorithm 1: Dominant-cost based data allocation.
1 for each ci in Dc do
2 Ls

ci
, Lg

ci
and Lg

ci
are Sg

ci
sorted in an increasing order of unit

Storage/Get/Put price, respectively.
3 for each dl with ∃ tk dl ∈ G

tk
ci

do
4 H = 100%;
5 switch dl with Hdl

ci
= H do

6 case dominant
7 L = Ls

ci
or Lg

ci
or Lp

ci
according to the dominant

cost is Storage or Get or Put

8 case balanced
9 Find pj ∈ Sg

ci
∩ Sp

dl
with the smallest Cdl

ci,pj
and

satisfies all constraints

10 for each pj with pj ∈ L ∩ Sp
dl

do

11 if (Xdl
pj

= 1→ φp
pj
< 0) ∨ (φg

pj
= 0) then

12 Continue;

13 Find the largest Hdl
ci,pj

satisfying φg
pj
≥ 0∧H ≥ Hdl

ci,pj
;

14 if Cdl
ci,pj

≤ Cdl
ci,pk (k=j+1,...,j+c)

when
Hci,pk

= Hci,pj
then

15 X
dl
pj

= 1; H = H −Hdl
ci,pj

;

16 else
17 H

dl
ci,pj

= 0;

18 if
∑

pj∈S
g
ci
X

dl
pj
≥ β ∧H = 0 then

19 break;

one time. From Sgci , we select the datacenter that belongs to
Spdl to allocate each dl requested by a given ci.

The pseudocode of this algorithm is shown in Algorith-
m 1, in which all symbols without tk denote all remaining
billing periods in T . For each ci, we sort Sgci by increasing
order of unit Put cost, unit Get cost and unit Storage cost,
respectively, which results in three sorted lists called Put,
Get and Storage sorted datacenter lists, respectively. We use
Maxg/Ming , Maxs /Mins and Maxp/Minp to denote
the maximum/minimum Get unit prices, Storage unit prices
and Put unit prices among the datacenters belonging to Sgci .

For each data dl requested by a given ci, we calculate its
maximum/minimum Storage cost, Get cost and Put cost:
Max

dl
s =

∑
tk∈T Maxs ∗ sdl ∗ tk ,

Max
dl
g =

∑
tk∈T Maxg ∗ vdl,tkci ∗ tk ,

Max
dl
p =

∑
tk∈T Maxp ∗ udl,tkci ∗ tk ,

Mindls , Mindlg and Mindlp are calculated similarly. If
Mindls >> Maxdlg +Maxdlp , we regard that the data belongs
to the Storage dominant set. Similarly, we can decide
whether dl belongs to the Get or Put dominant set. If dl
does not belong to any dominant set, it is classified into the
balanced set. The datacenter allocation for data items in each
dominant set is conducted in the same manner, so we use
the Get dominant set as an example to explain the process.

For each data dl in the Get dominant set, we try each
datacenter from the top in the Get sorted datacenter list.
We find a datacenter satisfying Get/Put capacity constraints
(Constraint (11)) (Line 11) and Get/Put latency SLO con-
straints (Constraint (8)) (Lines 9-10), and determine the
largest possible request serving ratio of this replica. The
subsequent datacenters in the list may have a similar unit
price for Gets but have different unit prices for Puts and
Storage, which may lead to lower total cost for this data
allocation. Therefore, we choose a number of subsequent
datacenters, calculate Cdlci,pk for dl, where k ∈ [j + 1, j + c],
and choose pj to create a replica and assign requests to
(Constraint (13)) (Lines 15-17) if Cdlci,pj is smaller than all
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(b) CDF of data items
Fig. 2: Efficiency and the validity of the dominant-cost based
data allocation algorithm .
Cdlci,pk . When several datacenters satisfy the SLO constrains
and also provide the same total cost, we choose the dat-
acenter that is geographically closer to the location of the
most requesters of data item dl in order to further reduce
the data request latency. If there are no less than β replicas
(Constraint (10)) (Line 18), and the remaining request ratio
to assign is equal to 0 (Constraint (14)) (Lines 4 and 18),
the data allocation for dl is completed. For any data in
the balanced set, we choose the datacenter in Sgci ∩ S

p
dl

that generates the lowest total cost for dl. In the datacenter
selection process, the constraints in Section 2.2 are checked
to ensure the selected datacenter satisfying the conditions.
After allocating all data items, we get a valid data allocation
schedule with sub-optimal cost minimization.

Efficiency and validity of the algorithm. The efficiency
of the dominant-cost based data allocation algorithm de-
pends on the percentage of data items belonging to the three
dominant sets, since it allocates data in each dominant set
much more efficiently than data in the balanced set. We then
measure the percentage of data items in each data set from a
real trace in order to measure the efficiency of the algorithm.
We get the Put rates of each data from the publicly available
wall post trace from Facebook New Orleans networks [21],
which covers inter-posts between 188,892 distinct pairs of
46,674 users. We regard each user’s wall post as a data item.
The data size is typically smaller than 1 KB. The Get:Put
ratio is typically 100:1 in Facebook’s workload [22], from
which we set the Get rate of each data item accordingly.
We uses the unit prices for Storage, Get and Put in all
regions in Amazon S3, Microsoft Azure and Google cloud
storage [1], [2], [3]. For each data item dl, we calculated its
dominant ratio of Storage as Mindls /(Maxdlg +Maxdlp ), and
if it is no less than 2, we consider dl as storage dominant.
Similarly, we can get a dominant ratio of Get and Put.
Figure 2(a) shows the percentage of data items belonging
to each dominant set. We can see that most of the data
items belong to the Storage dominant set and Get dominant
set, and only 17.2% of data items belong to the balanced
set. That is because in the trace, most data items are either
rarely or frequently requested with majority costs as either
Storage or Get cost. The figure indicates that the dominant-
cost based data allocation algorithm is efficient since most
of the data belongs to the three dominant sets rather than
the balanced set. Figure 2(b) shows the CDF of data items
over the dominant ratio in the Get dominant set as an
example. It shows that most of the data items in the Get
dominant set have a dominant ratio no less than 8, and
the largest dominant ratio reaches 3054. Thus, the cost of
these data items quickly decreases when the Get unit price
decreases, and then we can allocate them to the datacenter
with the minimum Get unit price. These results support the
algorithm design of finding appropriate datacenter pj in the
sorted datacenter list of the dominant resource of a data
item. Note that DAR is most effective not in the balanced set

and it is effective for the scenarios, in which most customer
data items have dominant cost, though it also chooses the
datacenters with the minimum cost for the data items in the
balanced set which do not have dominant cost.

