
2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2737628, IEEE
Transactions on Cloud Computing

1

RIAL: Resource Intensity Aware Load Balancing in Clouds
Haiying Shen*, Senior Member, IEEE

Abstract—To provide robust infrastructure as a service (IaaS), clouds currently perform load balancing by migrating virtual machines
(VMs) from heavily loaded physical machines (PMs) to lightly loaded PMs. The unique features of clouds pose formidable challenges to
achieving effective and efficient load balancing. First, VMs in clouds use different resources (e.g., CPU, bandwidth, memory) to serve a
variety of services (e.g., high performance computing, web services, file services), resulting in different overutilized resources in
different PMs. Also, the overutilized resources in a PM may vary over time due to the time-varying heterogeneous service requests.
Second, there is intensive network communication between VMs. However, previous load balancing methods statically assign equal or
predefined weights to different resources, which lead to degraded performance in terms of speed and cost to achieve load balance.
Also, they do not strive to minimize the VM communications between PMs. We propose a Resource Intensity Aware Load balancing
method (RIAL). For each PM, RIAL dynamically assigns different weights to different resources according to their usage intensity in the
PM, which significantly reduces the time and cost to achieve load balance and avoids future load imbalance. It also tries to keep
frequently communicating VMs in the same PM to reduce bandwidth cost, and migrates VMs to PMs with minimum VM performance
degradation. We also propose an extended version of RIAL with three additional algorithms. First, it optimally determines the weights
for considering communication cost and performance degradation due to VM migrations. Second, it has a more strict migration
triggering algorithm to avoid unnecessary migrations while still satisfying Service Level Objects (SLOs). Third, it conducts destination
PM selection in a decentralized manner to improve scalability. Our extensive trace-driven simulation results and real-world
experimental results show the superior performance of RIAL compared to other load balancing methods.

F

1 INTRODUCTION

Cloud computing is becoming increasingly popular due to
its ability to provide unlimited computing services with
the pay-as-you-go model. Currently cloud systems employ
virtualization technology to provide resources in physical
machines (PMs) in the form of virtual machines (VMs).
Users create VMs deployed on the cloud on demand. Each
VM runs its own operating system and consumes resources
(e.g., CPU, memory and bandwidth) from its host PM.

Cloud providers supply services by signing Service Lev-
el Agreement (SLA) with cloud customers that serves as
both the blueprint and the warranty for cloud computing.
Under-provisioning of resources leads to SLA violations
while over-provisioning of resources leads to resource un-
derutilization, and a consequent decrease in revenue for the
cloud providers. Under this dilemma, it is important for
cloud providers to fully utilize cloud resources and mean-
while uphold the SLAs. In order to provide robust infras-
tructure as a service (IaaS), clouds currently perform load
balancing by migrating VMs from heavily loaded PMs to
lightly loaded PMs so that the utilizations of PMs’ resources
(defined as the ratio between actual requested resource
amount and the resource capacity) are below a threshold.
Previously proposed load balancing methods [1]–[5] com-
bine the utilizations of different resources in selecting VMs
to migrate and finding the most suitable destination PMs.
They predefine a weight (or give equal weight) for each re-
source, calculate the weighted product of different resource
utilizations to represent the load of PMs and the weighted
product of owned amount of each resource to represent
the capacity of PMs, and then migrate VMs from the most
heavily loaded PMs to the most lightly loaded PMs.

• * Corresponding Author. Email: hs6ms@virginia.edu; Phone: (434) 924-
8271; Fax: (434) 982-2214.

• Department of Computer Science, University of Virginia, Charlottesville,
VA 22904-4740.
E-mail: hs6ms@virginia.edu

By assigning different resources equal or predefined
weights, these methods neglect the unique feature of clouds
of time-varying and different overutilized resources in d-
ifferent PMs. Cloud VMs use different resources to serve
a variety of services (e.g., high performance computing,
web hosting, file service), resulting in different overuti-
lized resources and different resource intensities (e.g., CPU-
intensive, MEM-intensive) in different PMs. Resource intensi-
ty here means the degree that a type of resource is demand-
ed for services. By leveraging different resource intensities
(e.g., moving a CPU-intensive and non-MEM-intensive VM
from a CPU-intensive PM to a CPU-underutilized PM), we
can more quickly achieve and more constantly retain the
load balanced state with fewer VM migrations (i.e., fast and
constant convergence). As cloud tasks are different from
customers to customers and vary with time, the overutilized
resources in a PM may vary over time. Predetermined or
equal resource weight cannot adapt to the heterogeneous
resource intensities among PMs and time-varying resource
intensity in one PM.

For example, consider 4 PMs in Figure 1, where over-
loaded PM4 hosts 3 VMs. Because CPU is overutilized
while MEM is underutilized in PM4, considering resource
intensity, VM1 is the best option to move out since it has
high consumption on high-intensity CPU and low consump-
tion on low-intensity MEM. PM1 is the best option for the
destination PM because it has most available CPU capacity
for the CPU-intensive VM1. Without considering resource
intensity, the previous methods may choose VM2 and VM3
to migrate out, and choose PM2 and PM3 as the destination
PMs. Section 4.4 presents why considering intensity is better
in detail with experiment measurement.

We aim to not only reduce the number of migrations in
achieving the load balanced state but also avoid load imbal-
ance in the future (i.e., fast and constant convergence) while
minimizing the adverse effect of migration on the quality of
cloud services. In addition to reducing load balancing cost,
reducing VM migrations also mitigates the negative effect
on cloud services because each migration i) generates a

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2737628, IEEE
Transactions on Cloud Computing

2

CPU MEM CPU MEM CPU MEM

Select VM1 to move to PM1, because:
overutilized CPU non‐overutilized MEM

VM1 high consumption low consumption
PM1 low consumption

VM2VM1 VM3

CPU

PM1

CPU

PM2

CPU

PM3

MEM MEM MEM

M
igr

at
ion

CPU: overutilized, MEM: non‐overutilizedPM4

Fig. 1: Migration VM and destination PM selection.

service downtime; and ii) requires extra amount of network
bandwidth and cache warm-up at the destination [6], [7].

In this paper, we propose a Resource Intensity Aware
Load balancing method (RIAL). The advantages of RIAL are
threefold. First, RIAL novelly distinguishes different PMs,
different resource intensities and considers time-varying
resource intensity in a PM when determining resource
weights. For each PM, RIAL assigns different weights to dif-
ferent resources according to their intensities, which are then
used in selecting VMs to migrate and finding destination
PMs in each load balancing operation. Thus, an overloaded
PM migrates out its VMs with high consumption on
high-intensity resources and low consumption on low-
intensity resources, hence quickly relieving its load while
fully utilizing its resources. Also, the selected destination
PM has high capacity on the high-intensity resources,
which proactively avoids overloading destination PMs in
the future. As RIAL determines the weight of a resource
based on its current intensity, it is adaptive to dynamically
changing resource intensities in different PMs. Second,
RIAL selects migration VMs that have low communication
rates with other VMs residing in the same PM in order
to reduce bandwidth consumption. Communication rate
between two VMs is the number of contacts between them
in a unit time period. Third, when selecting destination PMs,
RIAL tries to minimize the VM performance degradation
due to migration. With the three advantages, RIAL achieves
fast and constant convergence with fewer migrations while
minimizing the interruption to cloud services.

We also propose an extended version of RIAL with
three additional algorithms. First, it optimally determines
the weights for considering communication cost and per-
formance degradation due to VM migrations. Second, it
has a more strict migration triggering algorithm to avoid
unnecessary migrations while still satisfying Service Level
Objects (SLOs). Third, it conducts destination PM selection
in a decentralized manner to improve scalability.

We have conducted extensive trace-driven simulation
and also deployed a small-scale cloud for real-world exper-
iments. The experimental results show the superior perfor-
mance of RIAL compared to other load balancing methods
with fewer migrations, lower VM performance degradation
and lower VM communication cost.

The rest of this paper is organized as follows. Section
2 briefly describes the related work. Section 3 presents the
objective of RIAL. Section 4 first presents the detailed design
of RIAL and an analysis of its performance compared to
other load balancing methods, and then presents the three

additional algorithms for the extended version of RIAL.
Section 5 evaluates RIAL in both simulation and real-world
experiments in comparison with other load balancing meth-
ods. Finally, Section 6 summarizes the paper with remarks
on our future work.

2 RELATED WORK

Many load balancing methods have been proposed to deal
with PM overload problem using VM migration [1]–[5].
Sandpiper [1] tries to move load from the most overloaded
servers to the most underloaded servers. It defines volume
for VMs and PMs: volume=(1/(1-ucpu))*(1/(1-unet))*(1/(1-
umem)), where u is resource utilization. It also defines a
volume-to-size ratio (VSR) for each VM: VSR=volume/size,
where size is the memory footprint of the VM. It then
migrates the VM with the maximum VSR to the PM with
the least volume. TOPSIS [5] predetermines weights for
different criteria (e.g., CPU, memory, bandwidth, PM tem-
perature). To select VMs to migrate (or select destination
PM), it first forms a weighted normalized decision matrix
with the utilizations of VMs of a PM (or PMs) with respect to
each criterion. It then determines the ideal solution by using
the maximum utilization for the benefit criteria and the
minimum utilization for the cost criteria. Khanna et al. [4]
treated different resources equally. They proposed to select
the VM with the lowest product of resource utilizations from
the overloaded PM and migrate it to the PM that has the
least residual capacity big enough to hold this VM. Arzuaga
et al. [2] used predetermined resource weights to calculate
the product of weighted utilizations of different resources of
a PM or a VM as its load. It then chooses the VM with the
highest load from an overloaded PM to migrate to a selected
PM that yields the greatest improvement of the system
imbalance metric. Tang et al. [8] proposed a load balancing
algorithm that strives to maximize the total satisfied applica-
tion demand and balance the load across PMs. They define
load-memory ratio of an instance as its CPU load divided
by its memory consumption to measure its resource utiliza-
tion. However, all previous methods statically assume equal
or predefined weights for different resources, which may
not be correct due to the different time-varying demands
on different resources in each PM. RIAL is distinguished
from these methods in that it dynamically determines the
resource weight based on the demand on the resource in
each PM, which leads to fast and constant convergence to
the load balanced state.

