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Abstract—As a popular routing protocol in wireless sensor networks (WSNs), greedy routing has received great attention. The previous
works characterize its data deliverability in WSNs by the probability of all nodes successfully sending their data to the base station. Their
analysis, however, neither provides the information of the quantitative relation between successful data delivery ratio and transmission
power of sensor nodes nor considers the impact of the network congestion or link collision on the data deliverability. To address these
problems, in this paper, we characterize the data deliverability of greedy routing by the ratio of successful data transmissions from
sensors to the base station. We introduce η-guaranteed delivery which means that the ratio of successful data deliveries is not less
than η , and study the relationship between the transmission power of sensors and the probability of achieving η-guaranteed delivery.
Furthermore, with considering the effect of network congestion, link collision and holes (e.g., those caused by physical obstacles such
as a lake), we provide a more precise and full characterization for the deliverability of greedy routing. Extensive simulation and real-
world experimental results show the correctness and tightness of the upper bound of the smallest transmission power for achieving
η-guaranteed delivery.

Index Terms—Wireless sensor networks, Greedy routing, Data deliverability, Energy-efficiency.
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1 INTRODUCTION

W Ireless sensor networks (WSNs) have been increasingly de-
ployed for environment monitoring [1], [2]. Usually sensor

nodes (sensors in short) are distributed over a geographic region
of interest and transmit the sensed data to a remote base station
using multi-hop routing. Thus, data delivery, as a fundamental
function of WSNs, has received great attention. Considerable
research efforts have been devoted to studying the reliability [3],
timeliness [4] and energy-efficiency [5], [6] of data delivery.

High delivery ratio with low energy consumption is a challeng-
ing issue of data delivery in WSNs. Many routing protocols have
been proposed to address this challenge, including data-centric [7],
hierarchical [8] and location-based [9], [10] design. Among these
protocols, the location-based greedy routing (greedy routing in
short) protocol [9], [10] is particularly attractive for large-scale
sensor networks due to its simplicity, efficiency and scalability,
and thus has been widely exploited. In this protocol, each node
makes routing decision with only local knowledge and forwards
the packet to its neighbor that has the smallest distance to the
destination until the packet reaches the destination.
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A well-known problem with greedy routing is that it fails at a
node called void node that has no neighbor closer to the destina-
tion. To handle this problem, many previous works [11], [12], [13]
theoretically analyzed the relationship between the transmission
radius and the deliverability of greedy routing. Specifically, Wan
et al. [11] studied the critical transmission radius (i.e., smallest
transmission radius) for greedy routing to ensure that packets can
be delivered between any source-destination pairs in randomly de-
ployed wireless ad hoc networks. Wang et al. [12] further derived
higher accurate asymptotic bounds on the critical transmission
radius. Yang et al. [13] studied the relationship between the critical
transmission power (i.e., smallest transmission power) and the
probability of guaranteed data delivery from all sensors to the
central base station (referred to as many-to-one).

These works have studied the deliverability of greedy rout-
ing in terms of probability of guaranteeing all deliveries (i.e.,
probability of guaranteed delivery) and the transmission condition
(e.g., critical transmission power/radius) to eliminate void nodes
in the network. However, no previous works have studied the
relationship between the transmission power and the packet de-
livery ratio of greedy routing, which is the ratio of the nodes that
successfully deliver their data to the base station. We call these
nodes delivery-success nodes, otherwise, delivery-failure nodes.
The work in [14] demonstrates that data delivery in WSNs is
inherently faulty and unpredictable, and thus the fault tolerant
protocols are necessary for sensor applications and the protocols
should ensure reliable data delivery while minimizing energy con-
sumption [15]. Therefore, the relationship between transmission
power and packet delivery ratio of greedy routing is of great
interest for WSN designers in practice. It helps to infer the number
of delivery-failure nodes with a given transmission power, and
provides insights on the impact of void nodes on the number of
delivery-failure nodes. Accordingly, the designers can determine
whether it is acceptable to use a relatively lower transmission



1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737005, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

power for sensors by estimating the number of delivery-failure
nodes, since a limited number of delivery-failure nodes may be
acceptable for possible reasons like redundant node deployment.
Thus, η-guaranteed delivery is not trivial [16], [17].

Another limitation of these previous works is that they neglect
the impact of network congestion and link collision on the de-
liverability of greedy routing in theoretical analysis, though these
two factors are also well-known causes for packet delivery failure
in WSNs [18], [19], [20]. Since greedy forwarding decisions are
made based on location information without the knowledge of
traffic flows in the WSN, it could generate spatial congestion and
collision, which may reduce packet delivery ratio. The impact of
network congestion and collision on data deliverability poses a
challenge to the characterization of data deliverability.

In this paper, we analyze the greedy routing deliverability
for many-to-one data delivery in WSNs. Unlike the previous
work [13] that considers the deliverability in terms of the prob-
ability of guaranteeing all sensors to successfully send their data
to the base station, we consider the deliverability in terms of
the ratio of delivery-success nodes. In particular, we study the
critical transmission power required to ensure that the ratio of
delivery-failure nodes does not exceed a threshold with a given
probability. We also consider the impact of network congestion
and link collision on the deliverability in the study. Compared with
the previous work [13], our results characterize the deliverability
in general sense and is much more practical with the additional
consideration of the two factors. The main contributions of this
paper are as follows:
•We introduce the concept of η-guaranteed delivery, which guar-
antees that the ratio of delivery-failure nodes is at most 1−η .
Based on this concept, we study the relationship between the
critical transmission power and the ratio of delivery-failure nodes,
which provides a more general characterization of the many-to-
one deliverability of greedy routing compared to the previous
works.
•We derive analytical upper bounds on critical transmission power
for the η-guaranteed delivery under Signal-to-Interference-plus-
Noise-Ratio (SINR in short) [21] model. Simulation and real-
world experimental results are provided to validate our analysis
results.
•We further conduct our analysis considering the effects of net-
work congestion, link collision and holes on data deliverability,
and provide a more accurate characterization of the deliverability
of greedy routing.

The remainder of this paper is organized as follows. Section 2
reviews the related work. Section 3 describes the problem defini-
tion and the system model used in this paper. In Sections 4 and 5,
we derive the upper bounds on critical transmission power without
and with network congestion and link collision considerations.
Section 6 additionally considers holes and analyzes the effects
of holes on the data deliverability of greedy routing. Section
7 presents the numerical solution of upper bounds on critical
transmission power. Section 8 describes the numerical analysis,
simulation results and real-world experimental results. Section 9
concludes our work with remarks on our future work.

2 RELATED WORK

Greedy forwarding with geographical locations in a WSN may
fail at void nodes. The most well-known method to handle the
problem is face routing [9], [22], which requires planarization.
Face routing planarizes the network graph and forwards a message

along one or a sequence of adjacent faces, which provides progress
towards the destination node. However, face routing can perform
poorly comparing to optimum route and can be impractical to
maintain information of the extremely large planar faces. There-
fore, adaptive face routing and various types of greedy-face-greedy
routing methods are investigated in [22]. Another method is using
virtual coordinates. Sarkar et al. [23] proposed to compute a new
embedding of the sensors in the plane such that greedy forwarding
with the virtual coordinates guarantees delivery.

To handle this “void node” problem, many works [11], [12],
[13], [24], [25] theoretically analyze the deliverability of geo-
graphic greedy routing in WSNs or wireless ad hoc networks. The
works in [11], [12], [24], [25] focus on the deliverability between
any pair of source-destination nodes by greedy routing. However,
these works assume packet transmission with no interference,
which makes them impossible to accurately characterize the data
deliverability in practical scenarios. Yang et al. [13] modeled the
relationship between the critical transmission power and the prob-
ability of guaranteed delivery in the many-to-one delivery in a 2-D
WSN. They showed that the critical transmission radius for many-
to-one deliverability can be much smaller than that for any-to-any
deliverability. However, they studied the routing deliverability of
all nodes in terms of the probability of guaranteed delivery instead
of the packet delivery ratio, as indicated in Section 1. Also, their
analysis neglects the network congestion and link collision, which
are main causes that affect deliverability. Considering the impor-
tance of many-to-one data collection for sensor networks, our
work targets at many-to-one deliverability of greedy routing and
studies the relationship between the critical transmission power
and the probability of η-guaranteed delivery. Further, our work
is the first to analyze the effect of network congestion and link
collision on the deliverability of greedy routing in the physically
realistic SINR model [26], which makes our work substantially
different from previous works and enables our work to accurately
characterize the data deliverability in practical scenarios. Thus,
our work is a notable extension compared to previous works.

3 SYSTEM MODEL AND PROBLEM DEFINITION
3.1 System Model
For analytical tractability, we assume that a WSN with N nodes is
deployed in a 2-D disk region with radius R. The base station Xbs
is located at the center of the region. The disk region is denoted by
D(Xbs,R). The distribution of the sensors over the region follows
a homogeneous Poisson point process with constant density
λ [11]. Each sensor, denoted by Xi, has the same transmission
power [11]. We model the WSN as a graph G(V,E), in which V
represents the set of nodes in the network, and E stands for the
links of the network.