3.2 Optimal Resource Reservation
After the dominant-cost based allocation, we need to deter-
mine reserved Get/Put rates for each datacenter in order
to further reduce the cost as much as possible given a set of
allocated data items and their Get/Put rate over T . Since the
method to determine the reserved Get and Put rates is the
same, we use Get as an example to present this method.
Before we introduce how to find reservation amount to
achieve the maximum reservation benefit, we first introduce
the benefit function of the reservation, denoted as Fpj (x),
where x is the reserved number of Gets/Puts in any billing
period tk. The benefit is the difference between the saved
cost by using reservation instead of pay-as-you-go manner
and the cost for over-reservation. The over reservation cost
includes the cost for over reservation and the over calculated
saving. Combining these two parts, we can calculate the
benefit by

Fpj (x) = (
∑
tk∈T

x ∗ (1− α) ∗ pgpj )−Opj (x) ∗ p
g
pj
, (17)

where Opj (x) is the over reserved number of Gets. It is
calculated by

Opj (x) =
∑
tk∈T

Max{0, x−
∑
dl∈D

∑
ci∈Dc

r
tk
ci,pj ∗ tk}, (18)

where x is the rserved amount and
∑
dl∈D

∑
ci∈Dc

rtkci,pj ∗ tk
is actually used amount. Recall that Rgpj is the optimal
number of reserved Gets for each billing period during
T in a schedule. That is, when x = Rgpj , Fpj (x) reaches
the maximum value, represented by Bpj = Fpj (R

g
pj ) =

Max{Fpj (x)}x∈N+ .
In the following, we first prove Corollary 3.1, which sup-

ports the rationale that allocating as much data as possible
to the minimum-cost datacenter in the dominant-cost based
data allocation algorithm is useful in getting a sub-optimal
result of reservation benefit. Then, we present Corollary 3.2
that helps find reservation x to achieve the maximum reser-
vation benefit. Finally, we present Theorem 3.1 that shows
how to find this reservation x.
Corollary 3.1. Given a datacenter pj that stores a set of data
items, allocating a new data item dl and its requests to this data-
center, its maximum reservation benefit Bpj is non-decreasing.
Proof. After allocating dl to pj , we use F ′pj (x) to denote
the new reservation benefit function since rtkci,pj in Equa-
tion (18) is changed. Then, we can get F ′pj (R

g
pj ) ≥ Fpj (R

g
pj )

since rtkci,pj is not decreasing. Since the new reserved ben-
efit B′pj = Max{F ′pj (x)}x∈N+ , thus B′pj ≥ F ′pj (R

g
pj ) ≥

Fpj (R
g
pj ) = Bpj after dl is allocated.

We define the number of Gets in tk as m =Max{
∑
dl∈D∑

ci∈Dc
rtkci,pj ∗ tk}tk∈T . Then, according to Equation (17),

we can get the optimal reservation Gets Rgpj ∈ [0,m].
Thus, by looping all integers within [0,m], we can get
the optimal reservation that results in maximum Fpj . This
greedy method, however, is time consuming. In order to
reduce the time complexity, we first prove Corollary 3.2,
based on which we introduce a binary search based optimal
reservation method.
Corollary 3.2. For a datacenter pj , its benefit function Fpj (x)
is increasing when x ∈ [0, Rgpj ) and decreasing when x ∈
(Rgpj ,m].
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Proof. According to Equation (17), we define FI(x) =
Fpj (x) − Fpj (x − 1) = (n ∗ (1 − α) − OI(x)) ∗ pgpj , where
n is the number of billing periods in T . The extra over
reserved number of Gets of Opj (x) compared to Opj (x− 1),
represented by OI(x) = Opj (x) − Opj (x − 1), equals the
number of billing periods during T that have the number
of Gets smaller than x, i.e.,

∑
ci∈Dc

rtkci,pj ∗ tk < x. There-
fore, OI(x) is increasing. At first OI(0) = 0, and when
OI(x) < n ∗ (1−α), then FI(x) > 0, which means Fpj (x) is
increasing; when OI(x) > n ∗ (1 − α), then FI(x) < 0,
which means Fpj (x) is decreasing. Therefore, Fpj (x) is
increasing and then decreasing. Since Fpj (R

g
pj ) reaches the

largest Fpj (x), we can derive that Fpj (x) is increasing when
x ∈ [0, Rgpj ), and decreasing when x ∈ (Rgpj ,m].

We use Atkpj =
∑
ci∈Dc

rtkci,pj ∗ tk to denote the to-
tal number of Gets served by pj during tk, and define
A = {At1pj , A

t2
pj , ..., A

tn
pj}.

Theorem 3.1. To achieve the maximum reservation benefit,
the reservation amount x is the N th smallest value in A =
{At1pj , A

t2
pj , ..., A

tn
pj}, where N equals dn ∗ (1 − α)e + 1 or

bn ∗ (1− α)c+ 1.
Proof. The proof of Corollary 3.2 indicates that when
OI(x) = dn∗ (1−α)e or bn∗ (1−α)c, Fpj (x) can reach Bpj .
As indicated above, OI(x) represents the number of billing
periods during T with Atkpj =

∑
ci∈Dc

rtkci,pj ∗ tk < x. There-
fore, when x is the N th smallest value in A, where N equals
dn∗ (1−α)e+1 or bn∗ (1−α)c+1, Fpj (x) reaches Bpj .

Algorithm 2: Binary search based resource reservation.

1 Sort A = {At1
pj
, A

t2
pj
, ..., Atn

pj
} in ascending order;

2 N1 = bn ∗ (1− α)c+ 1; N2 = dn ∗ (1− α)e+ 1;
3 x1 = the N1

th smallest value of A;
4 x2 = the N2

th smallest value of A;
5 if Fpj

(x1) ≥ Fpj
(x2) then

6 Rg
pj

= x1;

7 else
8 Rg

pj
= x2;

We then use the binary search algorithm to find the op-
timal reservation number of Gets. Its pseudocode is shown
in Algorithm 2.