Xu et al. [9] reviewed the state-of-the-art research on
managing the performance overhead of VMs, and sum-
marize them under diverse scenarios of the IaaS cloud,
ranging from the single-server virtualization, a single mega
datacenter, to multiple geodistributed datacenters. Li et al.
[10] proposed effective VM placement methods to reduce
the network cost in cloud data centers. Xu et al. [9], [11]
proposed methods that consider VM performance (such as
VM performance degradation caused by VM migration)
when making the VM provisioning or migration decision.
Lim et al. [12] modelled a migration process of a VM instance
as a pair of jobs that run at the hosts of sender and receiver
and proposed a method to analyze the migration time and
the performance impact on multi-resource shared systems
for completing given VM assignment plan. The novelty of
RIAL compared to these works is the intensity-awareness,

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2737628, IEEE
Transactions on Cloud Computing

3

which helps to reduce the number of VM migrations and
maintain the load balanced state in the system.

Some works deal with load balancing on one resource
such as storage [13] and bandwidth [14]–[16]. Hsiao et al.
[13] proposed a load balancing algorithm for distributed file
systems in clouds by moving file chunks from overloaded
servers to lightly loaded servers. Oktopus [14] provides
static reservations throughout the network to implement
bandwidth guarantees. Popa et al. [16] navigated the trade-
off space of requirements-payment proportionality, resource
minimum guarantee and system utilization when sharing
cloud network bandwidth. Xie et al. [15] proposed PRO-
TEUS for bandwidth provisioning using predicted band-
width utilization profile in order to increase the system
bandwidth utilization and reduce the cost to the tenants.
However, by focusing on only one resource, these approach-
es cannot be directly used for PM load balancing where VMs
use different types of resources.

Many other works for resource management in clouds
deal with scheduling incoming workload requests or initial
placement of VMs with the concern of cost and energy
efficiency [17]–[20]. Lin et al. [17] proposed an algorithm
to achieve dynamic right-sizing in datacenters in order to
save energy. It uses a prediction window of future arrivals
to decide when to turn off an idle server. Maguluri et al.
[18] focused on resource allocation that balances the load
among servers to achieve throughput optimization. They
considered a stochastic model of a cloud computing cluster,
in which jobs arrive according to a stochastic process and
request VMs. The authors showed that the widely-used
Best-Fit scheduling algorithm is not throughput-optimal,
and proposed alternatives to achieve optimal throughput.
The goal of RIAL is not to achieve optimal throughput.
Meng et al. [20] used traffic patterns among VMs to deter-
mine VM placement in order to improve network scalability.
Shrivastava et al. [19] proposed AppAware that considers
inter-VM dependencies and the underlying network topol-
ogy to place VMs with intensive mutual communication
in the same PM to reduce network traffic. Different from
these two works, RIAL does not solely focus on improving
network scalability or reduce network traffic, though it is
one factor that RIAL considers in load balancing. Shen et
al. [21] proposed an online resource demand prediction
method to achieve adaptive resource allocation. Though
resource demand prediction is out of the scope of this paper,
this method can be used in RIAL to predict the future
resource demands of VMs in load balancing to achieve the
load balanced state in the future.

3 OBJECTIVES AND PROBLEM STATEMENT

3.1 Notations and Final Objective

We consider a scenario in which a total of N PMs serve
as a resource pool in the cloud. Let Pi denote PM i
(i = 1, 2, ..., N), and ni be the number of VMs hosted by
Pi, denoted by Vij (j = 0, 1, ..., ni). Let Cik (k ∈ K) denote
the capacity (total amount) of type-k resource owned by Pi,
where K is the set of resources.

Let Lijk(t) denote the type-k resource requested by Vij
in Pi at time t. It is a time varying function. To avoid
small transient spikes of Lijk(t) measurements that trigger
needless VM migrations, we use the average of Lijk(t)
during time period ∆t, denoted by Lijk.

Lijk =
1

∆t

∫ t

t−∆t
Lijk(t)dt (1)

∆t is an adaptive value depending on how fine grained we
want to monitor the resource demands.

The usage of type-k resource in Pi is the sum of type-k
resource requested by its VMs:

Lik =
ni∑
j=1

Lijk (2)

Taking into account the heterogeneity of server capac-
ities, we define the utilization rate of type-k resource in
Pi (denoted by uik) as the ratio between actual requested
resource amount of all VMs in Pi and the capacity of type-k
resource of Pi.

uik =
Lik
Cik

. (3)

We use Θk to denote the predetermined utilization
threshold for the type-k resource in a PM in the cloud. The
final objective of RIAL is to let each Pi maintain uik < Θk

for each of its type-k resource (i.e., lightly loaded status). We
call a PM with uik > Θk overloaded PM, and call this type-k
resource overutilized resource.

Cloud customers buy VMs from cloud provider with
predefined capabilities. For example, a small VM instance
in Amazon EC2 is specified by 1.7GB of memory, 1 EC2
compute unit, 160GB of local instance storage, and a 32-
bit platform. We use Cijk to denote label capacity of Vij
corresponding to type-k resource. The utilization of Vij is
defined as

uijk =
Lijk
Cijk

(4)

In order to deal with heterogeneity, where the VM capacities
are not the same, uijk can be defined in a new way: ûijk =
uijk·Cijk

Cik
or ûijk =

Lijk

Cik
.

Like the load balancing methods in [1], [5], RIAL can
use a centralized server(s) to collect node load information
and conduct load balancing. It can also use a decentralized
method as in [13] to conduct the load balancing. In this
paper, we focus on how to select VMs and destination PMs
to achieve a fast and constant convergence while minimize
the adverse effect of VM migration on the cloud services.

3.2 Reducing VM Communications between PMs

The VMs belonging to the same customer are likely to
communicate with each other much more frequently than
with other VMs. Placing VMs with high communication fre-
quency in different PMs will consume considerable network
bandwidth. To save bandwidth consumption and hence
increase cloud service quality, we try to keep VMs with
frequent communication in the same PM. Thus, we try not
to select VMs with a high communication rate with local
VMs (residing in the same PM) to migrate to other PMs.
We use Tijpq to denote the communication rate between Vij
and Vpq , and use Tij to denote the communication rate of
Vij with local VMs:

Tij =
ni∑
q=1

Tijiq (5)

Also, we try to choose the destination PM with the
highest communication rate with migration VM Vij . We
denote the communication rate between Vij and PM Pp as

Tijp =

np∑
q=1

Tijpq (6)

where np is the number of VMs in Pp.

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2737628, IEEE
Transactions on Cloud Computing

4

3.3 Reducing VM Performance Degradation by Migra-
tions

When a VM is being migrated to another PM, its per-
formance (response time) is degraded [22]. We also aim
to minimize the VM performance degradation caused by
migrations. We calculate the performance degradation of
VM Vij migrating to PM Pp based on a method introduced
in [22], [23]:

Dijp = dip ·
∫ t+

Mij
Bip

t
uij(t)dt (7)

where t is the time when migration starts,Mij is the amount
of memory used by Vij , Bip is the available network band-
width, Mij

Bip
indicates the time to complete the migration,

uij(t) is the CPU utilization of Vij , and dip is the migration
distance from Pi to Pp. The distance between PMs can be
determined by the cloud architecture and the number of
switches across the communication path [16], [20].

3.4 Problem Statement

In a cloud system, we denote the set of all overload PMs by
O and the set of all lightly loaded PMs by L. Given O and
L, our objective is to select Vij from Pi ∈ O and then select
the destination Pp ∈ L to migrate Vij to in order to elimi-
nate overloaded PMs and meanwhile minimize the number
of VM migrations, the total communications between the
migration VMs and PMs and the total performance degra-
dation of all migration VMs. We use Si to denote the set of
selected migration VMs in Pi, and use | · | to represent the
size of a set. Then, our problem can be expressed as:

min |{Vij |Vij ∈ Si, Pi ∈ O}| (8)

min
∑

Tijp (9)

min
∑

Dijp (10)
subject to : uik ≤ Θk, ∀ i, k (11)

Our problem of VM migration is a variant of the multiple
knapsack problem, which is NP-complete [24]. A simpler
formulation of our problem has been shown to be NP-
complete in [19], [20]. Our problem differs from them mainly
in that it minimizes the number of VM migrations. We can
construct a special instance of our problem that is similar
to them and hence prove that our VM migration problem
is NP-complete. We will present a method for solving this
problem below.

4 THE DESIGN OF RIAL

Like all previous load balancing methods, RIAL periodically
finds overloaded PMs, identifies the VMs in overloaded
PMs to migrate out and identifies the destination PMs to
migrate the VMs to. In RIAL, each PM Pi periodically checks
its utilization for each of its type-k (k ∈ K) resources to
see if it is overloaded. We use L and O (L ∪ O = K) to
denote the set of resource types in the PM that are non-
overutilized and overutilized, respectively. An overloaded
PM triggers VM migration to migrate its VMs to other PMs
until its uik ≤ Θk (k ∈ K). Below, we present the methods
for selecting VMs to migrate and for selecting destination
PMs with the objectives listed in Section 3.4.

4.1 Selecting VMs to Migrate

We first introduce a method to determine the weight of each
type of resource based on resource intensity. We aim to find
VMs to migrate out of each overloaded Pi to quickly reduce
its workload. If Pi is overutilized in CPU, then we hope to
select the VM with the highest CPU utilization in order to
quickly relieve Pi’s load. Since non-overutilized resources
do not overload Pi, we do not need to reduce the utilization
of these resources in Pi. Therefore, we also aim to select the
VM with the lowest utilization in non-overutilized resources
in order to fully utilize resources. To jointly consider these
two factors, we determine the weight for each type-k re-
source according to its overload status in Pi.

To achieve the above mentioned objective, we give
overutilized resources relatively higher weights than non-
overutilized resources. Among the non-overutilized re-
sources, we assign lower weights to the resources that have
higher utilizations in order to more fully utilize resources
in the PM. Therefore, the weight for a non-overutilized
resource with resource utilization uik is determined by

wik = 1− uik.
A resource with utilization zero receives a weight of 1. The
weight decreases as the utilization increases. The resource
with a utilization closest to the threshold Θk (i.e., uik < Θk

and uik ≈ Θk) receives the lowest weight 1−Θk. Thus, this
resource has the lowest probability to be migrate out.