3.2 Channel Model
In this paper, we use the SINR model to capture channel charac-
teristics in WSNs. Many previous works [27], [28] on data deliver-
ability assume Unit Disk Graph (UDG) model for communication.
The UDG model, which assumes that two nodes within certain
distance can communicate directly, oversimplifies the channel
model [29], because it does not consider interference from other
on-going transmissions. In SINR, the successful reception of a
transmission depends not only on the received signal strength
but also the interference caused by simultaneously transmitting
nodes and the ambient noise level. Thus, based on SINR, we are
able to provide more realistic and accurate analysis on the data
deliverability of greedy routing in WSNs.
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We use vs and vr to denote a source transmitter and a receiver.
Let Prec be the received signal power at the receiver vr from the
transmitter vs. Denote Ir as the amount of interference generated
by other nodes in the network. Let Nn be the ambient noise power
level. Then, in the SINR model, receiver vr receives a transmission
iff Prec/(Nn + Ir)≥ β (1)
where β is a small constant (depending on the hardware) and
it denotes the minimum signal to interference ratio required for
a message to be successfully received. The value of the received
signal power Prec is a decreasing function of the Euclidean distance
dsr between the transmitter vs and the receiver vr, represented by

Prec(dsr) = Pt/dα
sr (2)

where Pt is the transmission power of the transmitter, and the so-
called path-loss exponent α is a constant between 2 and 6. α

indicates the rate at which the received signal power decreases
with the distance between the transmitter and the receiver. Based
on (1), the transmission radius r for successful delivery can be
represented as

r = sup{d|Prec(d)≥ β (Nn + Ir),0 < d <+∞} (3)

where sup represents the least upper bound. In WSNs on 2-D
plane, Ir can be represented by

Ir = ∑
vi∈V\{vs}

Pt

dir
α

(4)

where V ⊂ R2 is the set of nodes in the 2-D plane.

3.3 Problem Definition
Definition 1. Delivery-failure node: Xi is a delivery-failure node if

it cannot directly communicate with the base station Xbs, and
also cannot communicate with Xbs via multi-hop.

Definition 2. η-guaranteed delivery: Given a WSN G with N
sensors, and a minimum delivery ratio requirement (η), a data
gathering of G achieves η-guaranteed delivery if Ns/N ≥ η ,
where Ns is the number of delivery-success nodes in the data
gathering.

η-guaranteed delivery with η < 100% is usually desired in the
applications that can tolerate a limited number of delivery-failure
nodes, such as statistical inference to the population with sensed
data samples. The determination of η depends on the number of
delivery-failure nodes that can be tolerated. When η < 100%, the
transmission power of sensors to achieve η-guaranteed delivery
is much lower than that required by 100%-guaranteed delivery.
Based on η-guaranteed delivery, we define the critical transmis-
sion power and radius and present our problems below.
Definition 3. Critical transmission power: The critical transmis-

sion power Pcri
t (η ,Prth) denotes the minimal transmission

power, which ensures that the probability of achieving η-
guaranteed delivery is no less than a threshold Prth (0<Prth <
1), i.e.,

Pr{Ns/N ≥ η} ≥ Prth (5)

Definition 4. Critical transmission radius: The critical transmis-
sion radius rcri(η ,Prth), corresponding to the critical trans-
mission power Pcri

t (η ,Prth), denotes the minimal transmission
radius which ensures that the probability of achieving η-
guaranteed delivery is no less than Prth.

According to the definition, critical transmission power
Pcri

t (η ,Prth) is determined by the delivery ratio η and threshold
Prth. It ensures that the probability of achieving η-guaranteed
delivery for a WSN is no less than a threshold with minimal
energy consumption. To ensure η-guaranteed delivery with a

certain probability, we need to find the critical transmission power
Pcri

t (η ,Prth). Obviously, a sensor using the critical transmission
power Pcri

t (η ,Prth) has a corresponding critical transmission
radius rcri(η ,Prth). Based on the above definitions, we can
formulate our problems as follows:
Problem 1. Given a desired ratio of delivery-success nodes η and

a probability threshold Prth, what is the critical transmission
power Pcri

t (η ,Prth) to achieve η-guaranteed delivery?
From the above, we can see the previous work [13] is a special

case of our problem with η = 100%. Our problem provides a more
in-depth and precise characterization on the data deliverability
of greedy routing. The study of our problem is also very useful
to WSN applications that use approximate data collection that
collects incomplete data from WSNs, which has been widely
studied due to its energy-efficiency [30], [31].

Because network congestion and link collision affect greedy
routing deliverability, we further study Problem 1 with the consid-
eration of these factors. We present this new problem as Problem
2 in the following. We consider a continuous data gathering
scenario, in which all sensors periodically send sensed data to the
base station, and the data is collected round by round. In one round
of data gathering, the ratio of delivery-success nodes is affected
by the current status of network congestion and link collision.
Problem 2. Given a desired ratio of delivery-success nodes η

for each round of a continuous data gathering and a prob-
ability threshold Prth, what is the critical transmission power
Pcri

t (η ,Prth) to achieve η-guaranteed delivery with the consid-
eration of the impact of network congestion and link collision
on the ratio of delivery-success nodes?

Problem 3. Given a desired ratio of delivery-success nodes η

for each round of a continuous data gathering and a proba-
bility threshold Prth, what is the critical transmission power
Pcri

t (η ,Prth) to achieve η-guaranteed delivery with the con-
sideration of the impact of network congestion, link collision
and holes on the ratio of delivery-success nodes?

4 CRITICAL TRANSMISSION POWER
In this section, we address Problem 1 and derive the upper
bounds on critical transmission power for the problem solution
with the assumption of Poisson distribution of node deployment
and delivery-failure nodes [13], [32], [33], [34] in the SINR
model. We first establish the relationship between the probability
of η-guaranteed delivery and the probability of a node being a
delivery-failure node. Then, we formulate the relationship between
the probability of a node being a delivery-failure node and the
transmission power. As a result, we can find the upper bounds on
critical transmission power.

4.1 The Relationship between η-guaranteed Delivery
and Delivery Failure Probability
For a sensor Xi, C(Xi) denotes a Bernoulli random variable
that equals one iff Xi is a delivery-failure node. For all nodes
V = {X1, · · · ,X|V |} in the network, C(X1), · · · ,C(Xn) are identi-
cally distributed random variables, where |V | is the cardinality of
V . As the work in [35], we assume the distribution of the delivery-
failure nodes is statistically independent. Let Z be the number of
delivery-failure nodes in the network, and we have

Z = ∑
xi∈V

C(Xi) (6)

According to Definition 3, for critical transmission power, we
have

Pr{Z ≤ (1−η)N} ≥ Prth (7)
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where N is the number of nodes in the network.
According to Markov’s inequality, we have

Pr(Z ≤ (1−η)N) = 1−Pr(Z ≥ ((1−η)N +1))
≥ 1−E(Z)/((1−η)N +1)

(8)

Suppose that C(Xi) (1≤ i≤ N) are identically distributed random
variables. Then, the expectation of random variable Z can be
computed by

E[Z] =
+∞

∑
N=0

E[
N

∑
i=1

C(Xi)]Pr(|V |= N) =
+∞

∑
N=0

(NE[C(Xi)]Pr(|V |= N))

=E[C(Xi)]
+∞

∑
N=0

N(λπR2)Nexp(−λπR2)/(N!)

=λπR2E[C(Xi)] = λπR2Pr(C(Xi) = 1)
(9)

where the distribution of the delivery-failure sensors over the
region follows a homogeneous Poisson point process with constant
density λπR2 [13], [34].

Combining Formulas (7), (8) and (9), we have
Pr(C(Xi) = 1)≤ (1−Prth)((1−η)N +1)/(λπR2) (10)

In order to achieve η-guaranteed delivery, the critical trans-
mission power should be chosen to make the delivery failure
probability of any node satisfy (10).
4.2 Upper Bound on Critical Transmission Power
Recall that a node is a void node if it cannot directly communicate
with the central base station Xbs and it is closer to Xbs than all
its neighbors. To compute the probability of Xi being a delivery-
failure node, we first consider the probability of Xi being a
delivery-success node. Suppose that the distance between Xi and
Xbs is ρ and the transmission radius is r, Xi is a delivery-success
node only if it falls into either of the following two cases:

Case 1: ρ is less than or equal to r, that is, Xi can directly
communicate with Xbs.

Case 2: ρ is greater than r, and there exists a multi-hop greedy
routing path to Xbs with no delivery-failure nodes.