4 COST AND LATENCY EFFICIENCY ENHANCE-
MENT
4.1 Coefficient based Data Reallocation
The Get/Put rates of data items may vary over time largely.
Therefore, the total Get/Put rate of all data items in a storage
datacenter may also vary greatly. In this case, the previous
decision on reservation schedule may become obsolete.
According to Algorithm 2, the N1

th and N2
th smallest

values of A may be much smaller than the other values
behind them in A and much larger than the other values
before them in A. The total Gets/Puts beyond reservation
is

∑
A

ti
pj
∈AMax{0, Atipj − Rpj}, where Rpj is the optimal

reservation number of Gets/Puts. Recall that the Gets/Puts
beyond reservation are paid in a pay-as-you-go manner,
which has a much higher unit price than the reservation
price. Therefore, we should reduce the total Gets/Puts
beyond reservation in order to minimize the payment cost
under Get/Put rate variance. Also, the total number of over
reserved Gets/Puts should be reduced, since the over re-
served Gets/Puts during billing period ti, i.e.,Rpj−Atipj , are
not utilized and their reservation cost is wasted. Therefore,

to achieve both goals and make the reservation schedule
adaptive to the current workload distribution, we need to
balance the workloads among all billing periods within the
reservation period T , so that the N1

th and N2
th smallest

values (hence Rpj ) are close to the other values in A.
In order to balance the workloads between billing

periods to get the highest reservation benefit, we propose
an algorithm to reallocate the data items in data allocation
scheduling. It is conducted after the dominant-cost based
data allocation by Algorithm 1 before the real data allocation
conduction. It has two strategies i) transferring (i.e., real-
locating) a data item between storage datacenters in order
to balance both Gets and Puts, and ii) redirecting the Gets
among replicas of a data item to balance the Get workloads.

We use Get workload balance as a showcase, and the
Put workload balance is handled in the similar way without
the Get redirection strategy above. This algorithm needs to
select the data items to transfer or to redirect their Gets. In
a storage datacenter, it measures the coefficient between the
total workload (Gets or Puts) towards this datacenter and
the workload towards each data item in it. The coefficient
represents the contribution from a data item to the datacen-
ter on the imbalanced Get/Put workloads.

We use rtkpj and vdl,tkpj to denote the Get rate towards
storage datacenter pj and data item dl in pj during time
tk, respectively. Then, (rtkpj −

Rpj

tk
) represents the over-use

or under-user of the reserved Gets per unit time. We then
calculate their coefficient (denoted by τdlpj ) as

τdlpj =
∑
tk∈T

(rtkpj −
Rpj
tk

) ∗ vdl,tkpj . (19)

The coefficient calculates the total workload contribution of
dl while the Gets towards pj is under or over reservation
during all billing periods. A positive coefficient means
under reservation, while a negative coefficient means over
reservation. Recall that during a billing period tk, a larger
amount of an under (or over) reservation leads to more over
pay. Therefore, the dl with a higher workload during this
tk is more important to be transferred in under reservation
or to be maintained in over reservation. Maintaining a data
item means keeping the current data allocation for this data
item and no further action is needed. Below, we introduce
how to reallocate data items to avoid under reservation.

For a storage datacenter pj , Get cost dominant data items
should contribute the majority of the Get workloads. There-
fore, we calculate the coefficient for all Get cost dominant
data items of pj and sort them in the descending order
of their coefficients. For each data item dl with a positive
coefficient (that contributes to under reservation), dl needs
to be transferred or its Get requests need to be redirected.
Recall that the datacenters which can satisfy the SLO Get
requirement of dl requested by ci are Sgci∩S

p
dl

. Then, we sort
all datacenters in Sgci ∩ S

p
dl

in ascending order of their Get
unit price. Similar to Algorithm 1 at Line 14, we select the
best datacenter from the top c datacenters with enough Get
capacity to transfer Get workloads from pj . For each data-
center pk in the list, we measure the total cost (Ct) savings if
we transfer dl’s workload in pj to pk, which is calculated by
(Cpjt +Cpkt )−(Ct′pj+Ct′pk).C

pj
t andCt

′pj is the total cost of
pj before and after transferring dl’s workload from pj to pk.
The cost is calculated according to Equation (1) by regarding
Ds = {pj , pk} and D only contains all data items stored in
pj . Similarly, we can calculate Cpkt and Ct

′pk , which are the
total cost of pk before and after transferring dl’s workload
from pj to pk. Here, there is a Transfer cost for the data trans-
fer though it is small. To make the saving cost calculation
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more accurate, we can include this data Transfer cost into
the equation. If several datacenters lead to the same total
cost savings, we can choose one further considering locality.

Recall that each data item has a fixed number of β
replicas. The storage datacenter pk with the largest posi-
tive savings will be selected to the new host of bl if pk
does not have a replica of dl; otherwise, we redirect Get
requests from pj to pk by reassigning the request serving
ratios of pk and pj for Gets towards dl from ci, that is,
Hdl
ci,pk

= Hdl
ci,pj +Hdl

ci,pk
and Hdl

ci,pj = 0.
For all storage datacenters, if there is no workload trans-

fer, current data allocation has the minimized cost after
workload balancing among billing periods; otherwise, the
whole process from data item selection to data transferring
or Get request redirection is repeated again. This is because
the data allocation schedule changed may lead to the change
of the data items with positive coefficient, and hence another
transfer or redirection may further reduce the payment cost.
Algorithm 3 shows the pseudocode of coefficient based data
reallocation for Get cost minimization. We then conduct the
process of coefficient based data reallocation for Put cost
minimization, which has a similar process as Algorithm 3
without Get redirection (Lines 12-15) with all Put cost dom-
inant data items.