Among the overutilized resources, the resources that
have higher utilizations should receive higher weights than
those with relatively lower utilizations. For the overutilized
resources that have similar but different utilization values,
we hope to assign much higher weights to the resources
with higher utilizations and assign much lower weights to
the resources with lower utilization. That is, we exaggerate
the difference between the weights of resources based on the
difference between their utilization. Thus, we use a power
function with a basic form to determine the weight for an
overutilized resource with resource utilization uik:

wik =
1

auαik + b
,

where a and b are constant coefficients, and α is an integer
exponent. In order to simplify the above equation and at
the same time meet the design requirements as discussed
previously, we let α = 1. To satisfy the monotonically
increasing property (i.e., higher utilization receives higher
weight), we set a = −1. Considering that the domain of
the function should cover [Θk,1) (i.e., for an overutilized
resource, Θk ≤ uik < 1), so b = 1. As a result, the weight
given to a resource can be determined by

wik =

{
1

1−uik
, if k ∈ O,

1− uik, if k ∈ L. (12)

The weight of resource k (wik) means the priority of migrat-
ing this resource out. The function in Equation 12 is shown
in Figure 2. That is, for an overutilized resource k ∈ O

θk

wik

uik

1-uik

1-uik
1

1
Fig. 2: Weight vs. utilization.

(uik≥Θk), a higher uti-
lization leads to a high-
er weight. For a non-
overutilized resource k ∈
L (uik<Θk), a higher uti-
lization leads to a lower
weight. Note that wik > 1
for a resource k ∈ O al-

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2737628, IEEE
Transactions on Cloud Computing

5

ways has a higher weight
than wik < 1 for a resource k ∈ L, which means that
overutilized resources always have higher priority to mi-
grate out than underutilized resources. The figure shows
that, determining resource weight wik based on Equ. (12)
satisfies all the requirements discussed before. For example,
when uik<Θk, wik=1 − uik is a decreasing function with
a constant slope (left red curve) of -1. When uik ≥ Θk,
wik= 1

1−uik
is an increasing function with increasing s-

lopes (right red curve). wik>1 for an overutilized resource
(uik≥Θk) while wik<1 for a non-overutilized resource
(uik<Θk). The resource with a utilization smaller than and
close to the threshold has the lowest weight.

We use the Mullti-Criteria Decision Making (MCDM)
[25] method to select the VM to migrate. Basically, the
MCDM method calculates the weighted distances of all the
candidates from the ideal solution, and selects the one with
shortest distance. Recall that uijk is the type-k resource
utilization rate of VM Vij . Using the MCDM method, we
establish a |K| × ni decision matrix Di for PM Pi with ni
VMs as

Di =

 ui11 · · · uini1

...
. . .

...
ui1|K| · · · uini|K|

 (13)

in which each row represents one type of resource and
each column represents each VM in Pi. In the case of het-
erogenous VM types, we use the normalized VM utilizations
and simply replace uijk with ûijk in Equ. (13).

We then normalize the decision matrix:

Xi =

 xi11 · · · xini1

...
. . .

...
xi1|K| · · · xini|K|

 (14)

where
xijk =

uijk√∑ni

j=1 u
2
ijk

(15)

Next, we determine the ideal migration VM (denoted by
RVM) which has the highest usage of overutilized resources
and has the lowest usage of non-overloaded resources. That
is,
RV M = {ri1, ..., ri|K|} = {(max

j
xijk|k ∈ O), (min

j
xijk|k ∈ L)};

(16)
for each type-k resource, if it is overutilized, its rik is
the largest element from (xi1k · · ·xijk · · ·xinik) in Xi;
otherwise, rk is the smallest element.

As indicated in Section 3.2, we also hope to select the
VM with the lowest communication rate to other VMs in
the same PM (i.e., Tij) in order to reduce subsequent VM
communication cost after migration. Therefore, we set the
ideal value of Tij to 0. We then calculate the Euclidean
distance of each candidate Vij in Pi with the ideal VM and
ideal Tij .

lij =

√√√√ |K|∑
k=1

[wik(xijk − rik)]2 + [wtTij]2, (17)

where wt is the weight of the communication rate and it can
be adaptively adjusted based on the tradeoff between the
convergence speed/cost and the network bandwidth cost
for VM communication. The migration VM is the VM with
the shortest Euclidean distance (lij), i.e., the most similar
resource utilizations as the ideal VM. After selecting a VM
Vij , RIAL checks if Vij ’s uijk(k ∈ K) is in RVM . If so, RIAL
replaces Vij ’s uijk in RVM with the updated value. RIAL

then continues to choose the VM with the second shortest
lij . Using the above method, RIAL keeps selecting migration
VMs from Pi until Pi is no longer overloaded.

4.2 Selecting Destination PMs
When selecting destination PMs to migrate the selected VMs
from Pi, we consider resource intensity, VM communication
rate and performance degradation as indicated in Section 3.
We use J to denote the set of lightly loaded PMs. We also
use the MCDM method for destination PM selection. We
build the |K| × |J | decision matrix D′ as

D′ =

 u11 · · · u|J|1
...

. . .
...

u1|K| · · · u|J||K|

 (18)

in which each row represents one type of resource and
each column represents each lightly loaded PM.

We then normalize the decision matrix:

X ′ =

 x′11 · · · x′|J|1
...

. . .
...

x′1|K| · · · x′|J||K|

 (19)

where
x′jk =

ujk√∑|J|
j=1 u

2
jk

(20)

Recall that the weight of type-k resource (wik) represents
the priority of migrating this resource out from overloaded
PM Pi. Hence, it also indicates the priority of considering
available resource in selecting destination PMs. Therefore,
we also use these weights for different resources in candi-
date PMs in order to find the most suitable destination PMs
that will not be overloaded by hosting the migration VMs.
We represent the ideal destination PM as

R′PM = {r′1, ..., r′k, ..., r′|K|} = {min
j
x′jk|k ∈ K}. (21)

consisting of the lowest utilization of each resource from
the candidate PMs.

When choosing destination PMs, we also hope that the
VMs in the selected destination PM Pp have higher commu-
nication rate with the migration VM Vij (i.e., Tijp) in order to
reduce network bandwidth consumption. Thus, we set the
ideal Tijp to be the maximum communication rate between
Vij and all candidate PMs, Tmax = maxTijp (p ∈ J).
Further, the performance degradation of the migrated VMs
should be minimized.

By considering the above three factors, we calculate the
Euclidean distance of each candidate PM Pp from the ideal
PM.

lp,ij =

√√√√ |K|∑
k=1

[wik(x′
pk − r′k)]

2 + [wt(Tijp − Tmax)]2 + [wdDijp]2

(22)
where wd is the weight of performance degradation consid-
eration that can be adaptively adjusted like wt. We then se-
lect the PM with the lowest lp,ij value as the migration des-
tination of selected VMs. If the selected PM does not have
sufficient available resources to hold all VMs, the PM with
the second lowest lp,ij is selected using the same method
as selecting migration VMs. This process is repeated until
the selected PMs can hold all selected migration VMs of Pi.
Note that the magnitudes of wt and wd should be properly
determined based on the practical requirements of the cloud
on the tradeoff of the number of VM migrations, bandwidth

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2737628, IEEE
Transactions on Cloud Computing

6

cost and VM performance degradation. Higher wt and wd
lead to more VM migrations, while lower wt generates
higher bandwidth cost for VM communications and lower
wd generates higher VM performance degradation. How to
determine these magnitudes for an optimal tradeoff is left as
our future work. Note that the selection of migration VMs
is always before the allocation of destination PMs because
this way, the best-fit destination PM can be selected for each
selected migration VM. In this paper, we aim to avoid over-
loading PMs and meanwhile consider several factors (such
as reducing PM communication rate) in achieving the goal
(i.e., selecting migration VMs and destination PM). Some-
times, the VM migration may degrade the performance
in terms of the considered factors such as increasing PM
communication rate. Since avoiding overloaded PMs is the
goal of our work, it has the highest priority compared with
the considered factors. Our experimental results in Section 5
shows that the execution time of RIAL is acceptable. We will
further improve RIAL to reduce the execution time in a very
large scale system in our future work.

4.3 Parameter Determination
Our load balancing algorithm selects VMs to be migrated
out from each overloaded PM and selects the destination
PM to host each migrated VM in order to quickly reach the
load balanced state in the system (i.e., quick convergence).
Equ. (17) is used to select VMs that should be migrated
out from an overloaded PM considering the weights for
resources (wik) and for communication cost (wt). Equ. (22)
is used to select the destination PM considering the weights
for resources (wik), for communication cost (wt) and for
performance degradation due to migration (wd). The values
of these weight parameters have a direct impact on the
performance of our proposed load balancing algorithm. In
this section, we present how to determine these parameters
to achieve better performance.

As indicated in Equ. (17), in order to calculate the Eu-
clidean distance of candidate VM Vij when selecting a VM
to migrate, we must determine wik and wt. Recall that wik
is determined by Formula 12. Then, we must first determine
the value of wt before we calculate the Euclidean distance
The importance of considering the communication cost (wt)
should not overtake the importance of relieving overutilized
resources (wik), which is the primary objective of our load
balancing algorithm. A high wt may lead to the failure of
mitigating the load of overloaded resources, while a low
wt may lead to the unawareness of the communication
rate in migration VM selection. Thus, in load balancing, we
give the highest priority to offloading the excess load in an
overloaded PM, and paying as much attention as possible
to communication rates between VMs in order to maximize
the VM communications within a PM.

Therefore, we determine wt so that one of the VMs that
are the most similar to the ideal VM without considering
the communication cost is selected and at the same time wt
is maximized. Suppose Vis is the selected VM in the VM
selection algorithm without considering the communication
rate of the VMs (i.e., wt = 0 in Equ. (17)):

Vis = arg min
Vij

lVij
(23)

and

lVij
=

√√√√ |K|∑
k=1

[wik(xijk − rik)]2 (24)

A VM Vij is regarded as one of the most similar VMs to the
ideal VM, if lVim ≤ lVis + δv, (25)
where δv is a positive constant. By selecting a similar VM
rather than the most similar VM without considering the
communication cost (i.e., Vis), we slightly sacrifice the prior-
ity of offloading the excess load to reducing communication
cost. The value of δv determines the extent of the sacrifice.
We denote the set of VMs that satisfy Equ. (25) as Sv . With
our determined wt, the VM in Sv that can maximally reduce
the communication cost will be selected to migrate out. In
the following, we explain how to determine the value of wt
based on δv and wik for the aforementioned objective.