Suppose Xi+1, · · · ,Xi+k, · · · ,Xi+n are intermediate nodes from
Xi to the base station, as shown in Fig. 1. ρi+k is the distance
between the node Xi+k (k = 0,1, · · · ,n) and the base station Xbs.
n = 0 if Xi can directly communicate with Xbs. The solution
for Case 1 is intuitive, and in most cases the delivery success-
node (say, Xi) falls into Case 2. Here we focus on analyzing the
probability that a packet can be successfully sent from a node Xi
to Xbs via multiple hops (Case 2). Case 2 is satisfied iff Xi satisfies
both of the following two conditions:
• Condition E1: There exists at least one node located in Xi’s
transmission range which is closer to the base station than Xi.
• Condition E2: The next forwarding node Xi+1, one of Xi’s
neighbors who has the smallest distance to the base station among
Xi and all its neighbors, can successfully forward the packet to the
base station.

Next, we first consider the probability of E1, then derive the
probability of Xi being a delivery-success node which is equal to
the probability that both E1 and E2 are satisfied.

4.2.1 Probability of Condition E1

We call the area where the potential next forwarding node Xi+1 can
be located as the feasible region of node Xi. Because Xi+1 must
be in the transmission range of Xi and also must have smaller
distance to the base station than Xi, the feasible area of Xi is the
intersection area of the two circles of radius r and ρ centered at Xi
and the base station, respectively.

We use random variable U to denote the distance between
the base station (Xbs) and the next forwarding node chosen by
the greedy routing algorithm. Consider the feasible region of Xi,
where potential next forwarding nodes can be located at some
distance u or less from the base station (shaded region in Fig. 2).
The area of the feasible region is denoted by Sρ(u). According
to [36], because when ρ is greater than r, the probability of no
next forwarding nodes existing in the feasible region of area is
equivalent to the probability that U is strictly greater than u. The
complement of this probability yields the distribution of U [36]
which varies with u

F(u) =

 1− exp(−λSρ (u)), ρ− r ≤ u < ρ

1, u≥ ρ

0, u < ρ− r
(11)

We can obtain the following probability density function by
differentiating the distribution F(u) which is absolutely continu-
ous f (u) = λS

′
ρ (u)exp(−λSρ (u)), ρ− r ≤ u < ρ (12)

where S
′
ρ(u) is the derivative of Sρ(u) with respect to u.

We define the angles of the two intersecting sectors as 2αρ ,
2βρ , as shown in Fig. 2. By the Law of Cosines, we have

αρ (u) = arccos(
r2 +ρ2−u2

2rρ
) (13)

βρ (u) = arccos(
u2 +ρ2− r2

2uρ
) (14)

Then, we have
Sρ (u) = r2

αρ (u)+u2
βρ (u)−uρ sinβρ (u), ρ− r ≤ u < ρ (15)

Based on (13), (14) and (15), we have
S
′
ρ (u)≈ 2uβρ (u) (16)

4.2.2 Probability of Being a Delivery-success Node
Considering that the sensors are uniformly distributed on 2-D plan,
the nodes which has the same distance to the base station are
equal on the network deliverability for their packets. Thus, for a
given node Xi which has distance ρ to the base station, we let the
probability of Xi being a delivery-success node be a function of
the distance ρ , denoted by P(ρ).

The distance U has probability density function f (u) given by
(12). When U = u, the probability of Xi+1 being a delivery-success
node is P(u). Because Xi can successfully send a packet to Xbs via
multiple hops only if it satisfies both Condition E1 and Condition
E2, we have

P(ρ) =
∫

ρ

ρ−r
P(u) f (u)du (17)

We take the derivative of this equation with respect to ρ first,
and get a differential equation. After computing this differential
equation using Mathematica, we get the following analytic solu-
tion:

P(ρ) =exp(−
∫ r

1
−2exp(−λ (r2 arccos(

r
2t
)+ arccos(

−r2 +2t2

2t2 )t2

− 1
2

t2

√
r2(−r2 +4t2)

t4 ))λ arccos(
−r2 +2t2

2t2 )tdt

+
∫

ρ

1
−2exp(−λ (r2 arccos(

r
2t
)+ arccos(

−r2 +2t2

2t2 )t2

− 1
2

t2

√
r2(−r2 +4t2)

t4 ))λ arccos(
−r2 +2t2

2t2 )tdt)

(18)
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Accordingly, the probability of the node Xi being a delivery-failure
node is

(P(ρ))c = 1−P(ρ) (19)

where superscript c means the complement of P(ρ).

4.2.3 Upper Bound on Critical Transmission Power
Considering all the possible locations of Xi, the probability of a
node being a delivery-failure node is

Pc =
∫ 2π

0

∫ R

r

(P(ρ))c

πR2 ρdρdθ =
2

R2

∫ R

r
ρ(P(ρ))cdρ =

2g(r)
R2

(20)

where
g(r) =

∫ R

r
ρ(1−P(ρ))dρ (21)

Hence
Pr(C(Xi) = 1) = (2g(r))/R2 (22)

Theorem 4.1: Assume a WSN G(V,E) with N nodes is
deployed in a 2-D disk region D(Xbs,R). Given a designed prob-
ability threshold Prth and a desired delivery ratio η , the critical
transmission radius rcri(η ,Prth) satisfies

rcri(η ,Prth)≤ r̃ = inf{r|g(r)≤ (1−Prth)(x+1)
2λπ

} (23)

where in f represents the greatest lower bound, g(r) is defined in
Formula (21), x = (1−η)N is the maximum number of delivery-
failure nodes.

Proof: Recall that critical transmission radius rcri(η ,Prth) is
the minimum transmission radius that can ensure the probability of
η-guaranteed delivery Pr{Ns/N ≥ η} ≥ Prth (Formula (5)), that
is, Pr{Z ≤ (1− η)N} ≥ Prth (Formula (7)). Let x = (1− η)N.
Based on (8), (9) and (22), we have

Pr(Z ≤ x)≥ 1− (λπR2(2g(r))/R2)/(x+1) (24)

To ensure that Pr(Z ≤ x)≥ Prth, we only need to make
g(r)≤ (1−Prth)(x+1)/(2λπ) (25)

Based on Lemma 2 in the Appendix, g(r) is strictly decreasing
for r. Hence, we can ensure Pr(Z ≤ x) ≥ Prth as long as the
critical transmission radius rcri(η ,Prth) satisfies Formula (23).
Hence Theorem 4.1 holds.

Corollary 4.1: Based on Theorem 4.1, the critical transmission
power Pcri

t (η ,Prth) corresponding to rcri(η ,Prth) satisfies

Pcri
t (η ,Prth)≤ P̃t = β (Nn + Ir)r̃α (26)

where P̃t is the upper bound on critical transmission power, Nn is
the ambient noise power level, Ir is the amount of interference
generated by other nodes in the network, α is the path-loss
exponent.

Proof: According to (1), we have Prec ≥ (Nn + Ir)β . Letting
dsr in (2) be r̃, with Prec(dsr) ≥ (Nn + Ir)β we can obtain the
upper bound of the critical transmission power Pcri

t (η ,Prth), that
is, Pcri

t (η ,Prth) ≤ P̃t = β (Nn + Ir)r̃α , where Ir can be computed
based on Formula (4).

5 EFFECTS OF NETWORK CONGESTION AND LINK
COLLISION
In this section, we derive the upper bound on the critical trans-
mission power for η-guaranteed delivery with consideration of
the effects of congestion and collision. The congestion at the
receiver node introduces packet loss due to buffer overflow. Also,
when multiple active sensor nodes try to access the channel
simultaneously, collisions could occur and corrupt the packet in
transmission. A sensor fails in delivering data to its next hop when
the transmission experiences a collision or the buffer of its next
hop is full. Since the congestion and collision are well-identified
causes of packet loss in WSNs [18], [37] and they are important

in analyzing the deliverability for many-to-one data delivery in
WSNs [38], [39], we investigate their effects on the deliverability
of greedy routing to provide realistic analysis results. Here, we
assume each sensor in the WSN has a buffer size of m packets.

To compute the probability that a given node Xi delivers
data to Xbs, we assume the data delivery path from Xi to Xbs is
Xi→ Xi+1→, · · · ,→ Xi+n→ Xbs. n = 0 if Xi can directly commu-
nicate with Xbs. We first consider the probability of successful data
transmission at one hop in the path.
5.1 Probability of Delivery Success in One Hop
For a successful one-hop data transmission, say X j → X j+1, the
following two conditions must be satisfied.
• Condition EA: X j is not a void node, i.e., X j has a neighbor
whose distance to Xbs is smaller than X j’s.
• Condition EB: No link collision occurs during the packet
transmission from X j to X j+1, and when the packet arrives at X j+1
the buffer queue of X j+1 is not full, i.e., no congestion occurs to
the packet.

