
2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2823330, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 1

Towards Green Cloud Computing: Demand
Allocation and Pricing Policies for Cloud Service

Brokerage
Chenxi Qiu, Haiying Shen*, Senior IEEE Member, Liuhua Chen

Abstract—Functioning as an intermediary between tenants and cloud providers, cloud service brokerages (CSBs) can bring about
great benefits to the cloud market. As energy costs of cloud computing have been increasing rapidly, there is a need for cloud providers
to optimize energy efficiency while maintain high service level performance to tenants, not only for their own benefit but also for social
welfares. Thus, for green cloud companies, two questions have arisen: 1) under what pricing policies from the cloud providers to the
CSB, a profit-driven CSB is willing to minimize the total energy cost while satisfy tenant demands and 2) how should a CSB distribute
tenants demands to achieve this objective? To address question 1), we find a pricing policy for cloud providers such that maximizing
CSBs profit is equivalent to minimizing cloud providers energy cost. To address question 2), we first devise a greedy solution, and
then propose an approximation algorithm and a decomposition-based solution with a constant approximation ratio. Both simulation and
real-world Amazon EC2 experimental results demonstrate the effectiveness of our pricing policy to incentivize CSBs to save energy
and the superior performance of our algorithms in energy efficiency and resource utilization over the previous algorithms.

Keywords—cloud computing, cloud service brokerage, pricing policy, demand allocation.

F

1 INTRODUCTION

Though cloud computing is still in its relative infancy,
it has earned rapid interest and adoption due to its
advantages. Cloud tenants (e.g., DropBox) purchase cloud
computing services from cloud providers (e.g., Amazon,
Microsoft Azure). As innovative approaches continue to
emerge in cloud computing, it is becoming clear that
simple cloud interoperability between cloud tenants and
cloud providers is often neither realistic nor the most
advantageous. Currently, if a cloud tenant wants to
use the clouds in multiple cloud providers, the tenant
needs to negotiate multiple contracts with the cloud
providers, which results in multiple payments, multiple
data streams, and multiple providers to check up on.
Then, tenants are faced with a problem of how to make
the services from multiple cloud providers’ work to-
gether to gain maximum profit and efficiency. However,
determining the most advantageous ways to procure,
implement and manage cloud technologies to handle
this problem presents complex issues to cloud tenants.
Under this circumstance, cloud service brokerages (CSBs)
have arisen in the market [7], [14], [15].

As shown in Fig. 1, CSB is a third-party individual
or business that acts as an intermediary between the
tenants and the cloud providers. CSBs buy the cloud

• * Corresponding Author. Email: shenh@clemson.edu. Telephone number:
(864) 6565931

• Chenxi Qiu is with the College of Information Science and Technology,
Pennsylvania State University, State College, PA, 16801.
E-mail: czq3@psu.edu.
Haiying Shen is with the Department of Computer Science, University of
Virginia, Charlottesville, VA, 22904.
E-mail: hs6ms@virginia.edu.
Liuhua Chen is with the Department of Electrical and Computer Engi-
neering, Clemson University, Clemson, SC, 29634.
E-mail: liuhuac@clemson.edu

Tenants

Cloud

Providers

Cloud 1 Cloud 2 Cloud N

...

Cloud

Service

Brokerage

Provide performance

guarantee to tenants

...
tenant 1 tenant 2 tenant M

Increase resource

efficiency for cloud

providers

request

purchase

Fig. 1. Cloud service brokerage.

resources, i.e., servers, with lower prices from cloud
providers [8], [23] and sell the resources to the tenants
with higher prices. In addition, CSBs can enhance the
resource utilization of cloud services for tenants because
they can monitor, track, protect and enforce company
policies across all demands from different tenants (a
demand can be a virtual machine (VM) in the IaaS
(Infrastructure as a Service) model or a video game in
the SaaS (Software as a Service) model). Thus, CSBs can
make it easier, less expensive, safer and more productive
for tenants to use cloud resources, particularly when
tenants’ requests span multiple and diverse cloud service
providers.

To maximize its own profit, a CSB may distribute
tenant requests to clouds which does not efficiently use
cloud resources, since maximizing the CSB’s profit does
not mean minimizing the cloud providers’ cost [23].
However, how to motivate a CSB to reduce energy
cost (or cost for short) of cloud resources for green
computing while satisfy all tenant requests has not been
addressed. Indeed, energy consumption has been one
of the most important issues in cloud computing [23].
The electricity consumption of clouds globally is 623
Billion kWh in 2007 and is projected to be 1,963 Billion

2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2823330, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 2

kWh 2020, which will generate 1034 MtCO2e (Gigatonne
Carbon Dioxide Equivalent) [19]. As energy costs of
cloud computing have been increasing rapidly, there is
a need for cloud providers to optimize energy efficiency
while maintain high service level performance to ten-
ants, not only for their own benefit but also for social
welfares (e.g., protecting environment) [23]. To address
this need, we attempt to explore the pricing policy of
the cloud providers on CSBs to incentivize CSBs to save
cloud energy cost and propose methods for a CSB to
allocate tenants’ demands to the servers to minimize
cloud energy cost. Specifically, we study two questions
below:

Q1: Under what pricing policies of cloud providers, when a
CSB maximizes its profit, it can also minimize the total
energy cost of all cloud providers.