The problem of finding the maximum wt with the con-
strain of δv can be expressed as follows. Given the normal-
ized decision matrix Xi of Pi and the ideal migration VM
RVM , the problem is to maximize wt, subject to:

lim ≤ lij , ∀ Vim ∈ Sv, Vij /∈ Sv (26)

where lim and lij are calculated by Equ. (17). It means that
Vim will always be selected to migrate out even with the
maximized wt. It is to ensure that the selected VM without
considering the communication rate (Equ. (25)) will not
change when taking into account the communication rate
(Equ. (26)).

In order to solve this problem, we can combine Equ. (17)
and Equ. (26), and then derive Equ. (27) below:
|K|∑
k=1

w2
ik[(ximk−rik)2−(xijk−rik)2] ≤ w2

t (T
2
ij−T 2

im) (27)

Since xijk is known, we can find xisk and hence ximk based
on Equ. (23) and Equ. (25). Since Tij and Tim are also known,
we can solve Equ. (27). Equ. (27) can be solved based on
the values of T 2

ij − T 2
im and (ximk − rik)2 − (xijk − rik)2,

which can be either positive or negative. We ignore useless
constraints of these two values that are derived from the
condition in Equ. (27). For example, if T 2

ij − T 2
im > and

(ximk−rik)2−(xijk−rik)2 < 0, we derive that wt is greater
than a negative value, which is always true and thus useless.
Then, we derived that when (ximk−rik)2−(xijk−rik)2 < 0
and T 2

ij − T 2
im < 0,

wt ≤

√√√√∑|K|k=1 w
2
ik[(ximk − rik)2 − (xijk − rik)2]

T 2
ij − T 2

im

(28)

Finally, we solve Equ. (28) and select the maximum value
for wt.

Solving Equ. (28) involves complicated calculations in-
cluding determining weights for resources based on Equ.
(12), finding Vis based on Equ. (23) and solving Equ. (27). In
the following, we try to simplify the process of determining
wt. Since we consider mitigating the load of the overutilized
resources and at the same time maximizing the VM commu-
nications within a PM (by selecting the VM that has minimal
communications with the co-locating VMs to migrate out),
we can further loose Equ. (28) to simplify the process of
wt determination. Specifically, we only consider the most
sensitive weight, which is defined as the minimum weight
of the overutilized resources:

wm = min{wk|k ∈ O}. (29)

Because wm is the minimum weight of the overutilized
resources, by ensuring that wt does not overtake wm, we
can satisfy the condition that wt does not overtake all the

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2737628, IEEE
Transactions on Cloud Computing

7

weights of the overutilized resources with a high probabil-
ity. We then determine wt based on wm in order to prevent
wt from overtaking the minimum weight of the overloaded
resources. We aim to maximize wt while guaranteeing that
the most similar VM should be selected. To simplify the pro-
cess, we can only consider the VM that is the most similar to
the ideal VM and the VM that is the second similar. Because
every VM together with the VM that is the most similar to
the ideal VM can specify a range for the value of wt, and
the constraints placed on wt by other VMs are relatively
looser compared to the second similar VM. Suppose there
is only one resource overutilized, and the weight is wm;
the VM (VM0) which is the most similar to the ideal VM
has normalized utilization x0 and communication rate T0;
the VM (VM1) which is the second similar has utilization
x1 and communication rate T1. We use a linear function
l = wmx + wtT to represent Equ. (17). Then, the above
problem can be expressed as: to maximize wt, subject to
wmx0 + wtT0 ≤ wmx1 + wtT1, x0, x1, T0, T1 > 0. (30)

Finally, we can find the maximum wt as

wt = −x0 − x1

T0 − T1
wm (31)

In order to further make the determination of wt eas-
ier, we derive a constant weight. As a rule of thumb,
wt is greater than 1, which is the maximal weight for a
non-overutilized resource, because considering communi-
cation rate is more important than considering the non-
overutilized resources. Also, weight wt should be lower
than the weight of overutilized resources, because mitigat-
ing the load on overload resources has the highest priority.
That is, wt < 1

1−Θk
based on Equ. (12). For example, for

a threshold Θk = 0.75, the weight for communication rate
wt < 4. Then, wt can be set to constant 3, which is the maxi-
mum value that satisfies< 4. In our experiment in Section 5,
with Θk = 0.75, we set a constant to wt, i.e., wt = 3.

Next, we discuss how to determine the weight for com-
munication cost (wt) and for performance degradation due
to migration (wd) in Equ. (22) for the destination PM for a
migrated VM. Different from VM selection, here, we need to
determine two parameters. However, a formulated problem
can only be used for optimizing one object. We then combine
wt and wd to one optimization object. Then, similar to what
has been discussed before, we can derive both wt and wd
together for PM selection by altering the object function
of the aforementioned problem for VM selection. That is,
we place equal importance on the two weights since both
weights are important (i.e., wd = wt) and try to maximize
wd. Suppose Ps is the selected destination PM in PM selec-
tion algorithm without considering the communication rate
or performance degradation of the VMs (i.e., wt = 0 and
wd = 0 in Equ. (22)):

Ps = arg min
Pp

lPp (32)

and

lPp
=

√√√√ |K|∑
k=1

[wik(x′pk − r′k)]2 (33)

A PM Pp is regarded as one of the most similar PMs to the
ideal PM, if

lPm ≤ lPs + δp, (34)
where δp is a positive constant. Similarly, δp represents
the extent of the sacrifice of the priority of offloading
overloaded resource to reducing communication cost and

performance degradation due to VM migrations. We denote
the set of PMs that satisfy Equ. (34) as Sp. Then, the problem
can be transformed to maximize wt, subject to:

lm,ij ≤ lp,ij , ∀ Pm ∈ Sp, Pp /∈ Sp (35)
Similarly, we can derive

wt ≤

√√√√ ∑|K|
k=1 w

2
ik[(x′mk − r′k)2 − (x′pk − r′k)2]

[(Tijp − Tmax)2 − (Timp − Tmax)2] + (D2
ijp −D2

imp)

(36)
For more simplified wt and wd, we adopt wt = 3 and

wd = 3 as the constant values for these weights. Similar
as previous, for a threshold Θk = 0.75, the weight for
communication rate wt < 4, the weight for performance
degradation wd < 4. Then, both wt and wd can be set
to constant 3. We will show the experiment results with
varying wt and wd in Section 5.

4.4 Performance Comparison Analysis
Compared to Sandpiper [1] and TOPSIS [5], RIAL produces
fewer migrations. Because RIAL determines the resource
weight based on resource intensity, it can quickly relieve
overloaded PMs by migrating out fewer VMs with high

Fig. 3: VM and PM selection
process.

usage of high-intensity re-
sources. Also, the migra-
tion VMs have low us-
age of low-intensity re-
sources, which helps ful-
ly utilize resources and
avoids overloading other
PMs. In addition, the mi-
gration destination has a
lower probability of being
overloaded subsequently
as it has sufficient capacity
to handle the high-intensity resources. Finally, RIAL leads to
fewer VM migrations in a long term.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

U
ti
li
z
a
ti
o
n

CPU
Memory

(a) Utilizations of PM0 with different
selected migration VMs.

0.3

0.1

0.35 0.33 0.29

0.49

0.15
0.32

0.38 0.42
0.51

0.34

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

U
ti
li
za
ti
o
n

CPU
Memory

(b) Utilizations of different selected
destination PMs.

Fig. 4: Advantage of RIAL in reducing migrations.
We use an example with 3 PMs (PM0, PM1, PM2)

to demonstrate the advantage of RIAL. In practice, the
overloaded threshold should be close to 1. To make the
example simple with few VMs, we set the threshold to
0.5, and only consider the CPU and memory resources.
We assume that PM0 has 4 VMs (VM0, VM1, VM2, VM3)
with the same capacity and PM0’s capacity is four times
of the VM’s. PMs have the same capacity. As in [5], the
weight of CPU and memory in TOPSIS is 9 and 4, respec-
tively. Figure 3 shows the CPU and memory utilizations
of the 4 VMs, VM0(0.2,0.9), VM1(0.9,0.4), VM2(0.75,0.75),
VM3(0.1,0.75) and the 3 PMs, PM0(0.49,0.7), PM1(0.3,0.15),
PM2(0.1,0.32). PM0 is overloaded in memory resource usage
since 0.7>0.5.

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2737628, IEEE
Transactions on Cloud Computing

8

TABLE 1: Number of migrations needed for load balance

Sandpiper TOPSIS RIAL
selected migration VMs 2 2 1
of overload destination
PMs after VM migrations

0 1 0

Total # of migrations 2 3 1

Sandpiper attempts to migrate the VM with maximum
VSR=volume/size, where volume= (1/(1−ucpu))∗(1/(1−
unet)) ∗ (1/(1 − umem)). Based on this formula, we draw
two dash curves in Figure 3 to indicate the points whose
VSR equals to 5 and 16, respectively. We see that among the
4 VMs, VM1 located beyond the curve of VSR=16 has the
highest VSR. Therefore, Sandpiper selects VM1 to migrate
out of PM1. TOPSIS first determines its ideal VM (T* in
Figure 3) with the maximum CPU and memory utilizations
from the 4 candidate VMs (i.e., (0.9, 0.9)), then compares
the weighted distances of the 4 VMs to the ideal VM, and
finally chooses VM2 that has the shortest distance. In RIAL,
according to Equ. (16), the CPU and memory utilizations
of the ideal VM (R* in Figure 3) are 0.1 and 0.9. Base on
Equ. (12), the weights for memory and CPU are 3.33 and
0.51, respectively. Unlike TOPSIS, RIAL gives a weight to
CPU smaller than memory, since CPU is not so intensively
used as memory. RIAL finally chooses VM0 which has the
shortest weighted distance to the ideal VM.