Hence, we have
Pr(X j→ X j+1) = Pr(EA)Pr(EB) (27)

5.1.1 Probability of Condition EA

The probability that X j is a void node is the probability that no
nodes exist in X j’s feasible region. The area of X j’s feasible region
where any node has smaller distance from the base station than X j,
denoted by S(ρ j,r), can be computed by (15) with u = ρ j where
ρ j, is the distance between X j and Xbs, i.e.,

S(ρ j,r) = 2ρ
2
j arcsin

r
2ρ j

+ r2 arccos
r

2ρ j
− r

√
ρ2

j −
r2

4
(28)

According to spatial Poisson point process distribution of nodes,
we have Pr(EA) = 1− exp(−λS(ρ j,r)) (29)

5.1.2 Probability of Condition EB

Next, to compute Pr(EB), we first derive the probability of packet
loss caused by network congestion and link collision respectively,
and then obtain Pr(EB).
Network Congestion: Let Pnc be the probability that a node
fails to deliver a packet to its next hop due to buffer overflow.
We derive Pnc based on M/M/1/k model. The M/M/1/k model
describes a stochastic process whose state space is the set
I = {0,1,2, · · · ,k} where the value corresponds to the number
of packets in the node’s buffer. According to [40], steady state
probabilities of the system, denoted by Pj( j = 0,1,2, · · · ,k), are

P0 =

{
1−ρ

1−ρk+1 , ρ 6= 1
1

k+1 , ρ = 1
(30)

Pj =

{
ρ j(1−ρ)

1−ρk+1 , ρ 6= 1
1

k+1 , ρ = 1
(31)

Here ρ = λARR/µ in which µ is the packet transmission rate and
λARR is packet arrival rate. Since it is a many-to-one model (i.e.,
all packets go to sink), the arrival rate of the sensor in the center
(closer to the sink) should be higher (more contending nodes)
than that of the sensor away from the sink, and thus we consider
the arrival rate as a function (inverse proportion to the receiver’s
distance to the base station) of the receiver’s distance to the base
station so that it can better reflect the case in real system [41].
The arrival rate of node X j+1 is as follows

λARR(ρ j+1) = (R/2)/ρ j+1 ·λ (32)

where R is the radius of the 2-D disk region, ρ j+1 is the distance
between X j+1 and Xbs, and λ is an expected arrival rate.
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Each sensor has a buffer size of m packets. With k = m, the
steady state probability Pm is the probability of a buffer being full
which causes packet drop. Obviously,

Pnc = Pm (33)
Hence, the probability that node X j fails to deliver a packet to its
next hop X j+1 due to buffer overflow is Pm with ρ = λARR(ρ j+1)/µ

(denoted by Pm(ρ j+1)).
Link Collision: Since in WSNs wireless channels are shared by
several nodes using CSMA-like (Carrier Sense Multiple Access)
protocols, we derive the probability of packet loss due to link
collision based on modeling of CSMA/CA in [42]. The binary
exponential backoff procedure is modeled as a Markov chain with
the assumption of constant and independent collision probability
of a packet transmitted by each node. We consider a fix number
l of contending nodes, each always having a packet available for
transmission after the completion of each successful transmission.
Based on [42], we can get the probability of a packet encountering
collision Plc as

Plc = 1− (1− τ)l (34)
where τ is the probability that a node transmits in a randomly
chosen slot time.

τ =
2(1−2Plc)

(1−2Plc)(W +1)+PlcW (1− (2Plc)v)
(35)

where W is the minimum contention window size W = CWmin,
and the maximum contention window size is CWmax = 2vW . v is
the maximum backoff stage. In particular, when v = 0, i.e., no
exponential backoff is considered, the probability τ results to be
independent of Plc. Formula (35) thus simply becomes:

τ = 2/(W +1) (36)
Computation of Pr(EB): Based on (33) and (34), the probability
of Condition EB, can be found by simply multiplying probability
of not having link collision (1− Plc) and probability of not
encountering full buffer (1−Pnc) as follows:

Pr(EB) = (1−Pnc)(1−Plc) = (1−Pm)(1− τ)l (37)

5.2 Probability of Delivery Success to the Base Station
For simplicity, we use the average number of hops that a packet
can traverse from a node to the base station to approximately
estimate the probability of successful data delivery from node Xi
to base station Xbs.
5.2.1 Average Number of Hops
If a packet travels from a node with distance ρi to the base
station to another node with distance ρi+1 to the base station, the
distance it advances equals ρi−ρi+1. Previous work [43] shows
that the probability density function of progress in one hop from
Xi towards the base station Xbs is

fc(c| ||Xi,Xbs||= ρ)

=σ(
2

πr2 )
σ 2(ρ− c)(

π

2
− arcsin(1+

c2− r2

2ρ(ρ− c)
))((ρ− c)2

arcsin(1+
c2− r2

2ρ(ρ− c)
)+

1
2

√
4r2ρ2− (c2− r2−2ρc)2

− r2 arcsin(
c2− r2−2ρc

2ρr
)− π(ρ− c)2

2
)σ−1,0≤ c≤ r

(38)

where ρ is the distance between Xi and Xbs, c is the maximum
forward progress in one hop towards the base station Xbs, and σ

is the number of nodes (a function of r) located in the semi-circle
with radius r, computed by σ = λ

πr2

2 where λ is the constant
density.

Based on (38), we can get the average progress per hop
towards the base station c̄ for Xi with distance ρ to Xbs as follows:

c̄(ρ) =
∫ r

0
v fc(v)dv (39)

Consider all the possible locations of Xi, we have,

c̄ =
∫ 2π

0

∫ R

0

c̄(ρ)
πR2 ρdρdθ =

2
R2

∫ R

0

∫ r

0
v fc(v| ||Xi,Xbs||= ρ)dvρdρ (40)

Since the radius of the geographic region D(Xbs,R) is R, we
estimate the maximum number of hops for delivering a packet
to the base station Xbs by

Ĥmax = dR/c̄e (41)
According to [44], the average number of hops a packet traverses
in the network equals

E(H) =
Ĥmax

∑
k=1
{k(e−(k−1)2λπr2 − e−k2λπr2

)(1− e−λA)k−1} (42)

r

r

Xj+1

Xj-1

Xj

r

r

Xj+1

Xj-1

Xj

Fig. 3: Geom-
etry of a two-
hop connec-
tion.

where A is the intersection area between two
transmission ranges, illustrated by the shaded
area in Fig. 3, and can be computed by:
A = r2(2arccos(

y
2r

)− sin(2arccos(
y
2r

))) (43)

5.2.2 The Probability of Delivery Success
A node succeeds in delivering a packet to the
base station if every hop on the routing path
achieves successful delivery of the packet. For
simplicity, we assume that the delivery of each
hop transmission is independent of other hop transmissions along
the path [45]. Then, given the probability of delivery success
in one hop Pr(EA)Pr(EB) and the average number of hops for
delivering a packet to the base station E(H), the probability that a
node Xi succeeds in delivering a packet to the base station can be
derived by combining (29), (37) and (42) (Assume the base station
can always receive packets from its neighbors [46].):

Pr(C(Xi) = 0|‖Xi,Xbs‖= ρi) = (Pr(EA)Pr(EB))
E(H)

=Π
i+E(H)−2
j=i Pr(EA)Pr(EB)

=Π
i+E(H)−2
j=i (1− exp(−λS(ρi,r)))(1−Pm(ρ j+1))(1− τ)l

(44)

5.3 Upper Bound on Critical Transmission Power
Based on (20), (21) and (44), we can obtain the probability of a
node being a delivery-failure node:

Pr(C(Xi) = 1|‖Xi,Xbs‖= ρi) = 1−Pr(C(Xi) = 0|‖Xi,Xbs‖= ρi)

=1−Π
i+E(H)−2
j=i (1− exp(−λS(ρi,r)))(1−Pm(ρ j+1))(1− τ)l (45)

Considering all the possible locations of Xi, the probability of a
node being a delivery-failure node (Pr(C(Xi)= 1)) can be obtained
as follows

Pr(C(Xi) = 1) =
∫ 2π

0

∫ R

r
(ρi(1−Π

i+E(H)−2
j=i Pr(EA)Pr(EB)))/(πR2)dρidθ

=
2

R2

∫ R

r
ρi(1−Π

i+E(H)−2
j=i (1− exp(−λS(ρi,r)))(1−Pm(ρ j+1))(1− τ)l)dρi

(46)

Because the complexity of computing Pr(C(Xi) = 1), and Pc is
the probability of a node being a delivery-failure node caused by
void nodes, and Pr(EA) is the probability that a node X j is not a
void node, we use Pr(C(Xi) = 1) = 1−Π

i+E(H)−2
j=i (1−Pc)Pr(EB)

to approximately compute Pr(C(Xi) = 1). For simplicity, we use
h(r) to denote Pr(C(Xi) = 1)

h(r) = Pr(C(Xi) = 1) = 1−Π
i+E(H)−2
j=i (1−Pc)Pr(EB)

=1− (
R2−2g(r)

R2 )(E(H)−1)
Π

i+E(H)−2
j=i (1−Pm(ρ j+1))(1− τ)l

(47)

Theorem 5.1: Assume a WSN G(V,E) with N nodes is
deployed in a 2-D disk region D(Xbs,R). Given a designed prob-
ability threshold Prth and a desired delivery ratio η , the critical



1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737005, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

transmission radius rcri(η ,Prth) under network congestion and
link collision satisfies

rcri(η ,Prth)≤ r̃ = inf{r|h(r)≤ (1−Prth)(x+1)
λπR2 } (48)

where h(r) is defined in Formula (47), x = (1− η)N is the
maximum number of delivery-failure nodes.