Q2: How should a CSB distribute tenants’ demands to cloud
providers to minimize total energy cost and meanwhile
satisfy tenants’ demands?

To address Q1, we first formulate two problems for
CSBs: the Maximum CSB Profit problem (MCP) that aims
to maximize a CSB’s profit, and the Min-energy CSB
Demand allocation problem (MCD) that aims to mini-
mize cloud providers’ energy cost when allocating tenant
demands to servers. By analyzing these two problems,
we find a pricing policy for cloud providers to CSBs,
such that MCP is equivalent to MCD, i.e., maximizing a
CSB’s profit is equivalent to minimizing cloud providers’
energy cost. In other words, under this pricing policy,
even a profit-driven CSB will automatically save energy
for cloud providers when maximizing its own profit.

To address Q2, we need to find the optimal solution of
MCD, which can be regarded as a generalized version
vector bin packing (VBP) problem [28], [29]. However,
MCD cannot simply be solved using the existing VBP
solutions (e.g., Best Fit Decreasing algorithm (BFD) [28],
[29]), because unlike VBP, demands and servers (bins)
in MCD have different requirements and capacities for
each type of resource, and the energy costs for different
types of servers are also different. To solve MCD, we
first propose a greedy algorithm based on BFD, namely
Balance Fit Decreasing algorithm (BaFD). It aims to
balance each server’s utilization on different types of
resources when selecting a server for a demand because
one resource bottleneck prevents fully utilizing other
resources. We then propose a decomposition-based al-
gorithm for MCD, called Decomposition-based demand
Fit Decreasing (DFD). First, we formulate a relaxation
version of MCD, namely MCD-RL. Using Lagrangian
dual decomposition, we divide MCD-RL into a set of
subproblems, which can be computed in parallel in
multiple machines. We prove that the decomposition-
based method converges much faster than the central-
ized method and MCD and MCD-RL have a constant
approximation ratio. We summarize our contributions in
below. We summarize our contributions in below.

1. We find a resource pricing policy for cloud provider-
s to incentivize CSBs to minimize the cloud energy
cost.

2. We design a greedy algorithm (BaFD) and a

decomposition-based approximation algorithm
(DFD) for a CSB to minimize cloud energy cost
when allocating tenant demands to cloud servers,
and analyze algorithm performance.

3. We test the performance of BaFD and DFD in
comparison with the previous algorithms by both
trace-driven experiments on a simulator and on
Amazon EC2 [1]. The experimental results that our
algorithms outperform the previous methods in the
aspects of energy cost of servers and resource uti-
lizations (e.g., CPU utilization and memory utiliza-
tion).

The remainder of this paper is organized as follows.
Section 2 and Section 3 study the pricing problem
and demand allocation problem for CSBs, respectively.
Section 4 evaluates the performance of our proposed
schemes in comparison with other schemes. Section 5
presents related work. Section 6 concludes this paper
with remarks on our future work.

2 PRICING POLICY FOR CSBS
Our objective is to minimize the energy consumption of
cloud servers. In reality, CSBs are usually profit-driven
and they do not have to minimize the energy cost from
cloud providers. To maximize its own profit, a selfish
CSB may distribute tenants’ demands to the clouds that
cannot fully utilize the energy resources [23]. On the oth-
er hand, even if a CSB is willing to save energy for cloud
providers, it has little information of servers’ energy cost,
which becomes an obstacle for the energy saving.

In this section, we discuss how to design a pricing
policy from cloud providers to CSBs to incentivize profit-
driven CSBs to minimize the total energy cost for cloud
providers, even if CSBs are not aware of the energy cost
of servers in clouds. In what follows, we first describe
the system model as well as the notations that will be
throughout the paper in Section 2.1. Then, we formulate
the MCP and MCD problems in Section 2.2. Finally, we
describe our pricing policies in Section 2.3.

2.1 System model
We consider a scenario composed of a CSB, M ten-
ant demands V = {v1, ..., vM}, and N heterogenous
servers S = {s1, ..., sN} provided by L cloud providers
C = {c1, ..., cL}. Here, a demand is defined as a tenant’s
request that can only be allocated to a single server.
Hence, the applications that require multiple servers can
be considered as the combinations of multiple demands.
Since the resource consumptions for different demand-
s are different, we can characterize each demand vl
by a K-dimensional vector wl = [wl,1, ..., wl,K], called
consumption vector, where K denotes the number of
different types of resources (e.g., CPU, memory, and
disk bandwidth). Each dimension wl,j represents the
demand’s consumption on type-j resource. A tenant
may have multiple demands. Similarly, each server si
can be characterized by a K-dimensional capacity vector
bi = [bi,1, ..., bi,K]T, where each dimension bi,j represents
the server’s capacity on type-j resource1. We list the

1. In what follows, we normalize the entries of wl and bi by dividing
each wl,k and bi,k by wmax and bmax, respectively, where wmax =
maxl,k wl,k and bmax = maxi,k bi,k .