Figure 4(a) shows the CPU and memory utilizations of
PM0 before VM migration and after migrating VM0, VM1
and VM2 by RIAL, Sandpiper and TOPSIS, respectively. The
arrows in Figure 3 indicate the resource utilizations of PM0
after migration in each method, respectively. We see that
neither migrating VM1 (by Sandpiper) nor migrating VM2
(by TOPSIS) can eliminate memory overload in PM0. Hence,
these two methods require another migration. RIAL reduces
both CPU and memory utilizations below the threshold.

For destination PM selection, PM1(0.3,0.15) and P-
M2(0.1,0.32) are two candidates for the VM from PM0.
Sandpiper selects the PM that has the least volume as the
destination, which is PM2. TOPSIS determines the ideal PM
with the least CPU and memory utilization of all candidate
PMs (i.e., (0.15, 0.1)), and selects the one with the shortest
weighted distance to the ideal PM, which is PM2. However,
after migrating VM2 to PM2, the memory utilization of PM2
increases to 0.51, higher than the threshold. Then, TOPSIS
has to execute another migration and chooses PM1 to mi-
grate VM2 to. RIAL determines the same ideal PM as TOP-
SIS, but assigns higher weight to memory, so it chooses PM1
as the destination that has the shortest weighted distance.

Figure 4(b) shows the CPU and memory utilizations of
the destination PMs before and after migrations. TOPSIS
overloads the destination PM2 in memory and needs an-
other migration (VM2→PM1) to relieve its memory load.
Though all three methods finally eliminate the memory
overload in PM0, RIAL generates a more balanced state
since resource utilizations after balancing are relatively low-
er than those in Sandpiper and TOPSIS, which reduces the
probability of overloading PMs, and hence helps maintain
the system load balanced state for a longer time period.

Table 1 lists the number of selected VMs to relieve
overloaded PM0, the number of overloaded destination PMs
after the VM migrations, and the total number of migrations
to achieve the load balanced state in one load balancing
operation. We see that RIAL generates the least number of
migrations due to its advantages mentioned previously.

4.5 When to Trigger VM Migration

In today’s cloud datacenter, VMs may generate transient
workload spikes in PMs [26], which are sharp rises in the
resource utilization that immediately followed by decreases.
A PM may become overloaded (i.e., uik > Θk) during a
spike, and becomes underloaded after the spike. In this
case, simply triggering the VM migration upon the ob-
servation that the resource utilization of a PM exceeds a
threshold (i.e., uik > Θk) generates unnecessary VM migra-
tion operations and overhead, and also fail to fully utilize
resources. The occurrence of uik > Θk at a certain time

θk
uik(ti)

uik(ti-1)

ti-1 ti

td

Fig. 5: Duration of overload
status.

does not necessarily mean
that the resource utiliza-
tion of this PM will con-
tinually exceed the thresh-
old for a certain peri-
od of time in the future.
Furthermore, Xen live mi-
gration is CPU intensive,
which may degrade the
performance of both the
source and destination PMs. Without sufficient resource, a
VM migration will take a long time to finish, which will
increase the service latency of tasks running on the PMs and
may result in SLO violations. Therefore, we need to avoid
triggering unnecessary migrations.

For this purpose, we specify that a migration is triggered
only if the overload status of the PM (i.e., uik > Θk) will
last continuously for at least Ttd time units, where Ttd is
the duration of overload status of the PM from time ti−1

to time ti. The value of Ttd determines the balance between
offloading the overload resource and avoiding migrations
due to transient overload status, and it can be tuned by
the cloud provider. We can either set Ttd to a constant
time or make Ttd a function of the VM migration time
based on the requirement of guaranteeing SLO. We will first
demonstrate when to trigger VM migration based on Ttd
and then discuss how to determine Ttd so that the number
of migrations is minimized without increasing the number
of SLO violations.

Suppose the monitoring interval is ∆t time units. That is,
a PM checks its resource utilization every ∆t time units, i.e.,
∆t = ti − ti−1, where ti is current time and ti−1 is the time
of last monitoring. As in [27], we assume that the resource
utilization linearly increases from uik(ti−1) to uik(ti) during
time interval ∆ t. As shown in Figure 5, suppose a PM
detects that its resource utilization exceeds the threshold
(uik(ti) > Θk) at time ti. According to historical record, it
has resource utilization uik(ti−1) at time ti−1. The duration
of overload status of the PM, td, can be calculated by

td =
uik(ti)−Θk

uik(ti)− uik(ti−1)
∆t (37)

Then, VM migration will be triggered if and only if td > Ttd .
We then discuss how to determine the value of Ttd with

the consideration of the SLO requirement. In this paper, we
define SLO as the requirement that ε (in percentage) of re-
source demands of a VM must be satisfied during its lifetime
[28]. We use ts to denote the start time of a VM, and use tv
to denote the cumulated time that this VM has experienced
resource overload since ts until last monitoring time ti−1.
Considering that the time to complete VM migration is Mij

Bip
,

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2737628, IEEE
Transactions on Cloud Computing

9

the total time that the VM will experience overload before
migration is completed equals Ttd +

Mij

Bip
+ tv . We delay the

migration as much as possible by fully taking advantage of
SLO that allows 1− ε violations. That is, if current time ti is
the migration start time of a VM in the PM, the VM should
satisfy:

Ttd +
Mij

Bip
+ tv

ti − ts +
Mij

Bip

= ε (38)

Finally, we can get Ttd = ε(ti−ts+Mij

Bip
)−Mij

Bip
−tv . Therefore,

in order to determine Ttd , we need to record the start time
ts of each VM in the PM, and have the variable tv to keep
track of the cumulated SLO violation time of each VM.

4.6 Decentralized Destination PM Selection

Recall that the VM selection is conducted in each PM in
a distributed manner, but the destination PM is selected
in a central server because it needs to be chosen from all
PMs. The centralized approach for destination PM selection
is not efficient for a large scale cloud datacenter, because the
amount of information required for this algorithm increases
and may overburden the centralized server. In order to

PM
Rack Rack Rack Rack

1

Cluster Switch Switch
Switch

Fig. 6: Datacenter network.

relieve the load of the cen-
tralized server, we devel-
op a distributed version
of the PM selection algo-
rithm. The topology of a
cloud datacenter can be
abstracted by a graph with
its nodes indicating PMs
and switches and edges indicating physical links that con-
nect PMs and switches. In this paper, we focus on tree-like
topologies [29], [30], which are typical topologies of today’s
datacenters. As shown in Figure 6, we partition all the nodes
in cloud datacenter into small clusters and each cluster
consists of the nodes in one rack. Then, the load balancing is
conducted within each cluster. That is, the VMs are migrated
between physically close nodes. This way, the performance
degradation due to VM migration can be reduced.

Within each cluster, the nodes select the cluster master,
who is responsible for selecting PMs for VM migrations in
this cluster. This selected PM should not be overutilized and
at the same time has the least probability to be selected
as the destination PM, that is, it has the highest resource
utilization. Unlike the centralized algorithm, in which a
centralized server collects the information required in Equ.
(22) from all the PMs in the datacenter, in the decentralized
algorithm, the information is sent from every PM to its
cluster master. For example, every PM in the cluster reports
its status (i.e., resource utilization, communication rate with
other PMs in this cluster) periodically (i.e., 5 minutes). The
VM selection is conducted distributively in each PM. When
a PM detects that it is overloaded, it selects its migration
VMs and submits VM migration requests to its cluster
master. Upon receiving the VM migration requests from
the PMs, the cluster master then determines the ideal desti-
nation PM in its cluster, and selects PMs for the migration
VMs based on Equ. (22). By limiting the PM selection within
a small cluster (as opposed to the whole datacenter), we
can increase the scalability of the PM selection algorithm.
We will compare the the distributed algorithm and the
centralized algorithm in Section 5.

0

20

40

60

80

100

8 16 24
Time (hr)

RIAL

Sandpiper

TOPSIS

N
u
m
b
e
r
o
f
m
ia
g
ra
ti
o
n
s

(a) 100 PMs and 250 VMs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

8 16 24

N
m
b
e
r
o
f
m
ig
ra
ti
o
n
s

Time (hr)

RIAL

Sandpiper

TOPSIS

(x
1
0
3
)

(b) 1000 PMs and 5000 VMs

Fig. 7: Total number of VM migrations.

0.0

0.2

0.4

0.6

0.8

1.0

8 16 24

P
e
rf
o
rm

a
n
c
e

d
e
g
ra
d
a
ti
o
n
 (
x
1
0
5
)

Time (hr)

RIAL

Sandpiper

TOPSIS

(a) 100 PMs and 250 VMs

0

0.2

0.4

0.6

0.8

1

8 16 24

P
e
rf
o
rm

a
n
c
e

d
e
g
ra
d
a
ti
o
n

Time (hr)

RIAL

Sandpiper

TOPSIS

(x
1
0
6
)

(b) 1000 PMs and 5000 VMs

Fig. 8: Total VM performance degradation.

5 PERFORMANCE EVALUATION

We used the CloudSim [27] simulator and our deployed
small-scale real-world testbed to evaluate the performance
of RIAL in comparison to Sandpiper [1] and TOPSIS [5]. We
used the real workload trace available in CloudSim to gener-
ate each VM’s CPU resource consumption [23], [31]. To sim-
ulate memory and bandwidth usage, as in [19], we generat-
ed 5 different groups of (mean, variance range) for resource
utilization, (0.2,0.05),(0.2,0.15),(0.3,0.05),(0.6,0.10),(0.6,0.15),
and set each VM’s memory/bandwidth utilization to a
value generated by a randomly chosen group. Each PM has
1GHz 2-core CPU, 1536MB memory, and 1GB/s network
bandwidth. Each VM has 500Hz CPU, 512MB memory,
and 100Mbit/s bandwidth. With our experiment settings,
the bandwidth consumption will not overload PMs due to
their high network bandwidth. In CloudSim, we conducted
experiments for two cloud scales. In the small scale
experiment, we simulated 250 VMs running on 100 PMs. In
the large scale experiment, we simulated 5000 VMs running
on 1000 PMs. We generated a tree-like topology to connect
the PMs, and measured the transmission delay between
PMs based on the number of switches between them [20].
At the beginning of experiments, we randomly and evenly
mapped the VMs to PMs. The overload threshold was
set to 0.75. The weights for different resource are the
same for Sandpiper or set to predefined ratio (e.g., 9:4 for
CPU:MEM) as adopted in their papers. The load balancing
algorithm was executed every 5 minutes. As in [19], we
generated a random graph G(n, p = 0.3) to simulate the
VM communication topology, where n is the number of
VMs and p is the probability that a VM communicates
with another VM. The weight of each edge was randomly
selected from [0,1] to represent the communication rate
between two VMs. Unless otherwise specified, we repeated
each test 20 times with a 24 hour trace and recorded the
median, the 90th and 10th percentiles of the results.