Proof: Note that critical transmission radius rcri(η ,Prth) is the
minimum transmission radius that can ensure the probability of η-
guaranteed delivery Pr{Z ≤ (1−η)N} ≥ Prth. Let x = (1−η)N.
Based on (8), (9) and (47), we have

Pr(Z ≤ x)≥1− (λπR2h(r))/(x+1) (49)

To ensure that Pr(Z ≤ x)≥ Prth, we only need to ensure
h(r)≤ (1−Prth)(x+1)/(λπR2) (50)

By Lemma 3 in the Appendix, h(r) strictly decreases with r.
Hence, we can ensure Pr(Z ≤ x) ≥ Prth as long as the critical
transmission radius rcri(η ,Prth) satisfies Formula (48). Hence
Theorem 5.1 holds.

Corollary 5.1: Based on Theorem 5.1, the critical transmission
power Pcri

t (η ,Prth) corresponding to rcri(η ,Prth) satisfies

Pcri
t (η ,Prth)≤ P̃t = β (Nn + Ir)r̃α (51)

Proof: Based on (1), we have Prec ≥ (Nn + Ir)β . Letting dsr
in (2) be r̃, with Prec(dsr) ≥ (Nn + Ir)β we can obtain the upper
bound of the critical transmission power Pcri

t (η ,Prth), that is,
Pcri

t (η ,Prth)≤ P̃t = β (Nn + Ir)r̃α .

6 EFFECTS OF HOLES ON DATA DELIVERABILITY

Considering that holes (e.g., those caused by physical obstacles
such as a lake) in practical scenarios can also cause delivery
failure and hence affect data deliverability, we model the effects
of holes on data deliverability in this section.

Suppose there are O holes in the network. The distribution of
the holes follows a Poisson point process with constant density
λO [47], [48]. The areas of the holes (hole sizes) are S1, ...,SO,
and they follow a normal distribution N (µS,σ

2
S ), with mean µS =

∑
O
i=1 Si/O and variance σ2

S [49], [50], [51].

6.1 Probability of Delivery Success in One Hop

For a successful one-hop data transmission with the considera-
tion of holes, say X j → X j+1, the following conditions must be
satisfied.
• Condition EB: No link collision occurs during the packet
transmission from X j to X j+1, and when the packet arrives at X j+1,
and the buffer queue of X j+1 is not full, i.e., no congestion occurs
to the packet.
• Condition EC: X j+1 is in X j’s forward region (greedy forwarding
area), and it is not in a hole. If X j+1 in a hole, X j+1 is not in any
forwarding regions of any nodes.

Hence, the probability of a node X j successfully delivering
data to its next hop node X j+1 can be computed as follows

Pr(X j→ X j+1) = Pr(EB)Pr(EC) (52)

6.1.1 Probability of Condition EC

To compute the probability that a given node X j successfully
delivers data to X j+1, we need to calculate the probability of
Condition EC. According to spatial Poisson process distribution
of holes, the probability of hole(s) being in X j’s feasible region,
denoted by Ed , is

Pr(Ed) = 1− exp(−λOS(ρ j,r)) (53)

The expected area size of the hole(s) existing in X j’s feasible
region, denoted by S̄H , is around

S̄H =
O

∑
k=1

exp(−λS(ρ j,r))(λOS(ρ j,r))k

k!
· k ·µS (54)

Based on Formula (29), the probability that the node X j is
not a void node is 1− exp(−λS(ρ j,r)). According to Formula
(53), the probability of hole(s) being in X j’s feasible region is
1−exp(−λOS(ρ j,r)), and S̄H/S(ρ j,r) is the probability that X j+1
is in the hole within the feasible region given that X j is not a
void node and X j’s feasible region contains hole(s). Hence, the
probability that the next hop node X j+1 (located in X j+1’s feasible
region) is not in a hole of the network is

Pr(EC) = 1− (1− exp(−λOS(ρ j,r)))
S̄H

S(ρ j,r)
(1− exp(−λS(ρ j,r))) (55)

6.2 Probability of Delivery Success to the Base Station
Based on Formulas (37), (52) and (55), the probability of a node
X j successfully delivering data to its next hop node X j+1 with the
consideration of holes is
Pr(X j→ X j+1) =(1−Pm)(1− τ)l(1− (1− exp(−λOS(ρ j,r)))

S̄H

S(ρ j,r)
(1− exp(−λS(ρ j,r))))

(56)

6.2.1 The Probability of Delivery Success
As in Section 5.2.2, we assume the delivery of each hop trans-
mission is independent of each other hop transmissions along the
path. Then, given the probability of delivery success in one hop
Pr(EB)Pr(EC) and the average number of hops for delivering a
packet to the base station E(H) (based on Formula (42)), the
probability that a node Xi succeeds in delivering a packet to the
base station can be derived using Formulas (42), (52) and (56):

Pr(C(Xi) = 0|‖Xi,Xbs‖= ρi) = (Pr(EB)Pr(EC))
E(H)

=Π
i+E(H)−2
j=i Pr(EB)Pr(EC)

=Π
i+E(H)−2
j=i (1−Pm(ρ j+1))(1− τ)l(1− (1− exp(−λOS(ρ j,r)))

S̄H

S(ρ j,r)
(1− exp(−λS(ρ j,r))))

(57)

Based on Formulas (20), (21) and (57), we can obtain the proba-
bility of a node being a delivery-failure node:

Pr(C(Xi) = 1|‖Xi,Xbs‖= ρi) = 1−Pr(C(Xi) = 0|‖Xi,Xbs‖= ρi)

=1−Π
i+E(H)−2
j=i (1−Pm(ρ j+1))(1− τ)l(1− (1− exp(−λOS(ρ j,r)))

S̄H

S(ρ j,r)
(1− exp(−λS(ρ j,r))))

(58)

Considering all the possible locations of Xi, we have
Pr(C(Xi) = 1)

=
∫ 2π

0

∫ R

r
(ρi(1−Π

i+E(H)−2
j=i Pr(EB)Pr(EC)))/(πR2)dρidθ

=
2

R2

∫ R

r
ρi(1−Π

i+E(H)−2
j=i (1−Pm(ρ j+1))(1− τ)l(1− (1

− exp(−λOS(ρ j,r)))
S̄H

S(ρ j,r)
(1− exp(−λS(ρ j,r))))dρi

(59)

For simplicity, we use f (r) to denote Pr(C(Xi) = 1). Formula (59)
has a high computing complexity. As in Section 5.3, based on
Equation (46), with the additional consideration of the hole effect
(Pr(EC)), we can approximately get:

f (r) = Pr(C(Xi) = 1) = 1−Π
i+E(H)−2
j=i (1−Pc)Pr(EB)Pr(EC)

=1− (
R2−2g(r)

R2 )(E(H)−1)
Π

i+E(H)−2
j=i (1−Pm(ρ j+1))(1− τ)l(1− (1−

exp(−λOS(ρ j,r)))
S̄H

S(ρ j,r)
(1− exp(−λS(ρ j,r))))

(60)
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Theorem 6.1: Assume a WSN G(V,E) with N nodes is
deployed in a 2-D disk region D(Xbs,R). Given a designed prob-
ability threshold Prth and a desired delivery ratio η , the critical
transmission radius rcri(η ,Prth) under network congestion, link
collision and holes satisfies

rcri(η ,Prth)≤ r̃ = inf{r| f (r)≤ (1−Prth)(x+1)
λπR2 } (61)

where f (r) is defined in Formula (60), x = (1− η)N is the
maximum number of delivery-failure nodes.

Proof: Recall that critical transmission radius rcri(η ,Prth) is
the minimum transmission radius that can ensure the probability
of η-guaranteed delivery Pr{Z ≤ (1−η)N} ≥ Prth. Let x = (1−
η)N. Based on (8), (9) and (60), we have

Pr(Z ≤ x)≥1− (λπR2 f (r))/(x+1) (62)

To ensure that Pr(Z ≤ x)≥ Prth, we only need to make
f (r)≤ (1−Prth)(x+1)/(λπR2) (63)

Based on Lemma 4 in the Appendix, f (r) strictly decreases with
r. Hence, we can ensure Pr(Z ≤ x) ≥ Prth as long as the critical
transmission radius rcri(η ,Prth) satisfies Formula (61). Hence
Theorem 6.1 holds.

Corollary 6.1: Based on Theorem 6.1, the critical transmission
power Pcri

t (η ,Prth) corresponding to rcri(η ,Prth) satisfies

Pcri
t (η ,Prth)≤ P̃t = β (Nn + Ir)r̃α (64)

Proof: Letting dsr in (2) be r̃, with Prec(dsr) ≥ (Nn + Ir)β we
can obtain the upper bound of the critical transmission power
Pcri

t (η ,Prth), that is, Pcri
t (η ,Prth)≤ P̃t = β (Nn + Ir)r̃α .