Algorithm 3: Coefficient based data reallocation.
1 Has Transferring=True;
2 while Has Transferring do
3 Has Transferring=False;
4 for each pj ∈ Ds do
5 Create list L including Get dominant items in pj ;
6 Sort data items in L in descending order of coefficient;
7 for each dl in L with a positive coefficient do
8 Sort all storage datacenters in Sg

ci
∩ Sp

dl
in ascending

order of Get unit price;
9 Select top c storage datacenters with enough available Get

capacity to serve Gets from ci towards dl, i.e.,
Max{vdl,tkci

}tk∈T ∗H
dl
ci,pj

;
10 if exist another storage datacenter pk with the largest positive

cost saving then
11 Has Transferring=True;
12 if pk has dl’s replica then
13 H

dl
ci,pk

= H
dl
ci,pj

+H
dl
ci,pk

; Hdl
ci,pj

= 0;

14 else
15 H

dl
ci,pk

= Hci,pj
;

16 X
dl
pk

= 1; Xdl
pj

= 0;

4.2 Multicast based Data Transferring
At the beginning of each billing period, there may be a new
data allocation schedule and then the data allocation should
be deployed. When deploying a new data allocation, for
a data item dl, there may exist multiple data replicas. We
can minimize the Transfer cost by creating a new replica
from an existing replica of dl in the previous billing period
with minimum Transfer unit price. As shown in Figure 3,
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Fig. 3: Multicast based data transferring.

there are two
replicas of data
item dl in the
system, and
three new repli-
cas are needed
to create in three
datacenters. The
weight on each
edge represents
the payment
cost to transfer (i.e., replicate) the data replica from a source

storage datacenter to a destination storage datacenter. Then,
as shown in Figure 3 (a), the minimized payment cost is 18
by transferring replica d1l to datacenter p1 and p3, and trans-
ferring replica d2l to p2. To further save the Transfer cost in
replica creation, we propose a multicast based data transfer-
ring method. Instead of creating replicas concurrently, our
method conducts sequential data transferring. As shown in
Figure 3 (b), it creates the new replica in p2 from d2l first,
and then creates the two remaining new replicas in p1 and
p3 from the new replica. Then, the payment is reduced to 8.

To minimize the Transfer cost in replica creation, we
create a multicast based data transferring schedule using
a minimum spanning tree [23]. In the tree, the direct edge e
denotes a data transfer from the source node to destination,
and the weight represents the Transfer cost. The minimum
spanning tree is acyclic with the minimum sum of the path
weights when the replicas are transferred from the parent to
its children in the top-down manner in order.

However, the minimum spanning tree only has one tree
root while we have β initially existing data replicas that can
be used as the tree root. One method to create a tree with
the minimum Transfer cost is to use each existing replica as
a tree root to build a minimum spanning tree that embraces
all replica nodes. Then, we choose the tree that generates the
minimum total edge weights, i.e., minimum total Transfer
cost. However, this method may not maximally reduce
the Transfer cost because these existing replicas actually
can cooperatively create new replicas to further minimize
the Transfer cost. For example, in Figure 3, another new
replica only costs 1 by replicating from d1l while costs 6
by replicating from d2l , then it should be replicated from
d1l , while the replica in p2 is replicated from d2l . Thus, to
leverage the minimum spanning tree, we create a virtual
tree root (i.e., source replica node) that represents all initially
existing data replicas. To create the tree, we first build
a graph that connects all replica nodes using edges with
edge weight representing Transfer cost. The weight from the
virtual source replica node to another replica node pj in the
graph is the minimum weight among the edges from each
initially existing data replicas to node pj . For example, in
Figure 3 (a), the weight between the newly created replica in
p2 and existing replica nodes is 6, and the actual transferring
to the p2 is from d2l . After the graph is built, we gradually
add nodes to the minimum spanning tree. We first add the
virtual source replica node to the tree. We then find the edge
with the minimum weight connecting one of the nodes in
the tree to one of the nodes outside of the tree, and add the
edge and the node outside to the tree. The process continues
until all nodes are in this minimum spanning tree. Based on
the constructed minimum spanning tree, we create all new
replicas in a top-down sequence so that the Transfer cost is
minimized. For example, the replica in p2 is created from
d2l , and then p2 transfers the replica to p1 and p3. Note that
the cost saved here is Transfer monetary cost, which is part
of Transfer cost dealt with previously. It is not related to the
calculation overhead to figure out the multicast based data
transferring schedule.

4.3 Request Redirection based Congestion Control
The Get rates of a customer’s web application may vary over
time. The target storage datacenter may be overloaded due
to a burst of Get workloads. For example, the visit frequency
of the Clemson football game data in the Clemson area
suddenly increases when Clemson football team entered
the championship game. To avoid congestions in order to
guarantee the Get SLO, we can redirect the Get workloads
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to other datacenters. Recall that there are β replicas for each
data item in order to guarantee a promised data availability.
In the redirection method, when storage datacenter pj is
overloaded (i.e., total Get workload exceeds its Get capacity)
at a certain time during a billing period tk, the customer dat-
acenter redirects the data requests towards other datacenters
that store the replicas of the requested data. Recall that
Hdl
ci,pj represents the ratio of requests targeting dl’s replica

stored in datacenter pj . Therefore, by adjusting the request
ratio, we can redirect the requests among replicas to avoid
congestions. Recall that Atkpj denotes the total number of
expected Gets towards storage datacenter pj during billing
period tk (which is the data allocation schedule that mini-
mizes the payment cost). We use A′tkpj to denote the number
of Gets that have been resolved by storage datacenter pj
during tk. In order to fully utilize the expected usage of
each datacenter and reduce the Get cost, we redirect the
request with a probability to another datacenter pm hav-
ing dl’s replica according to its remaining expected usage
calculated by Atkpm − A′

tk
pm . Specifically, we distribute the

excess workload on pj among the replica datacenters based
on the number of their unused expected Gets. Since all Gets
inAtkpm are within the expected payment as Ct, more unused
Gets indicate a larger expected payment that has not be fully
used, so that the datacenter needs to be redirected more Gets
(i.e., reassigned larger Get request serving ratio).

We use Ds(dl, p
−
j ) to denote the set of all storage data-

centers except pj that store dl. We use vdl,tkci and v′
dl,tk
ci to

denote the expected Get rate and the real burst Get rate
of dl. Then, the excess workload towards pj that needs

to be redirected equals Hdl
ci,pj ∗ (1 − v

dl,tk
ci

v′
dl,tk
ci

). Therefore,

we can derive the new request ratio of storage datacenter
pm ∈ Ds(dl, p

−
j ), denoted by H ′dlci,pm :

H ′
dl
ci,pm = Hdl

ci,pm +
H

dl
ci,pj

∗(1−
v
dl,tk
ci

v′
dl,tk
ci

)∗(Atk
pm−A

′tk
pm

)∑
pn∈Ds(dl,p

−
j

)
(A

tk
pn−A′

tk
pn )

, where

Hdl
ci,pm is the request ratio without congestions, and the

reassigned Get request serving ratio of a replica datacenter
is proportional to its number of unsolved Gets. When the
pj is not overloaded, the request ratios roll back to their
previous values.