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2737628, IEEE
Transactions on Cloud Computing

10

‐50

0

50

100

150

200

8 16 24C
o
m
m
u
n
ic
a
ti
o
n
 c
o
s
t

re
d
u
c
ti
o
n

Time (hr)

RIAL
Sandpiper
TOPSIS

(a) 100 PMs and 250 VMs

‐0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

8 16 24C
o
m
m
u
n
ic
a
ti
o
n
 c
o
s
t

re
d
u
c
ti
o
n
 (
x
1
0
3
)

Time (hr)

RIAL
Sandpiper
TOPSIS

(b) 1000 PMs and 5000 VMs

Fig. 9: Total VM communication cost reduction.

0

20

40

60

80

0 50 100 150 200 250
The number of VMs

R
e
d
u
c
e
d
 r
a
te
 o
f

c
o
m
m
u
n
ic
a
ti
o
n
 c
o
s
t
(%

)

(a) Reduced rate of communication cost

0

0.2

0.4

0.6

0.8

1

0% 10% 20% 30% 40% 50% 60% 70%

C
D
F

Reduced rate of communication cost

(b) CDF over all experiments

Fig. 10: Communication cost reduction of RIAL over Sand-
piper/TOPSIS.

5.1 The Number of Migrations
Figure 7(a) and Figure 7(b) show the median, 10th percentile
and 90th percentile of the total number of VM migrations
by the time t = 8h, 16h, 24h of the three methods in the
small-scale and large-scale tests, respectively. We see that
RIAL generates fewer migrations than Sandpiper and
TOPSIS. Since RIAL considers resource intensity of different
resources, it migrates fewer VMs from a PM to relieve its
extra load. Also, RIAL proactively avoids overloading the
destination PMs in the future. Thus, it keeps the system
in a balanced state for a relatively longer period of time,
resulting in fewer VM migrations than Sandpiper and
TOPSIS within the same period of time. We also see that
TOPSIS produces fewer VM migrations than Sandpiper
because TOPSIS gives different weights to different
resources while Sandpiper treats different resource equally.
Additionally, we see that the three methods exhibit similar
variances due to the initial random VM assignment to PMs.

5.2 VM Performance Degradation due to Migrations
We measured the total performance degradation of all mi-
gration VMs based on Equ. (7). Figure 8(a) and Figure
8(b) show the median, 90th and 10th percentiles of the
total performance degradation (Formula (7)) in the small-
scale and large-scale tests, respectively. We see that the
total performance degradation of RIAL is lower than those
of TOPSIS and Sandpiper in both small and large scale
tests. This is caused by the distinguishing features of RIAL.
First, RIAL triggers fewer VM migrations. Second, RIAL
tries to minimize performance degradation in destination
PM selection. Third, RIAL chooses VMs with lower uti-
lizations of the non-intensive resources. TOPSIS generates
lower performance degradation than Sandpiper because it
generates fewer VM migrations as shown in Figure 7. We
also see that in both the small-scale and large-scale tests,
the performance degradation variance of the three methods
follows RIAL<TOPSIS<Sandpiper though the difference is
small in the small-scale test.

5.3 VM Communication Cost Reduction

The communication cost between a pair of VMs was mea-
sured by the product of their communication rate and trans-
mission delay. We calculated the communication cost reduction
by subtracting the total communication cost observed at a
certain time point from the initial total communication cost
of all VMs. Figure 9(a) and Figure 9(b) show the median,
the 90th and 10th percentiles of total communication cost
reduction at different time points in the small-scale and
large-scale tests, respectively. We see that RIAL’s migrations
reduce much more communication cost than TOPSIS and
Sandpiper, which may even increas the communication
cost by migrations (shown by the negative results). RIAL
exhibits smaller variance because RIAL tries to reduce VM
communication rate between PMs caused by VM migration,
while the other two methods do not consider it.

We then directly compare the communication costs after
the migrations between different methods. We measured the
communication costs of RIAL (x) and Sandpiper/TOPSIS
(y) at the end of simulation and calculated the reduced rate
of communication cost by (y− x)/y. We varied the number of
VMs from 20 to 250 with an increment of 10, and mapped
the VMs to 50 PMs. Each experiment is run for 30 times. As
the reduced rates of RIAL over Sandpiper and TOPSIS are
similar, we only show one result to make the figures clear.

Figure 10(a) shows the median, 10th percentile and 90th
percentile of the reduced rate of communication cost with
different numbers of VMs. We see that a smaller number
of VMs lead to higher reduced rate of communication cost,
which implies that RIAL can reduce more communication
cost with fewer VMs relative to PMs. This is due to the fact
that fewer VMs lead to fewer overloaded PMs hence more
PM choices for a VM migration, which helps RIAL reduce
more communication costs. Figure 10(b) plots the cumu-
lative distribution function (CDF) of all 30*24 experiments
versus the reduced rate of communication cost. We see that
RIAL consistently outperforms Sandpiper and TOPSIS with
lower communication cost in all experiments, and decreases
the communication cost by up to 70%.

5.4 Performance of Varying Number of VMs and PMs

We then study the impact of different ratios of the number
of VMs to the number of PMs on performance. Accordingly,
we conducted two sets of tests. One test has 500 PMs with
the number of VM varying from 2000 to 3000, and the other
test has 1000 PMs with the number of VM varying from
4000 to 6000.

Figure 11(a) and Figure 12(a) show the median, 10th per-
centile and 90th percentile of the total number of migrations
in the two tests, respectively. As the number of VMs increas-
es, the total load on the cloud increases, resulting in more
overloaded PMs and hence more VM migrations. When the
number of VMs is 1000, the resource requests by VMs in
the cloud is not intensive and only a few migrations are
needed. When there are more VMs, the result of number of
VM migrations follows RIAL<TOPSIS<Sandpiper, which is
consistent with Figure 7 due to the same reasons.

Figure 11(b) and Figure 12(b) show the results of
the total VM performance degradation in the two
tests, respectively. As the number of VM increases, the
performance degradation increases in each method, mainly
because of more triggered VM migrations. RIAL generates

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2737628, IEEE
Transactions on Cloud Computing

11

0.0

1.0

2.0

3.0

4.0

2000 2500 3000
T
h
e
 n
u
m
b
e
r
o
f

m
ig
ra
ti
o
n
s
 (
x
1
0
3
)

The number of VMs

RIAL

Sandpiper

TOPSIS

(a) The number of VM migrations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2000 2500 3000

P
e
rf
o
rm

a
n
c
e

d
e
g
ra
d
a
ti
o
n
 (
x
1
0
9
)

The number of VMs

RIAL

Sandpiper

TOPSIS

(b) Performance degradation

‐1.0
‐0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

2000 2500 3000

C
o
m
m
u
n
ic
a
ti
o
n
 c
o
s
t

re
d
u
c
ti
o
n
 (
x
1
0
3
)

The number of VMs

RIAL
Sandpiper
TOPSIS

(c) Communication cost reduction

Fig. 11: Performance with varying VM to PM ratio (500 PMs).

0.0

2.0

4.0

6.0

8.0

4000 5000 6000

T
h
e
 n
u
m
b
e
r
o
f

m
ig
ra
ti
o
n
s
 (
x
1
0
3
)

The number of VMs

RIAL

Sandpiper

TOPSIS

(a) The number of VM migrations

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

4000 5000 6000
P
e
rf
o
rm

a
n
c
e

d
e
g
ra
d
a
ti
o
n
 (
x
1
0
9
)

The number of VMs

RIAL

Sandpiper

TOPSIS

(b) Performance degradation

‐1.0

0.0

1.0

2.0

3.0

4.0

5.0

4000 5000 6000

C
o
m
m
u
n
ic
a
ti
o
n
 c
o
s
t

re
d
u
c
ti
o
n
 (
x
1
0
3
)

The number of VMs

RIAL
Sandpiper
TOPSIS

(c) Communication cost reduction

Fig. 12: Performance with varying VM to PM ratio (1000 PMs).

lower performance degradation than Sandpiper and
TOPSIS, especially with a higher number of VMs. We
also see that the relative performance on the median, 10th
percentile and 90th percentile between the three methods is
aligned with that in Figure 8 due to the same reasons.

Figure 11(c) and Figure 12(c) show the results of the total
communication cost reduction in the two tests, respectively.
When the VM number is small, there is only a few VM
migrations, resulting in small cost reduction and small vari-
ance for all methods. As the number of VMs grows, RIAL
achieves a higher cost reduction than Sandpiper and TOP-
SIS. Also, RIAL has much smaller variance than Sandpiper
and TOPSIS as the error bars indicate. Both Sandpiper and
TOPSIS performs similarly since neither of them considers
the VM communications when selecting VMs and PMs.
The relative performance between the three methods is
consistent with that in Figure 9 due to the same reasons.

Comparing Figure 11 and Figure 12, we see that the
results in Figure 12 have higher absolute values than those
in Figure 11 because the workload and the scale of the
cloud are doubled. We can conclude from 11 and Figure
12 that RIAL outperforms Sandpiper and TOPSIS under
varying ratios of the number of VMs to PMs in terms of the
number of VM migrations, VM performance degradation
and communication cost.