7 NUMERICAL SOLUTION OF UPPER BOUNDS ON
CRITICAL TRANSMISSION POWER
Recall that Formulas (23), (26), (48), (51), (61) and (64) show
the result for the case without considering the effects of network
congestion and link collision and holes, without considering the
effects of holes, and with considering the effects of network
congestion and link collision and holes, respectively. In practical
application, we can constrain the delivery ratio η to be no less than
a threshold (e.g., 80%), that is, x≤ 0.2 ·N in Formulas (23), (48),
and (61) [52]. According to Formulas (23), (26), (48), (51), (61)
and (64), to obtain an exact value of upper bound on critical trans-
mission power, we need to compute critical transmission radius r̃
based on the function g(r), h(r), or f (r). Due to the complexity of
g(r) in (21), h(r) in (47) and f (r) in (60), we alternatively provide
a numerical solution to obtain r̃ by following [13] in this section.

Since the upper bounds on critical transmission power can
be directly mapped to the upper bounds on critical transmission
radius in (26), (51) and (64), respectively, we focus on computing
the upper bounds on critical transmission radii in this section.

Theorem 7.1: Let φ(r) = g(r)− (1−Prth)(x+1)
2λπ

, then φ(r) is
strictly monotonically decreasing and there exists a unique root
equaling r̃ in the domain (0,R] such that equation φ(r) = 0 is
satisfied.

Proof: By Lemma 2 in the Appendix, g(r) is strictly decreasing
for r ∈ (0,R], and given a particular and arbitrary x, (1−Prth)(x+1)

2λπ

is a constant, hence φ(r) is strictly monotonically decreasing and
there exists at most one root in the domain (0,R] such that φ(r)= 0
is satisfied. Moreover, the single root exists iff φ(0+) · φ(R) < 0
is satisfied, where φ(0+) = limr→0+φ(r) is the limitation of φ(r)
when r goes to 0+.

Based on Formula (21), we have

φ(0+) = limr→0+

∫ R

r
ρ(1−P(ρ))dρ− (1−Prth)(x+1)

2λπ
(65)

Based on Formula (17), the probability of a node being a
delivery-success node is 0 if r = 0. Thus, we have

φ(0+) =
R2

2
− (1−Prth)(x+1)

2λπ
(66)

Since λπR2 is the expected number of sensor nodes in the network
and x is the maximum number of delivery-failure nodes with η-
guaranteed delivery, it is reasonable that λπR2 > (x+ 1) > (1−
Prth)(x+1) is always satisfied. Thus we have

R2

2
>

(1−Prth)(x+1)
2λπ

(67)

Hence, φ(0+)> 0. Based on Formula (21), we have

φ(R) =
∫ R

R
ρ(1−P(ρ))dρ− (1−Prth)(x+1)

2λπ
=− (1−Prth)(x+1)

2λπ
(68)

Hence, φ(0+) · φ(R) < 0 is satisfied if r ∈ (0,R]. Thus, equa-
tion φ(r) = 0 has one root in the domain (0,R]. Since φ(r) is
strictly monotonically decreasing in the domain (0,R], equation
φ(r) = 0 has at most one root in the domain (0,R]. Therefore
equation φ(r) = 0 has a unique root equaling r̃ = in f{r|g(r) ≤
(1−Prth)(x+1)

2λπ
} in the domain (0,R]. Hence Theorem 7.1 holds.

Theorem 7.2: Let φ(r) = h(r)− (1−Prth)(x+1)
λπR2 , then φ(r) is

strictly monotonically decreasing and there exists a unique root
equaling r̃ in the domain (0,R] such that equation φ(r) = 0 is
satisfied.

Proof: By Lemma 3 in the Appendix, h(r) is strictly decreasing
for r ∈ (0,R], and given a particular and arbitrary x, (1−Prth)(x+1)

λπR2

is a constant, hence φ(r) is strictly monotonically decreasing and
there exists at most one root in the domain (0,R] such that φ(r)= 0
is satisfied.

Based on Formula (47), we have

φ(0+) = limr→0+(h(r)−
(1−Prth)(x+1)

λπR2 )

=limr→0+(1− (R2−2g(r))(E(H)−1)
Π

i+E(H)−2
j=i (1−

Pφ (ρ j+1))(1− τ)l/R(2E(H)−2)− (1−Prth)(x+1)
λπR2 )

(69)

Based on Formula (17), the probability of a node being a
delivery-success node is 0 if r = 0, and according to Formula
(21), limr→0+2g(r) = R2. Thus, we have

φ(0+) = 1− (1−Prth)(x+1)
λπR2

(70)

According to Formula (67), φ(0+) > 0. Based on Formulas (46)
and (47), we have

φ(R) =h(R)− (1−Prth)(x+1)
λπR2 = 0− (1−Prth)(x+1)

λπR2 < 0 (71)

Hence, φ(0+) · φ(R) < 0 is satisfied if r ∈ (0,R]. Similar to the
proof of Theorem 7.1, equation φ(r) = 0 has a unique root

equaling r̃ = in f{r|h(r) ≤ (1−Prth)(x+1)
λπR2 } in the domain (0,R].

Hence Theorem 7.2 holds.
Theorem 7.3: Let φ(r) = f (r)− (1−Prth)(x+1)

λπR2 , then φ(r) is
strictly monotonically decreasing and there exists a unique root
equaling r̃ in the domain (0,R] such that equation φ(r) = 0 is
satisfied.

Proof: By Lemma 4 in the Appendix, f (r) is strictly de-
creasing for r ∈ (0,R], and given a particular and arbitrary x,
(1−Prth)(x+1)

λπR2 is a constant, hence φ(r) is strictly monotonically
decreasing and there exists at most one root in the domain (0,R]
such that φ(r) = 0 is satisfied.

Based on Formula (60), we have
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(b) W/ congestion & collision
Fig. 4: Relationship between probability of η-guaranteed delivery and trans-
mission power with interference.
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(b) W/ congestion & collision
Fig. 5: Relationship between probability of η-guaranteed delivery and the
minimum delivery ratio requirement η .
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Fig. 6: Relationship between probability of η-guaranteed delivery and trans-
mission power with interference and holes.
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(b) W/ congestion & collision
Fig. 7: Relationship between probability of η-guaranteed delivery and the
minimum delivery ratio requirement η with hole consideration.

φ(0+) = limr→0+( f (r)− (1−Prth)(x+1)
λπR2 )

=limr→0+(1− (
R2−2g(r)

R2 )(E(H)−1)
Π

i+E(H)−2
j=i (1−

Pm(ρ j+1))(1− τ)l(1− (1− exp(−λOS(ρ j,r)))
S̄H

S(ρ j,r)

(1− exp(−λS(ρ j,r))))−
(1−Prth)(x+1)

λπR2 )

(72)

Based on Formulas (17) and (21), we have

φ(0+) = 1− (1−Prth)(x+1)
λπR2

(73)

According to Formula (67), φ(0+) > 0. Based on Formulas (59)
and (60), we have

φ(R) = f (R)− (1−Prth)(x+1)
λπR2 = 0− (1−Prth)(x+1)

λπR2 < 0 (74)

Hence, φ(0+) · φ(R) < 0 is satisfied if r ∈ (0,R]. Similar to the
proof of Theorem 7.1, equation φ(r) = 0 has a unique root

equaling r̃ = in f{r| f (r) ≤ (1−Prth)(x+1)
λπR2 } in the domain (0,R].

Hence Theorem 7.3 holds.
Based on Theorem 7.1, Theorem 7.2, Theorem 7.3, r̃ can be

obtained by solving φ(r) = 0 using the bisection method.

8 EXPERIMENTAL RESULTS
In this section, we present numerical analysis of our theoretical
results to investigate the relationships among the transmission
power, probability of η-guaranteed delivery and minimum deliv-
ery ratio η . Then, we present simulation results that evaluate the
tightness of our upper bounds on the critical transmission powers.
Finally, we provide real-world experimental results to validate our
model’s ability of well approximating real life performance.

8.1 Numerical Analysis
In our numerical analysis, we assume that 500 sensor nodes are
distributed over a disk region D(Xbs,1000m) following a Poisson
distribution. The base station is located at the center of the disk
region. All the sensor nodes have the same transmission power.
For SINR model, we set path-loss exponent α = 3, the minimum
signal to interference ratio β = 4, and ambient noise power level
Nn = 10 nw [53], [54]. The number of contending nodes l was
set to be 10 [42], and the buffer size m was set to be 10. The

number of holes was set to be 10. The distribution of the holes
follows a Poisson distribution, and the hole size follows a normal
distribution with mean µS = 500m2 and variance σ2

S = 25.
The Formulas (23)-(26) in Section 4 show the upper bound on

critical transmission power without considering congestion and
collision, and Formulas (48)-(51) in Section 5 consider congestion
and collision. Based on these results, Fig. 4(a) and Fig. 4(b)
show the relationship between the probability of η-guaranteed
delivery and transmission power when η=80%, 85%, 90%, 95%,
and 100%, without and with the existence of congestion and
collision, respectively. Both figures show that the probability of
η-guaranteed delivery increases as the radio transmission power
increases. Comparing Fig. 4(b) to 4(a), we see that with the
consideration of congestion and collision, greater transmission
power is required to achieve the same probability of η-guaranteed
delivery. The probability of η-guaranteed delivery in Fig. 4(a)
eventually goes to 1 when the transmission power is large enough.
However, in Fig. 4(b) it approaches 1 but cannot be 1 (though it
is not obvious in the figure) due to the existence of congestion
and collision. Both figures show that with a smaller η , the
transmission power required to achieve the same probability of
η-guaranteed delivery is smaller. An interesting observation is
that the curve of η = 100% is widely separated from the curves of
other η values. This result indicates that with tolerance to a small
percentage of delivery-failure nodes, much less transmission
power is needed compared to that needed by 100%-guaranteed
delivery, thus obtaining significant energy saving.