With the request redirection, a data request is transferred
from a datacenter with overloaded Get workload to a data-
center with sufficient Get capacity to handle it, which helps
meet the SLO requirements though it cannot be guaranteed.

5 SYSTEM INFRASTRUCTURE
In this section, we introduce the infrastructure to conduct
the previously introduced DAR algorithms. It collects the
information of scheduling inputs, calculates the data allo-
cation schedule and conducts data allocation. As shown in
Figure 4, DAR’s infrastructure has one master server and
multiple agent servers, each of which is associated with a
customer datacenter. Agent servers periodically measure the
parameters needed in the schedule calculation and conduct-
ed by the master.

In cloud, the reservation is made at the beginning of
reservation time period T and remains the same during
T . Due to the time-varying feature of the inter-datacenter
latency and Get/Put rates, the master needs to periodically
calculate the allocation schedule after each billing period
tk and reallocate the data accordingly if the new schedule
has a smaller cost or the current schedule cannot guarantee

Customer 
datacenter 

Cloud storage 

Agent Master 

Front-end 

Request ratio 

Statistical result 

Dominant-
Cost based 

Data 
Allocatio 

Optimal 
Resource 

Reservation 

Input 

Output 

Fig. 4: Overview of DAR’s infrastructure

the SLOs. Recall that new datacenters may appear when
calculating a new schedule. Thus, a customer will not be
rapped with obsolete providers and can always choose the
optimal CSPs for the minimum cloud storage service cost,
which avoids the vendor lock-in problem. Therefore, the
master executes the optimal resource reservation algorithm
and makes a reservation only before t1, and then updates
T to T\{tk} and executes the dominant-cost based data
allocation algorithm after each tk.

During each tk, for the schedule recalculation, the master
needs the latency’s CDF of Get/Put (F gci,pj (Lg)(x) and
F pci,pj (Lp)(x)), the size of each dl (sdl ), and the data’s
Get/Put rate from ci (vdl,tkci and udl,tkci ). Each agent in
each customer datacenter periodically measures and reports
these measurements to the master server. The DAR master
calculates the data allocation schedule and sends the up-
dates of the new data allocation schedule to each customer
datacenter. This way, our method can accommodate for the
dynamically changing conditions. Specifically, it measures
the differences of the data item allocation between the new
and the old schedules and notifies storage datacenters to
store or delete data items accordingly. In reality, billing time
period tk (e.g., one month) may be too long to accurately
reflect the variation of inter-datacenter latency and Get/Put
rates dynamically in some applications. In this case, DAR
can set tk to a relatively small value with the consideration
of the tradeoff between the cost saving, SLO guarantee and
the DAR system overhead.

6 PERFORMANCE EVALUATION
We conducted trace-driven experiments on Palmetto Cluster
[24] with 771 8-core nodes and on real clouds (i.e., Amazon
S3, Windows Azure Storage and Google Cloud Storage). We
first introduce the experiment settings on the cluster.

Simulated clouds. We simulated geographically dis-
tributed datacenters in all 25 cloud storage regions in Ama-
zon S3, Microsoft Azure and Google cloud storage [1], [3],
[2]; each region has two datacenters simulated by two nodes
in Palmetto. The distribution of the inter-datacenter Get/Put
latency between any pair of cloud storage datacenters fol-
lows the real latency distribution as in [9]. The unit prices
for Storage, Get, Put and Transfer in each region follows
the prices listed online. We assumed that the reservation
price ratio (α) follows a bounded Pareto distribution among
datacenters with a shape as 2 and a lower bound and an
upper bound as 53% and 76%, respectively [8].

Customers. We simulated ten times of the number of
all customers listed in [1], [3], [2] for each cloud service
provider. The number of customer datacenters for each
customer follows a bounded Pareto distribution, with an
upper bound, a lower bound and a shape as 10, 8 and 2,
respectively. As in [9], in the SLOs for all customers, the Get
deadline is restricted to 100ms [9], the percentage of latency
guaranteed Gets and Puts is 90%, and the Put deadline for a
customer’s datacenters in the same continent is 250ms and is
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Fig. 5: Get SLO guarantee performance.
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Fig. 6: Put SLO guarantee performance.

400ms for an over-continent customer. The minimum num-
ber of replicas of each data item was set to β = 3 [8] unless
otherwise specified. The size of the aggregated data of a
customer was randomly chosen from [0.1TB, 1TB, 10TB]
as in [9]. The number of aggregated data items of a customer
follows a bounded Pareto distribution with a lower bound,
an upper bound and a shape as 1, 30000 and 2 [25].

Get/put operations. The percentage of data items re-
quested by each customer datacenter follows a bounded
Pareto distribution with an upper bound, lower bound and
shape as 20%, 80% and 2, respectively. Each aggregated data
item is formed by data objects and the size of each requested
data object was set to 100KB [9]. The Put rate follows
the publicly available wall post trace from Facebook New
Orleans networks [21]. We set the Get rate of each data object
using the same way introduced in Section 3.1. Facebook
is able to handle 1 billion/10 million Gets/Puts per sec-
ond [22], and has ten datacenters over the U.S. Accordingly,
we set the Get and Put capacities of each datacenter in an
area to 1E8 and 1E6 Gets/Puts per second, respectively.
Whenever a datacenter is overloaded, the Get/Put operation
was repeated once again. We set the billing period (tk) to
1 month and set the reservation time to 3 years [8]. We
computed the cost and evaluated the SLO performance in
3 years in experiments. For each experiment, we repeated
10 times and reported the average performance.

Real clouds. We also conducted small-scale trace-driven
experiments on real-world CSPs including Amazon S3,
Windows Azure Storage and Google Cloud Storage. We
simulated one customer that has customer datacenters
in Amazon EC2’s US West (Oregon) Region and US East
Region [26]. Unless otherwise indicated, the settings are the
same as before. Considering the small scale and the cost
of using the cloud resource, the number of data items was
set to 1000, the size of each data item was set to 100MB,
and β was set to 2. The datacenter in each region requests
all the data objects. We set the Put deadline to 200ms.
One customer’s Gets and Puts operations cannot generate
enough workload to reach the real Get/Put rate capacity of
each datacenter. We set the capacity of a datacenter in each
region of all CSPs to 40% of total expected Get/Put rates.
Since it is impractical to conduct experiments lasting a real
contract year, we set the billing period to 4 hours, and set
the reservation period to 2 days.