5.5 Performance of Weight Determination Algorithms
We study the performance of different weight determina-
tion algorithms introduced in Section 4.3. In the following
sections, we adopt the same setting for the large scale (1000
PMs) and vary the number of VMs from 4000 to 6000
with an increment of 2000 at each step, unless otherwise
specified. We use RIAL-o to denote the optimal weight
determination algorithm based on Equ. (28) and Equ. (36),
use RIAL-s to denote the simplified algorithm based on Equ.
(31), and use RIAL to denote the algorithm with constant
weights (i.e., wt = 3, wd = 3). Figure 13(a) shows the
number of VM migrations, which follows RIAL-o<RIAL-
s<RIAL. This is because RIAL-o guarantees that the weights
of overutilized resource are not overtaken by the weights

for communication rate and performance degradation but
RIAL-s and RIAL cannot. Therefore, RIAL-o needs fewer
migrations to offload extra load of overutilized resources.
RIAL-s outperforms RIAL because RIAL-s determines wt
and wd based on the weights for resources while RIAL uses
constant wt and wd, which may make wt and wd overtake
the resource weights. The number of migrations increases
with the number of VMs because more VMs imposes more
workload on the same number of PMs (i.e., 1000 PMs).
Figure 13(b) shows the performance degradation, which
follows RIAL-o<RIAL-s<RIAL because fewer migrations
lead to less performance degradation. The performance
degradation increases with the number of VMs due to the
same reason as Figure 13(a). Figure 13(c) shows the com-
munication cost reduction, which follows RIAL-o>RIAL-
s>RIAL. This is because the amount of sacrifice on the
priority of offloading the excess load to reducing com-
munication cost follows RIAL-o<RIAL-s<RIAL in weight
determination. The communication cost reduction increases
with the number of VMs due to the same reason mentioned
before. We also measured the execution time of the wight
determination algorithms by varying the number of VMs
in a PM from 10 to 25 with an increment of 5 at each
step. Figure 13(d) shows the execution time of the different
algorithms with different number of VMs in a PM. We see
that RIAL-s is faster than RIAL-o due to the simpleness
of Equ. (31) compared to Equ. (28). We do not present
RIAL here because it has zero execution time (constant
complexity). This result confirms the feasibility of RIAL-
s as it can achieve similar performance as RIAL-o while
consuming less time.

5.6 Performance of Migration Triggering Algorithm
We use RIAL-a to denote RIAL that avoids unnecessary
migrations using the migration triggering policy. We set
ε = 0.95 and determine Ttd based on Equ. (38). The
number of SLO violations is the number of VMs that have
experienced overload status for a duration more than 1-ε
percent of their lifetimes. Figure 14(a) shows the number
of VM migrations. We see that RIAL-a triggers a fewer

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2737628, IEEE
Transactions on Cloud Computing

12

0.0

1.0

2.0

3.0

4.0

5.0

6.0

4000 5000 6000

T
h

e
 n

u
m

b
e

r
o

f
m

ig
ra

ti
o

n
s
 (

x
1

0
3
)

The number of VMs

RIAL-o

RIAL-s

RIAL

(a) The number of VM migrations

0

0.1

0.2

0.3

0.4

0.5

4000 5000 6000

P

e
rf

o
rm

a
n

c
e

d

e
g

ra
d

a
ti

o
n

The number of VMs

RIAL-o

RIAL-s

RIAL

(x
1

0
6
)

(b) Performance degradation

0.0

5.0

10.0

15.0

20.0

25.0

30.0

4000 5000 6000

C
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

re
d

u
c
ti

o
n

 (
x
1

0
3
)

The number of VMs

RIAL-o

RIAL-s

RIAL

(c) Communication cost reduction

0.0

10.0

20.0

30.0

40.0

50.0

10 15 20 25

E
x
e

c
u

ti
o

n
 t

im
e

 (
n

s
)

The number of VMs

RIAL-o RIAL-s

(d) Execution time

Fig. 13: Performance of weight determination algorithms with varying VM to PM ratio (1000 PMs).

0.0

1.0

2.0

3.0

4.0

5.0

6.0

4000 5000 6000

T
h

e
 n

u
m

b
e

r
o

f
m

ig
ra

ti
o

n
s
 (

x
1

0
3
)

The number of VMs

RIAL-a

RIAL

(a) The number of VM migrations.

0

0.1

0.2

0.3

0.4

0.5

4000 5000 6000

P
e

rf
o

rm
a

n
c
e

d

e
g

ra
d

a
ti

o
n

The number of VMs

RIAL-a

RIAL(x
1

0
6
)

(b) Performance degradation.

0

50

100

150

200

4000 5000 6000

T
h

e
 n

u
m

b
e

r
o

f

S
L
O

 v
io

la
ti

o
n

s

The number of VMs

RIAL-a

RIAL

(c) The number of SLO violations.

Fig. 14: Performance of migration triggering algorithm.

number of VM migrations than RIAL since it avoids un-
necessary VM migrations and meanwhile avoids violating
SLO requirements. The number of VM migrations increases
as the number of VMs increases since more VMs aggravate
the load in the datacenter. Figure 14(b) shows the total
performance degradation. We see that the total performance
degradation of RIAL-a is lower than RIAL. This is mainly
because that RIAL-a avoids unnecessary VM migrations and
triggers fewer VM migrations. The performance degrada-
tion increases with the number of VMs since move VMs
generate more workload and hence more VM migrations.
Figure 14(c) shows the number of SLO violations. We see
that RIAL-a produces a similar number of SLO violations
as RIAL although RIAL-a does not immediately trigger VM
migration upon detecting uik > Θk. Also, the number of
SLO violations increases with the number of VMs due to
higher workloads on PMs. This result confirms that trig-
gering VM migration only when the overload status of a
PM lasts continuously for at least Ttd time can improve the
performance of RIAL without significantly affecting SLO.

5.7 Performance of Decentralized Destination PM Se-
lection
We then compare the performance of decentralized
destination PM selection algorithm introduced in Section 4.6
with the centralized algorithm. We denote the centralized
algorithm as RIAL, and the decentralized algorithms with
cluster size c as RIAL-c, where c was set to 20, 30 and
40, respectively. Figure 15(a) shows the execution time of
different algorithms. We see that the execution time follows
RIAL-20<RIAL-30<RIAL-40<RIAL. This is because a clus-
ter with a smaller number of PMs has a smaller problem size
and all cluster masters conduct the destination PM selection
simultaneously. RIAL has a higher time than the others
because it must rank all the PMs based on Equ. (22) in the
datacenter for PM selection. Figure 15(b) shows the number
of VM migrations, which follows RIAL<RIAL-40<RIAL-
30<RIAL-20. This is because the selected destination PM
in a smaller cluster is not the ideal destination PM in the
system scope with high probability and is more likely

to become overloaded later on, which leads to more VM
migrations. Figure 15(c) shows the performance degrada-
tion, which follows RIAL<RIAL-40<RIAL-30<RIAL-20.
Although selecting PM nearby (in a smaller cluster) can
reduce the distance of migration, but the large number
of VM migrations (as indicated in Figure 15(b)) offsets
the benefit, resulting in higher performance degradation.
Figure 15(d) shows the communication cost reduction,
which follows RIAL-20<RIAL-30<RIAL-40<RIAL due to
the reason that a larger cluster has more opportunities
or options for reducing communication cost. The best
PM selected within a cluster reduces less communication
cost compared to the best PM selected within the whole
datacenter. These results confirms that the decentralized
algorithm does not degrade the performance greatly while
significantly reduces the algorithm execution time.

5.8 Real-World Testbed Experiments
For real-world testbed experiments of RIAL, we deployed a
cluster with 7 PMs (2.00GHz Intel(R) Core(TM)2 CPU, 2GB
memory, 60GB HDD) and two NFS (Network File System)
servers with a combined capacity of 80GB. We then imple-
mented the various load balancing algorithms in Python
2.7.2 using the XenAPI library [32] running in a manage-
ment node (3.00GHz Intel(R) Core(TM)2 CPU, 4GB memory,
running Ubuntu 11.04). We created 15 VMs (1VCPU, 256MB
memory, 8.0GB virtual disk, running Debian Squeeze 6.0)
in the cluster; each with Apache2 Web Server installed. We
used the publicly available workload generator lookbusy
[33] to generate both CPU and memory workloads. We
recorded the generated CPU and memory workloads. The
actually provisioned resources can be collected from the
management node. The load balancing was executed once
every 5 minutes. Similar to the simulation experiment, we
set the overload threshold Th,k to 0.75. Initially, we ran-
domly assigned the VMs to PMs, and then compared the
performance of different load balancing strategies.

The communication delay between two PMs is
determined by the number of switches across the
communication paths in the testbed architecture. We

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2737628, IEEE
Transactions on Cloud Computing

13

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RIAL RIAL-20 RIAL-30 RIAL-40

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

(a) Execution time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

800 1000 1200

T
h

e
 n

u
m

b
e

r
o

f
m

ig
ra

ti
o

n
s
 (

x
1

0
3
)

The number of PMs

RIAL
RIAL-20
RIAL-30
RIAL-40

(b) The number of VM migrations

0.25
0.26
0.27
0.28
0.29

0.3
0.31
0.32
0.33

800 1000 1200

P

e
r
fo

r
m

a
n

c
e

d

e
g

ra
d

a
ti

o
n

The number of PMs

RIAL
RIAL-20
RIAL-30
RIAL-40

(x
1

0
6
)

(c) Performance degradation

0.0

5.0

10.0

15.0

20.0

25.0

800 1000 1200

C
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

re
d

u
c
ti

o
n

 (
x
1

0
3
)

The number of PMs

RIAL RIAL-20

RIAL-30 RIAL-40

(d) Communication cost reduction

Fig. 15: Performance of decentralized destination PM selection algorithm with varying VM to PM ratio (1000 PMs).

created latency between machines such that all traffic from
machine is in the ratio of 1:4:10 to follow the network
hierarchical setup [34]. That is, if the communication path
between two PMs comes across one switch, two switches,
and three switches, respectively, the latency between VMs
in the two PMs was set to be 1, 4 and 10, respectively. We
run each test for 20 times; each lasts for approximately 60m.

5.8.1 The Number of Migrations
Figure 16 shows the median, 10th percentile and 90th per-
centile of the total number of migrations in different meth-
ods. We can see that RIAL triggers fewer VM migrations
than the other two methods to achieve a load balanced
state, while TOPSIS generates fewer VM migrations than
Sandpiper. Figure 17 shows the accumulated number of mi-
grations over time. We see that before 40m, RIAL generates
a similar number of migrations as Sandpiper and TOPSIS,
since all methods begin from a similar load unbalanced
state at the beginning of the experiment. After around
40m, RIAL produces much fewer migrations and after 50m,
it produces no migrations and reaches the load balanced
state, while TOPSIS and Sandpiper continue to trigger VM
migrations. This result confirms that RIAL generates fewer
migrations and achieves the load balanced state faster due
to its consideration of resource intensity.