Fig. 5 shows the relationship between the probability of η-
guaranteed delivery and η with different transmission powers.
We see that given a transmission power, the probability of η-
guaranteed delivery decreases as η increases, and higher transmis-
sion power results in higher probability of η-guaranteed delivery.
This is because a higher transmission power enables nodes to
communicate with nodes further away, decreasing the probability
of delivery failure caused by void nodes. Comparing Fig. 5(a)
and 5(b), for the same transmission power and the same η , the
probability of η-guaranteed delivery in Fig. 5(b) is lower than that
in Fig. 5(a) because of the congestion and collision effects.

The Formulas (61)-(64) in Section 6 consider the effects of
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(d) 95%-guaranteed delivery
Fig. 8: Relationship between upper bound on critical transmission power and node density with interference.
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Fig. 9: Relationship between upper bound on critical transmission power and node density with interference and holes.

holes on data deliverability. With these results, Fig. 6 shows the
relationship between the probability of η-guaranteed delivery
and transmission power when η=80%, 85%, 90%, 95%, and
100% with holes. Fig. 6 mirrors Fig. 4 due to the same reasons
explained in Fig. 4. Comparing Fig. 6 and Fig. 4, the probability
of η-guaranteed delivery in Fig. 6 is lower than that in Fig. 4
because the holes in Fig. 6 can also lead to delivery failure, which
increases delivery failure probability.

Fig. 7 shows the relationship between the probability of
η-guaranteed delivery and η with holes in different transmission
powers. We also see that given a transmission power, the
probability of η-guaranteed delivery decreases as η increases,
and higher transmission power results in higher probability of
η-guaranteed delivery due to the same reasons explained in Fig. 5.
For the same transmission power and the same η , the probability
of η-guaranteed delivery in Fig. 7(b) is lower than that in Fig.
7(a) because of the congestion and collision effects. By examining
Fig. 7 and Fig. 5, we find the probability of η-guaranteed delivery
in Fig. 7 is lower than that in Fig. 5 for the same transmission
power and the same η because the holes in Fig. 7 can result in
delivery failure, which increases the probability of delivery failure
and thereby decreases the probability of η-guaranteed delivery.

Fig. 8 shows the relationship between the upper bound on
critical transmission power and the node density. We changed
the node density by varying the number of sensor nodes over
the disk region D(Xbs,1000m). Fig. 8(a), 8(b), 8(c) and 8(d)
show the upper bounds on the critical transmission power for η=
80%, 85%, 90%, and 95% guaranteed delivery, respectively. Each
figure shows upper bounds derived with congestion and collision
(denoted as “cong-col” in figures) as well as without congestion
and collision. The upper bounds for 100%-guaranteed delivery
are drawn in every figure for comparison. From these figures, it
can be seen that the upper bounds on critical transmission power
decrease as the number of nodes in the network (hence node
density) increases. This is because a higher node density leads to a
smaller average distance between any pair of nodes, which enables
each node to use a smaller transmission radius for communication.
We also see that the upper bounds on critical transmission power
decrease slowly as the node density increases. This is because the
increase of node density introduces more interference, offsetting
some effect of decreasing average distance of any pairs. All of

these figures show that the upper bound derived with the con-
sideration of congestion and collision is larger than that without
the consideration. This indicates that higher transmission power
is required to counter the effect of congestion and collision. We
also find that a smaller η generates a smaller upper bound on
critical transmission power. The upper bound for 100%-guaranteed
delivery is considerably larger than that for smaller η , which
indicates that higher delivery ratio requires higher transmission
power regardless of the existence of congestion and collision.

Fig. 9 shows the relationship between the upper bound on
critical transmission power and node density with holes in the
network. Fig. 9 mirrors Fig. 8 due to the same reasons explained
in Fig. 8. Comparing Fig. 9 and Fig. 8, the upper bounds in Fig.
9 are larger than that in Fig. 8. This is because the holes in Fig.
9 increase the delivery failure probability and thus increase the
upper bounds on critical transmission power.

Fig. 10(a)-10(d) show the relationship between the probability
of η-guaranteed delivery and the number of nodes in the network
(node density) with transmission powers 300mw, 350mw, 400mw
and 450mw, respectively. Each figure shows the probabilities of
η-guaranteed delivery increase as the node density increases.
Also, higher η requires a higher node density to ensure a higher
probability of η-guaranteed delivery. 100%-guaranteed delivery
requires much higher node density to achieve a high probability
of guaranteed delivery than others. Comparing these figures, we
also see that the larger the transmission power, the smaller the
node density is required for achieving a high probability of η-
guaranteed delivery. This is because a larger transmission power
enables nodes to communicate with nodes further away.

8.2 Simulation Results
We used network simulator NS2 [55] to conduct simulation

experiments. Constant Bit Rate (CBR) Traffic generator [55] is
used for each sensor to create a fixed size packet for every fixed
interval. To validate the correctness and tightness of our upper
bound, we compare our theoretical results with simulation results
in various scenarios. By default, the number of nodes in the
network was set to 200 in the simulation. The nodes are distributed
over a disk region D(Xbs,300m) following a Poisson distribution.
The threshold for decoding a signal was set to Pth =−64dBm. For
each setting of transmission power, we generated 200 random net-
work topologies and for each topology we computed the ratio of
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(a) Transmission power:300mw

0 100 200 300 400 500
Number of nodes in the network

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y 
of

 2
-g

ua
ra

nt
ee

d 
de

liv
er

y

80%-guaranteed delivery
85%-guaranteed delivery
90%-guaranteed delivery
95%-guaranteed delivery
100%-guaranteed delivery

(b) Transmission power:350mw

0 100 200 300 400 500
Number of nodes in the network

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y 
of

 2
-g

ua
ra

nt
ee

d 
de

liv
er

y

80%-guaranteed delivery
85%-guaranteed delivery
90%-guaranteed delivery
95%-guaranteed delivery
100%-guaranteed delivery

(c) Transmission power:400mw
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(d) Transmission power:450mw
Fig. 10: Probability of η-guaranteed delivery vs. node density with interference.
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(a) η = 85%
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(b) η = 95%
Fig. 11: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 200, interval=2 seconds).
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(b) η = 95%
Fig. 12: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 100, interval=2 seconds).

delivery-success nodes. The probability of η-guaranteed delivery
is estimated with the 200 delivery ratio samples. The number of
holes was set to be 10. The distribution of holes follows a Poisson
distribution, and the hole size follows a normal distribution with
mean µS = 100m2 and variance σ2

S = 5.
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(b) η = 95%
Fig. 13: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 100, interval=1 second).
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(b) η = 95%
Fig. 14: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 100, interval=0.5 second).

Fig. 11(a)-11(b) show the theoretical upper bounds on critical
transmission power and the simulation results for 85% and 95%
guaranteed delivery. We see our theoretical upper bounds are very
close to the simulation results, and the upper bound on critical
transmission power increases as η increases. This is because
higher η-guaranteed delivery needs larger transmission power
to enable nodes to communicate with nodes further away and
thus reduce the delivery failure probability caused by void node,
congestion, etc.
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(b) η = 95%
Fig. 15: Probability of η-guaranteed delivery vs. transmission power with holes
(path-loss exponent α = 3, N = 200, interval=2 seconds).
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(b) η = 95%
Fig. 16: Probability of η-guaranteed delivery vs. transmission power with holes
(path-loss exponent α = 3, N = 100, interval=2 seconds).

To further validate our model, we varied the network density
and traffic load of the network. In Fig. 12, we decreased the
number of nodes in the network to 100 to decrease the network
density. Fig. 12(a)-12(b) show the theoretical upper bounds on
critical transmission power and the simulation results for 85%
and 95% guaranteed delivery. We see that our theoretical upper
bounds are still very close to the simulation results. We also find
that the upper bound on critical transmission power increases
as η increases. Comparing Fig. 12 with Fig. 11, we find that
the upper bounds on critical transmission power in Fig. 12 are
larger than those in Fig. 11, which indicates the upper bound on
critical transmission power increases as node density decreases.
This is because larger node density shortens the average distance
between nodes and thereby reduces the probability of delivery
failure caused by void nodes.