We compared DAR with the following methods: (1)
SPANStore [9], which is a storage over multiple CSPs’ dat-
acenters to minimize cost supporting SLOs without consid-
ering capacity limitations and reservations; (2) COPS [27],
which allocates requested data in a datacenter with the
shortest latency to the customer datacenter but does not
consider the Put latency minimization; (3) Cheapest, in which
the customer selects the datacenters with the cheapest cost
to store each data item without considering SLOs and reser-
vations; (4)Random, in which the customer randomly selects

datacenters to allocate each data item.

6.1 Comparison Performance Evaluation
In order to evaluate the SLO guarantee performance, we
measured the lowest SLO satisfaction levels of all customers.
The Get/Put SLO satisfaction level of a customer, Qg/Qp,
is calculated according to Equation (7) with qgtk/q

p
tk as the

actual percentage of Gets/Puts within deadline during tk.
We varied each data item’s Get/Put rate from 50% to 100%
(named as request ratio) of its original rate, with the step
size of 10%.

Figures 5(a) and 5(b) show the (lowest) Get SLO
satisfaction level of each system versus the request
ratio on the simulation and real CSPs, respectively.
We see that the lowest satisfaction level follows
100%=DAR=COPS>SPANStore>Random>Cheapest. DAR
considers both the Get SLO and capacity constraints, thus
it can supply a Get SLO guaranteed service. COPS always
chooses the storage datacenter with the smallest latency.
SPAN- Store always chooses the storage datacenter with the
Get SLO consideration. However, since it does not consider
datacenter capacity, a datacenter may become overloaded
and hence may not meet the latency requirement. Thus,
it cannot supply a Get SLO guaranteed service. Random
uses all storage datacenters to allocate data, and the
probability of a datacenter to become overloaded is low.
However, since it does not consider the Get SLO, it may
allocate data to datacenters far away from the customer
datacenters, which leads to long request latency. Thus,
Random generates a smaller (lowest) Get SLO satisfaction
level than SPANStore. Cheapest does not consider SLOs, and
stores data in a few datacenters with the cheapest price,
leading to heavy datacenter overload. Thus, it generates the
worst SLO satisfaction level. The figures also show that for
both SPANStore and Random, the Get SLO satisfaction level
decreases as the request ratio increases. This is because
a higher request ratio leads to higher request load on
an overloaded datacenter, which causes a worse SLO
guaranteed performance due to the repeated requests. The
figures indicate that DAR can supply a Get SLO guaranteed
service with SLO and capacity awareness.

Figures 6(a) and 6(b) show the lowest Put SLO
satisfaction level of each system versus the request
ratio on the simulation and real CSPs, respectively.
We see that the lowest SLO satisfaction level follows
100%=DAR>SPANStore>COPS>Random>Cheapest. DAR
considers both Put SLOs and datacenter Put capacity, so it
supplies SLO guaranteed service for Puts. Due to the same
reason as Figure 5(a), SPANStore generates a smaller Put
SLO satisfaction level. COPS allocates data into datacenters
nearby without considering the Put latency minimization,
and the Put to other datacenters except the datacenter
nearby may introduce a long delay. Thus, COPS cannot
supply a Put SLO guaranteed service, and generates a
lower Put SLO satisfaction level than SPANStore. Random
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Fig. 7: Percent of Gets received by overloaded datacenters.
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Fig. 8: Percent of Puts received by overloaded datacenters.

and Cheapest generate smaller Put SLO satisfaction levels
than the others and the level of SPANStore decreases as
the request ratio increases due to the same reasons as in
Figure 5(a). The figures indicate that DAR can supply a
Put SLO guaranteed service while others cannot. Note
that the relative performances between different methods
in the simulation and in the real cloud experiment are
consistent with each other, but the magnitudes of the
experimental results of a method in the simulation and
real cloud experiment are not comparable due to the
different experimental settings in the two environments.
Particularly, the real cloud experiment has a much smaller
scale and all datacenters are in the U.S., which generate low
inter-datacenter communication delay, while the simulation
has a much larger scale and all datacenters spread all
over the world, which generate high inter-datacenter
communication delay.

Figures 7(a) and 7(b) show percentage of Get-
s received by overloaded datacenters versus the re-
quest ratio on the simulation and real CSPs, re-
spectively. We see that the percentage values follows
0%=DAR<Random<COPS<SPANStore<Cheapest. Due to
the capacity-awareness, DAR can always avoid datacenter
overloads, thus it has no requests received by overloaded
datacenters. Random allocates data items over all storage
datacenters randomly, thus it has a smaller probability of
making storage datacenters overloaded. Even with a large
request ratio, since Random randomly assigns data items to
all datacenters, which can be considered as uniform work-
load distribution among all datacenters, the datacenters are
less likely to be overloaded. COPS always allocates data
items to the datacenters near data requesters without con-
sidering their capacities, thus it has a higher probability of
making datacenters overloaded. SPANStore considers both
cost and latency deadlines but neglects datacenter capacity,
so it has fewer datacenter choices than COPS for allocating
a data item, which leads to a higher probability of making
datacenters overloaded than COPS. By biasing a limited
number of cheapest datacenters, Cheapest produces the high-
est probability of making datacenters overloaded. From the
figures, we also see, except DAR (and Random in real CSPs),
the percentage value of each system increases as the request
ratio increases. This is because heavy load leads to a higher
probability of making storage datacenters overloaded.

Figures 8(a) and 8(b) show the percentage of Puts re-
ceived by overloaded datacenters on the simulation and
real CSPs, respectively. They show the same trends and
orders between all systems as Figure 7(a) due to the same
reasons. All these figures indicate that DAR can effectively
avoid overloading datacenters using capacity-aware data
allocation, which ensures the Get/Put SLOs, while other
systems cannot.