5.8.2 Performance Degradation
Figure 18 shows the median, 10th percentile and 90th per-
centile of the total VM performance degradation of the
three methods. We measured the real migration time to
replace Mij

Bip
in Formula (7) to calculate the performance

degradation. The figure shows that the VM performance
degradation of RIAL is lower than those of Sandpiper and
TOPSIS since it tries to reduce VM performance degrada-
tion when selecting destination PMs. TOPSIS has a slightly
lower VM performance degradation than Sandpiper. As
in the simulation, the variance of the results also follows
RIAL<TOPSIS<Sandpiper though it is not obvious due to
the small scale. These experimental results confirm the ad-
vantage of RIAL with the consideration of VM performance
degradation in load balancing.

5.8.3 Communication Cost
We generated a random graph G(n = 15, p = 0.2) to
represent the VM communication topology. Initially, we
manually placed intensively communicating VMs in PMs
with higher network delay for testing.

We measured the sum of the communication cost of
each pair of communicating VMs at the initial stage as the
base and measured the total communication cost at every
5 minutes during the experiment. Figure 19 shows the nor-
malized communication cost according to the base. We see

that as time goes on, the communication cost of all methods
decreases. This is because we initially placed intensively
communicating VMs in PMs with higher network delay
and VM migration can reduce the communication cost. Our
method can reduce the communication cost much more and
faster than the other methods, reaching 20% of the base
communication cost. TOPSIS and Sandpiper have similar
curves since they neglect VM communication cost in load
balancing.

6 CONCLUSIONS

In this paper, we propose a Resource Intensity Aware Load
balancing (RIAL) method in clouds that migrates VMs from
overloaded PMs to lightly loaded PMs. It is distinguished
by its resource weight determination based on resource
intensity. In a PM, a higher-intensive resource is assigned
a higher weight and vice versa. By considering the weights
when selecting VMs to migrate out and selecting destination
PMs, RIAL achieves faster and lower-cost convergence to
the load balanced state, and reduces the probability of future
load imbalance. Further, RIAL takes into account the com-
munication dependencies between VMs in order to reduce
the communication between VMs after migration, and also
tries to minimize the VM performance degradation when
selecting destination PMs. The weights assigned to com-
munication cost and performance degradation are optimally
determined so that the overutilized resource is relieved and
both communication cost and performance degradation are
minimized. We also propose RIAL with a more strict migra-
tion triggering algorithm to avoid unnecessary migrations
while satisfying SLOs. Finally, we make RIAL decentral-
ized to improve its scalability. Both trace-driven simulation
and real-testbed experiments show that RIAL outperforms
other load balancing approaches in regards to the number
of VM migrations, VM performance degradation and VM
communication cost. In our future work, we will study how
to globally map migration VMs and destination PMs in the
system to enhance the effectiveness and efficiency of load
balancing. We will also measure the overhead of RIAL and
explore methods to achieve an optimal tradeoff between
overhead and effectiveness.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants ACI-
1719397 and CNS-1733596, and Microsoft Research Faculty
Fellowship 8300751. We would like to thank Dr. Liuhua
Chen for his valuable contribution. An early version of this
work was presented in the Proceedings of Infocom 2014 [35].

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2737628, IEEE
Transactions on Cloud Computing

14

RIAL TOPSIS Sandpiper

0

5

10

15

20

25

30

35
T
h
e
 n
u
m
b
e
r
o
f

m
ig
ra
ti
o
n
s

Fig. 16: Number of migra-
tions.

5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

Time (min)

T
h
e
 n
u
m
b
e
r
o
f

m
ig
ra
ti
o
n
s

RIAL

Sand Piper

TOPSIS

Fig. 17: Accumulated # of mi-
grations.

RIAL TOPSIS Sandpiper

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
e
rf
o
rm

a
n
c
e

d
e
g
ra
d
a
ti
o
n
 (
x
1
0
5
)

Fig. 18: Performance degrada-
tion.

0

0.2

0.4

0.6

0.8

1

5 15 25 35 45 55 65

C
o
m
m
u
n
ic
a
ti
o
n
 c
o
s
t

Time (min)

RIAL
Sandpiper
TOPSIS

Fig. 19: Communication cost.

REFERENCES

[1] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif, “Black-
box and gray-box strategies for virtual machine migration.” in
Proc. of NSDI, vol. 7, 2007, pp. 17–17.

[2] E. Arzuaga and D. R. Kaeli, “Quantifying load imbalance on
virtualized enterprise servers.” in Proc. of WOSP/SIPEW, 2010, pp.
235–242.

[3] A. Singh, M. R. Korupolu, and D. Mohapatra, “Server-storage
virtualization: integration and load balancing in data centers.” in
Proc. of SC, 2008, p. 53.

[4] G. Khanna, K. Beaty, G. Kar, and A. Kochut, “Application perfor-
mance management in virtualized server environments,” in Proc.
of NOMS, 2006, pp. 373–381.

[5] M. Tarighi, S. A. Motamedi, and S. Sharifian, “A new model for
virtual machine migration in virtualized cluster server based on
fuzzy decision making.” arXiv preprint arXiv:1002.3329, 2010.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines.” in
Proc. of NSDI, 2005, pp. 273–286.

[7] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, “Proac-
tive fault tolerance for hpc with xen virtualization.” in Proc. of ICS,
2007, pp. 23–32.

[8] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable
application placement controller for enterprise data centers.” in
Proc. of WWW, 2007.

[9] F. Xu, F. Liu, and H. Jin, “Managing performance overhead of
virtual machines in cloud computing: A survey, state of art and
future directions,” in Proc. of IEEE, 2014.

[10] X. Li, J. Wu, S. Tang, and S. Lu, “Let’s stay together: Towards
traffic aware virtual machine placement in data centers,” in Proc.
of INFOCOM, 2014.

[11] F. Xu, F. Liu, and H. Jin, “Heterogeneity and interference-aware
virtual machine provisioning for predictable performance in the
cloud,” IEEE Transactions on Computers, 2016.

[12] S. Lim, J. Huh, Y. Kim, and C. R. Das, “Migration, assignment,
and scheduling of jobs in virtualized environment,” in Proc. of
HotCloud, 2011.

[13] H. Hsiao, H. Su, H. Shen, and Y. Chao, “Load rebalancing for
distributed file systems in clouds.” TPDS, vol. 24, no. 5, pp. 951–
962, 2012.

[14] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks.” in Proc. of SIGCOMM, vol. 41,
no. 4, 2011, pp. 242–253.

[15] D. Xie, N. Ding, Y. C. Hu, and R. R. Kompella, “The only constant
is change: incorporating time-varying network reservations in
data centers.” in Proc. of SIGCOMM, vol. 42, no. 4, 2012, pp. 199–
210.

[16] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Rat-
nasamy, and I. Stoica, “Faircloud: sharing the network in cloud
computing.” in Proc. of SIGCOMM, 2012, pp. 187–198.

[17] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic
right-sizing for power-proportional data centers.” in Proc. of IN-
FOCOM, 2011, pp. 1098–1106.

[18] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing clusters.” in Proc. of
INFOCOM, 2012, pp. 702–710.

[19] V. Shrivastava, P. Zerfos, K. Lee, H. Jamjoom, Y. Liu, and S. Baner-
jee, “Application-aware virtual machine migration in data center-
s.” in Proc. INFOCOM, 2011, pp. 66–70.

[20] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placemen-
t.” in Proc. of INFOCOM, 2010, pp. 1154–1162.

[21] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic
resource scaling for multi-tenant cloud systems.” in Proc. of SOCC,
2011, p. 5.

[22] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of vir-
tual machine live migration in clouds: A performance evaluation.”
CoRR, vol. abs/1109.4974, 2011.

[23] A. Beloglazov and R. Buyya, “Optimal online deterministic al-
gorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in cloud data
centers.” CCPE, vol. 24, pp. 1397–1420, 2012.

[24] M. J. Magazine and M.-S. Chern, “A note on approximation
schemes for multidimensional knapsack problems.” MOR, 1984.

[25] H. Wang and C. L. Yoon, “Multiple attributes decision making
methods and applications.” Springer, 1981.

[26] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,”
in Proc. of EuroSys, 2015, p. 18.

[27] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms.” SPE, vol. 41, pp. 23–50, 2011.

[28] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica,
“Cake: enabling high-level SLOs on shared storage systems,” in
Proc. of SOCC, 2012, p. 14.

[29] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible
data center network,” in Proc. of SIGCOMM, 2009.

[30] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 4, Aug. 2008.

[31] K. Park and V. S. Pai, “Comon: a mostly-scalable monitoring
system for planetlab.” OSR, vol. 40, pp. 65–74, 2006.

[32] “Xenapi,” http://community.citrix.com/display/xs/Download+
SDKs, [accessed in Feb. 2015].

[33] “lookbusy,” http://devin.com/lookbusy/, [accessed in Feb. 2015].
[34] C. Peng, M. Kim, Z. Zhang, and H. Lei, “VDN: Virtual machine

image distribution network for cloud data centers.” in Proc. of
INFOCOM, 2012, pp. 181–189.

[35] L. Chen, H. Shen, and K. Sapra, “RIAL: Resource intensity aware
load balancing in clouds.” in Proc. of INFOCOM, 2014.

Haiying Shen received the BS degree in Com-
puter Science and Engineering from Tongji Uni-
versity, China in 2000, and the MS and Ph.D.
degrees in Computer Engineering from Wayne
State University in 2004 and 2006, respectively.
She is currently an Assistant Professor in the De-
partment of Electrical and Computer Engineer-
ing at Clemson University. Her research interests
include distributed computer systems and com-
puter networks, with an emphasis on peer-to-
peer and content delivery networks, mobile com-

puting, wireless sensor networks, and grid and cloud computing. She
was the Program Co-Chair for a number of international conferences
and member of the Program Committees of many leading conferences.
She is a Microsoft Faculty Fellow of 2010, a senior member of the IEEE
and a member of the ACM.