We then varied traffic load by different intervals for CBR
traffic generator. Fig. 12, 13 and 14 show the relationship between
the probability of η-guaranteed delivery and the transmission
power with 100 nodes in the network, under different intervals
2, 1 and 0.5. Smaller interval means higher traffic load. It is
obvious to see that our theoretical upper bounds are very close
to the simulation results. Comparing Fig. 12, 13 and 14, we
find the upper bounds on critical transmission power follow Fig.
14>Fig. 13>Fig. 12, which indicates the upper bound on critical
transmission power increases as traffic load increases. This is
because heavier traffic load increases congestion and collision and
thereby increases the probability of delivery failure.

To measure the effects of holes on data deliverability, we
conducted experiments with holes in simulation. Fig. 15(a)-15(b)
show the theoretical upper bounds on critical transmission power
and the simulation results for 85% and 95% guaranteed delivery
with 200 nodes in the network. Fig. 15 mirrors Fig. 11 due to the
same reasons explained in Fig. 11. Comparing Fig. 15 and Fig.
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(b) η = 95%
Fig. 17: Probability of η-guaranteed delivery vs. transmission power with holes
(path-loss exponent α = 3, N = 100, interval=1 second).
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(b) η = 95%
Fig. 18: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 16, interval=1 second).

11, we see that the upper bounds in Fig. 15 are larger than that in
Fig. 11. This is because the holes in Fig. 15 increase the delivery
failure probability.

We also varied the network density and traffic load in the
network. In Fig. 16, we decreased the number of nodes to 100
to reduce the network density. Fig. 16 mirrors Fig. 12 due to the
same reasons explained in Fig. 11. Comparing Fig. 16 to Fig. 12,
we see that the upper bounds on critical transmission power in Fig.
16 are larger than those in Fig. 12. This is because the holes in Fig.
16 can also cause delivery failure, which increases the probability
of delivery failure. Comparing Fig. 16 and Fig. 15, we observe
that the upper bounds on critical transmission power in Fig. 16
are relatively larger than those in Fig. 15 due to the same reason
explained in Fig. 12. In Fig. 17, we increased the traffic load by
decreasing the interval for CBR traffic generator to 1. From Fig.
17, we also find that the theoretical upper bounds are close to the
simulation results, and the upper bound on critical transmission
power increases as η increases due to the same reason explained
in Fig. 11. Comparing Fig. 17 to Fig. 16, the upper bounds on
critical transmission power in Fig. 17 are larger than those in
Fig. 16 because the heavier traffic load increases congestion and
collision and thus increases the delivery failure probability.

8.3 Real-world Experimental Results
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(b) η = 95%
Fig. 19: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 16, interval=2 seconds).
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(b) η = 95%
Fig. 20: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 16, interval=1 second).
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(b) η = 95%
Fig. 21: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 16, interval=2 seconds).
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Fig. 22: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 40, interval=1 second).

Our testbed [56] consists of 16 Tmote Sky motes [57] running
TinyOS 2.1.2. A computer running Ubuntu 12.04 was used to
configure all sensor nodes. Each sensor node was configured to
periodically sample and transmit data. The network delivery ratio
was measured under different traffic loads, network densities, and
radio transmission power levels.

Fig. 18 shows the relationship between the probability of η-
guaranteed delivery and radio power level for 85% and 95% guar-
anteed delivery. In the test, the interval between two consecutive
packet transmissions was set as 1 second. In Fig. 19, we increased
the interval between two consecutive packet transmissions to 2
seconds to decrease traffic load. Both Fig. 18 and Fig. 19 indicate
that the experimental results are close to the theoretical results.
By comparing Fig. 18(a) and Fig. 18(b), Fig. 19(a) and Fig. 19(b),
similarly, we see that the upper bound on critical transmission
power increases as η increases, which is consistent with numerical
results and simulation results. Comparing Fig. 19 and Fig. 18, we
find that the upper bounds on critical transmission power in Fig.
18 are larger than those in Fig. 19. This result indicates that the
upper bound on critical transmission power increases as traffic
load increases, which is consistent with our simulation results.

To fully verify the theoretical results derived from our model,
we reduced the node density with the network deployment area
four times as that in Fig. 18 and Fig. 19. The results are shown
in Fig. 20 and Fig. 21. By comparing Fig. 20 with Fig. 18, and
Fig. 21 with Fig. 19, we find the upper bounds in Fig. 20 and Fig.
21 are relatively larger than those in Fig. 18 and Fig. 19. This
is because with larger node density the average distance between
nodes is reduced and thus the probability of delivery failure caused
by void nodes decreases. By examining Fig. 20 and Fig. 21, we
find the upper bounds on critical transmission power in Fig. 20
are slightly larger than those in Fig. 21 due to the same reason
explained in Fig. 17.

To test the effects of holes on data deliverability, we conducted
ad-hoc experiment. The testbed consists of 40 Tmote Sky motes
running TinyOS 2.1.2. The sensor nodes are deployed over a disk
region with radius R = 12m following a Poisson distribution, and
10 holes are distributed over the disk region following a Poisson
distribution. The hole size follows a normal distribution with mean
µS = 5m2 and variance σ2

S = 0.062. Each node was configured to
periodically sample and transmit data. The network delivery ratio
was measured under different network densities, traffic loads, and
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(b) η = 95%
Fig. 23: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 40, interval=2 seconds).
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Fig. 24: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 20, interval=1 second).

radio transmission power levels.
Fig. 22 and Fig. 23 show the relationship between the proba-

bility of η-guaranteed delivery and radio power level for both 85%
and 95% guaranteed delivery. In Fig. 22, the interval between two
consecutive packet transmissions was set as 1 second. In Fig. 23,
we increased the interval to 2 seconds to decrease the traffic load.
Fig. 22 mirrors Fig. 18, and Fig. 23 mirrors Fig. 19 due to the
same reasons in Fig. 18 and Fig. 19, respectively. By examining
Fig. 22 and Fig. 23, we see that the upper bounds on critical
transmission power in Fig. 22 are larger than those in Fig. 23,
which is consistent with the simulation results. Comparing Fig. 22
with Fig. 18, we find that the upper bounds on critical transmission
power in Fig. 22 are larger than those in Fig. 18 because the
holes in Fig. 22 can lead to delivery failure, which increases
the probability of delivery failure. Similarly, the upper bounds
on critical transmission power in Fig. 23 are larger than those in
Fig. 19 due to the same reason.

We also reduced the node density by decreasing the number
of sensor nodes in the network to 20. The results are shown
in Fig. 24 and Fig. 25. Fig. 24 mirrors Fig. 20, and Fig. 25
mirrors Fig. 21 due to the same reasons explained in Fig. 20
and Fig. 21, respectively. Compare Fig. 24 with Fig. 20 and
Fig. 25 with Fig. 21, we see that the upper bounds on critical
transmission power in Fig. 24 and Fig. 25 are larger than those
in Fig. 20 and Fig. 21 because the holes in Fig. 24 and Fig. 25
can cause delivery failure, increasing delivery failure probability.
By comparing Fig. 24 with Fig. 22, and Fig. 25 with Fig. 23,
we see that the upper bounds in Fig. 24 and Fig. 25 are larger
than those in Fig. 22 and Fig. 23 because with larger node density
the average distance between nodes is reduced and the delivery
failure probability caused by void nodes decreases. By examining
Fig. 24 and Fig. 25, we also find the upper bounds on critical
transmission power in Fig. 24 are relatively larger than those
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Fig. 25: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 20, interval=2 seconds).

in Fig. 25 because the heavier traffic load in Fig. 24 introduces
congestion and collision, causing high delivery failure probability.

Our theoretical and real-world experimental results show that
by tolerancing to a small percentage of delivery-failure nodes,
much energy can be saved.

9 CONCLUSION

In this paper, we study the deliverability of greedy routing in 2-
D WSNs. As opposed to previous works that only analyze the
probability of guaranteeing all deliveries and neglect network con-
gestion and collision, we introduce η-guaranteed delivery, where
η can be varied and study its probability with the consideration of
network congestion and collision. Further more, we consider the
effects of holes (e.g., obstacles) on deliverability of greedy routing
and derive the upper bounds of critical transmission power, which
are more practical and accurate. We adopt a more realistic model
to analyze upper bounds on critical transmission power. Through
theoretical analysis, we derive the upper bounds on the critical
transmission power for achieving η-guaranteed delivery with a
given probability. The extensive numerical analysis, simulation
and real-world experimental results show that our characterization
is closer to the practical scenarios and our derived upper bounds
are correct and tight. In the future, we will consider link schedul-
ing in the SINR model and individual setting of transmission
power for each node to further improve energy-efficiency, and
we will further consider the effects of nodes’ location on network
congestion and collision for characterizing the deliverability of
greedy routing. Also, we will evaluate the deliverability of greedy
routing with various improvements proposed recently for handling
void nodes and localization errors.
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