Figure 9(a) shows the payment costs of all systems
compared to Random by calculating the ratio of the each
system’s cost to the cost of Random in the simulation.
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Fig. 9: Cost minimization performance without capacity aware-
ness.
The figure shows that the cost follows COPS≈Random> S-
PANStore>Cheapest>DAR. Since both COPS and Random do
not consider cost, they produce the largest cost. SPANStore
selects the cheapest datacenter within the deadline con-
straints, thus it generates a smaller cost than systems with-
out cost considerations. However, it produces a larger cost
than Cheapest, which always chooses the cheapest datacenter
in all datacenters. DAR generates the smallest cost because
it chooses the cheap datacenter under SLO constraints and
makes a reservation to further maximally save cost. The
figure also shows that the cost of DAR increases as the
request ratio increases, but it always generates the smallest
cost. This is because when the datacenters with the cheapest
price under constraints are used up, the second optimal
candidates will be chosen to allocate the remaining data.
All others do not consider the capacities of datacenter, and
hence violate the Get/Put SLO by making some datacenters
overloaded. Figure 9(b) shows the payment costs of all
systems compared to Random on the real CSPs. It shows the
same order and trends of all systems as Figure 9(a) due to
the same reason, except that COPS<Random. This is because
the storage datacenters nearest to the customer datacenters
happen to have a low price. The figures indicate that DAR
generates the smallest payment cost in all systems.

6.2 Performance of Cost and Latency Efficiency En-
hancement
6.2.1 Coefficient Based Data Reallocation Method
In this section, we present the performance of cost and
latency efficiency enhancements. We first measured the ef-
fectiveness of coefficient based data reallocation method.
Recall that the data reallocation method aims to balance the
workloads among all billing periods in order to minimize
the payment cost by maximizing the reservation benefit.
Thus, we varied the Get/Put rate of each data item over
billing periods by setting the Get/Put rate to x% of the
Get/Put rate in the previous billing period, where x is called
varying ratio and was randomly chosen from [50, 200] [9]. We
use DAR-CR to denote DAR with the coefficient based data
reallocation method. Recall that this method has a recursive
process as shown at Line 2 in Algorithm 3. In order to show
the effectiveness of the recursive process, we compared
DAR-CR without the recursive process by conducting the
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Fig. 11: Cost reduction of multi-
cast based data transferring.

algorithm from Line 4 to Line 16 only once, denoted by
DAR-C. Figures 10(a) and 10(b) show the cost ratio of DAR-
CR and DAR-C compared with DAR without the coefficient
based data reallocation method versus the request ratio in
simulation and real clouds, respectively. They show that the
cost ratio of all methods follows DAR-CR<DAR-C<100%.
Both DAR-CR and DAR-C generate cheaper payment cost
than DAR without the data reallocation method. This is
because the data reallocation balances the Get/Put work-
loads of each storage datacenter in different billing periods
during T , so that Rpj is close to the max{A}. Therefore,
more Gets/Puts are paid in the reservation manner, and
the payment cost is reduced. DAR-CR generates a smaller
payment cost than DAR-C. This is because once the data
allocation schedule is changed, the aggregated Get/Put
rates of different billing periods are changed. Therefore,
some other data items need to be reallocated in order to
balance the workloads more. The figures demonstrate that
the coefficient based data reallocation method is effective
in balancing the workloads of storage datacenters among
billing periods in order to minimize the payment cost, and
the recursive process can balance the workloads more.

Recall that the coefficient based data reallocation is a re-
cursive process. We measured the convergence efficiency by
the maximum number of loops conducted in Algorithm 3.
Figure 10(c) shows the number of loops versus different
upper bound of varying ratio increasing from 200% (as
default) to 600% with a step size of 100% in both simulation
and on the real cloud testbed. Since the results are the
same, we only present one figure. It shows that the number
of loops increases when the upper bound of the varying
ratio increases. This is because a larger upper bound leads
to more unbalanced Get/Put rates among billing periods,
which needs more loops to converge to the workload bal-
ance. It shows that the number of loops is no larger than
4. It was indicated that the Get/Put rate varying ratio for
the data items in Facebook is bounded by 200% [9]. From
the figure, we can see that with varying ratio bounded by
200%, there are 2 iteration of data selection and transfer or
redirection as shown in Lines 3-16 in Algorithm 3. There-
fore, the figure demonstrates that the coefficient based data
reallocation method converges fast.

6.2.2 Multicast Based Data Transferring Method
We then measured the performance of the multicast based
data transferring method. The method is efficient in repli-
cating multiple replicas, so we measured its performance
in simulation, since the real cloud experiment has a small
scale. In this experiment, we initially simulated β replicas
for each data item that were randomly distributed among
all storage datacenters, and then in the next period, we
created β replicas for each data item in randomly selected
storage datacenters. We simulated two different scenarios.
In Real cloud pricing, we simulated all storage datacenters
and their transfer pricing policies in the default setting. In

Random graph, we simulated the same number of storage
datacenters, and the unit Transfer price from one datacenter
to the other is randomly chosen from [0,2.5]. Figure 11
shows the Transfer cost (excluding all other costs) ratio of
DAR with the multicast based data transferring method
compared to DAR without this method in the two different
scenarios. It shows that this method can save at least 8.5%
and up to 30.7% in both scenarios. This is because this
method uses newly created data replicas to transfer the data
items to other storage datacenters to create new replicas,
which have cheaper Transfer prices than current existing
replicas. Therefore, the multicast based transferring method
can save the Transfer cost. The figure also shows that the
cost ratio decreases when β decreases. This is because more
new replicas lead to a higher probability of having a cheaper
Transfer price to create new replicas than current existing
replicas. The figure demonstrates that the multicast based
data transferring method is effective in minimizing the
Transfer cost.

6.2.3 Request Redirection Based Congestion Control
Method
Next, we measured the performance of request redirection
based congestion control method in guaranteeing SLOs. We
use DAR-Redirection to denote DAR with this redirection
method. The redirection method is more effective when
there are more replicas to redirect requests to. Therefore, we
measured its performance in simulation instead of on the
real cloud testbed due to its small scale. In this experiment,
we randomly chose the varying ratio of Get rate of a data
item from [1− v,1 + v], where v is the largest varying ratio
and was varied from 10% to 50% with a step size of 10%.
The varying ratio is constant during one experiment and
the experiments are repeated with various varying ratios.
Figure 12 shows the lowest Get SLO satisfaction level of all
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Fig. 12: Congestion control and
additional Get cost minimization.

customers of different
methods versus the
largest varying ratio.
From the figure, we can
see that DAR-Redirection
can guarantee the Get
SLO while DAR without
the redirection method
cannot guarantee the
Get SLO. This is because
the storage datacenters can be overloaded when some
data items have larger request rates than expected, and
without the request redirection, the requests cannot be
redirected to underloaded datacenters so they cannot be
resolved in time. The figure indicates that the request
redirection based congestion control method can help
supply a Get SLO guaranteed service under the varying
Get rate during a period. Figure 12 also shows the cost
ratio of DAR-Redirection compared to DAR that randomly
selects a storage datacenter to redirect a request. It shows
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that the cost ratio is always under 100%, that is, the request
redirection always saves cost. This is because the random
selection may select a datacenter that already uses up
its expected Gets but does not fully utilize the unused
expected Gets or even reserved Gets in other datacenters.
The redirection method considers the difference between
the expected number of Gets and the number of currently
used Gets in order to fully utilized the expected Gets
to minimize the Get cost. As a result, DAR-Redirection
saves cost than DAR with random selection. This figure
demonstrates that the request redirection based congestion
control method can reduce the Get cost by fully utilizing
the expected Gets.

6.3 System Overhead
In this experiment, we measure the system overhead of
SLO-aware and cost minimization systems (i.e., DAR and
SPANStore) on the testbed with a large customer scale in
three scenarios. In this first scenario, we enlarge the number
of storage datacenters and the number of customers by x
times, where x (called system enlarging scale) was varied
from 20 to 100 times, with a step size as 20; in the second
scenario, we enlarge the number of customers by x times,
and in order not to overload all datacenters, we also enlarge
the capacity of all datacenters by x times; in the third
scenario, we only enlarge the number of datacenters by
x times. We use the system name and scenario number
(e.g., S1 dentes the first scenario) to distinguish the different
results. For example, we use DAR(S1) to denote the results
of DAR in the first scenario.

Figure 13(a) shows the 95th percentile, median and 5th
percentile of computing time of DAR and SPANStore in
all three different scenarios, which is the time period to
compute the data allocation schedule among datacenters.
It shows that in each scenario, all percentiles of computing
time follows DAR<SPANStore. DAR uses the dominant-
cost based data allocation algorithm, which runs faster than
solving the integer program in SPANStore. Also, though
DAR has an additional optimal reservation algorithm, since
it runs fast, DAR still needs smaller computing time than
SPANStore. This figure indicates the higher computing effi-
ciency of DAR compared to SPANStore.

Figure 13(b) shows the memory consumption at each
customer datacenter to store the table for request allocation
among all replicas, and the total size of communication
packets between DAR agents and the master. Since these
kinds of overhead is only proportional to number of data
items, not the number of storage datacenters. We only
measure the performance of DAR under the first scenario,
but instead we enlarged the number of data items for each
customer by x times instead of the number of customers. We
see these two types of overheads increase as the system scale
increases, since a larger number of data items per customer
increases the table size. We observe that the memory usage
is bounded by 8MB, which is very small, and the total packet

size is bounded by 500MB per customer with maximum 10
customer datacenters, which is small according to current
bandwidth among datacenters. The figure indicates that the
overhead of DAR is small and tolerable.

7 RELATED WORK
Deploying on multiple clouds. SafeStore [28], RACS [7] and
DepSky [29] are storage systems that transparently spread
the storage load over many cloud storage providers with
replication in order to better tolerate provider outages or
failures. In [30], an application execution platform across
multiple CSPs was proposed. COPS [27] and Volley [17]
automatically allocate user data among datacenters in order
to minimize user latency. Blizzard [31] is a high performance
block storage for clouds, which enables cloud-unaware ap-
plications to fast access any remote disk in clouds. Unlike
these systems, DAR additionally considers both SLO guar-
antee and cost minimization for customers across multiple
cloud storage systems.

Minimizing cloud storage cost. In [10], [11], [12], cluster
storage automate configuration methods are proposed to
use the minimum resources needed to support the desired
workload. Adya et al. [13] proposed a file system with high
availability and scalability and low cost, named as Farsite.
It depends on randomized replication to achieve data avail-
ability, and minimizes the cost by lazily propagating file
updates. None of the above papers study the cost optimiza-
tion problem for geo-distributed cloud storage over multiple
providers under SLO constraints. SPANStore [9] is a key-
value storage over multiple CSPs’ datacenters to minimize
cost and guarantee SLOs. However, it does not consider the
capacity limitation of datacenters, which makes its integer
program a NP-hard problem that cannot be solved by its
solution. Also, SPANStore does not consider resource reser-
vation to minimize the cost. DAR is advantageous in that it
considered these two neglected factors and effectively solves
the NP-hard problem for cost minimization.

Pricing models on clouds. There are several works
studying resource pricing problem for CSPs and customers.
In [32], [33] and [34], dynamic pricing models including
adaptive leasing or auctions for cloud computing resources
are studied to maximize the benefits of cloud service cus-
tomers. Roh et al. [35] formulated the pricing competition of
CSPs and resource competition of cloud service customers
as a concave game. The solution enables the customers to re-
duce their payments while receive a satisfied service. Differ-
ent from all these studies, DAR focuses on the cost optimiza-
tion for a customer deploying geo-distributed cloud storage
over multiple cloud storage providers with SLO constraints.

Improving network for SLO guarantee. Several work-
s [36], [37], [38], [39] have been proposed to schedule
network flows or packages to meet deadlines or achieve
high network throughput in datacenters. All these papers
focus on SLO ensuring without considering the payment
cost optimization.

8 CONCLUSION
This work aims to minimize the payment cost of cus-
tomers while guarantee their SLOs by using the worldwide
distributed datacenters belonging to different CSPs with
different resource unit prices. We first modeled this cost
minimization problem using integer programming. Due
to its NP-hardness, we then introduced the DAR system
as a heuristic solution to this problem, which includes a
dominant-cost based data allocation algorithm among stor-
age datacenters and an optimal resource reservation algo-
rithm to reduce the cost of each storage datacenter. We also
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proposed several enhancement methods for DAR to further
reduce the payment cost and service latency including i)
coefficient based data reallocation, ii) multicast based data
transferring, and iii) request redirection based congestion
control. DAR also incorporates an infrastructure to conduct
the algorithms. Our trace-driven experiments on a testbed
and real CSPs show the superior performance of DAR for
SLO guaranteed services and payment cost minimization
in comparison with other systems. Since more replicas of a
more popular data item can help relieve more loads from
overloaded datacenters, in our future work, we will study
how to adjust the number of replicas of each data item to
further improve the performance of SLO conformance. Fur-
ther, we will conduct experiments against varying workload
conditions and using other traces.
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