2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2823330, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 3

main notations that will be used throughout the paper
in Table 1.

TABLE 1
Symbols and descriptions

Symbol Description
C The cloud provider set
cm The mth cloud provider
S The server set
si The ith server
V The demand set
xi Indicating whether si is purchased
yi,l Indicating whether vl is allocated to si
M The number of demands
vl The lth tenant demand
N The number of servers
ai The energy cost of si
bi,k The capacity of resource k of si
wl,k The demand of resource k of vl
Ln The money that the CSB needs to pay

to cloud provider n

Note that one of the major causes of energy inefficien-
cy in data centers is the idle power wasted when servers
run at low utilization. Even at a very low load, such as
10% CPU utilization, the power consumed is over 50%
of the peak power [10]. Similarly, if the disk, network,
or any such resource is the performance bottleneck, the
idle power wastage in other resources goes up [27].

Since the relationship between server’s utilization and
energy consumption is too complex to model in a linear
form [10], by considering the computational tractability
of the approach design and analysis, we simplify the
model by assuming that the energy consumption of
each server is increased linearly with the increase of
the utilization of each type of its resource [16]: Pi =

ai+
∑
l∈Vi

∑K
k=1 wl,k, where ai is the idle power of server

i and Vi is the set of demands allocated to the ith server.
Here, we need to note that when we sum the energy
consumption of all the servers, we obtain

∑
i

Pi =
∑
i

(
ai +

∑
l∈Vi

K∑
k=1

wl,k

)
(1)

=
∑
i

ai +
∑
i

∑
l∈Vi

K∑
k=1

wl,k (2)

=
∑
i

ai +
L∑
l=1

K∑
k=1

wl,k (3)

where
∑L
l=1

∑K
k=1 wl,k is given and can be consider as a

constant. So, in what follows, we mainly consider how
to minimize

∑
i ai, and we call ai the cost of each server

si. As in [41], we also assume that the servers in each
cloud provider are homogeneous. That is, they have the
same capacity vector and energy cost. But servers from
different cloud providers can be different.

2.2 Problem formulations

We assume that the CSB knows the consumption vectors
of all the tenants and the tenants’ consumption vectors

are all fixed [23]. We use indicator variable xi to repre-
sent whether si is purchased by the CSB:

xi =

{
1 si is purchased by the CSB
0 otherwise (4)

We use indicator variable yi,l to denote whether demand
vl is distributed to cloud provider ci:

yi,l =

{
1 vl is distributed to server si
0 otherwise (5)

Like [18], in this paper, we assume that each cloud
provider charges the CSB based on the number of server-
s. Let zn denote the total number of servers that the CSB
bought from cloud provider cn, i.e., zn =

∑
si∈Sn

xi.
The money that the CSB needs to pay to cn can be
represented by Ln(zn), where each Ln(·) is a concave
and twice differentiable pricing function and Ln(0) = 0.
Cloud providers provide the information of the pricing
policy and the capacity vectors of their servers to the
CSB when the CSB buys servers [23]. Recall that each
demand has a consumption vector with the consumption
for K types of resources. Then, we formally formulate
the maximum profit problem of the CSB, namely the
Maximum CSB Profit (MCP) problem, as follows:

min f ′(z) =
∑
n

Ln(zn) (6)

s.t. gi,k(x,yi) =
∑
l

yi,lwl,k − xibi,k ≤ 0,∀i, k (7)

hl(yl) =
∑
i

yi,l − 1 = 0,∀l (8)

xi ∈ N,∀i, yi,l ∈ {0, 1},∀i, l (9)

zn =
∑
si∈Sn

xi, ∀n. (10)

where z = [z1, ..., zL], x = [x1, ..., xN]T, yl =
[y1,l, ..., yN,l]

T and yi = [yi,l, ..., yi,M].
In the above problem formulation, constraint (7) en-

sures that for each cloud provider, the capacities of the
purchased servers are enough for its allocated demands.
Constraint (8) ensures that each demand is allocated
to one server. In general, MCP is an integer non-linear
programming problem.

Similarly, we can formulate the problem that CSB aims
to minimize the energy cost, called the Min-energy CSB
demand allocation (MCD) problem, which is an integer
linear programming (ILP) problem:

min f(x) =
∑
i

aixi (11)

s.t. Constraints (7), (8), and (9) in MCD.

2.3 Pricing policies
If MCP is equivalent to MCD, then when the CSB strives
to maximize its own profit, it also minimizes the total
energy cost of all clouds to accommodate all tenant
demands, i.e., the CSB becomes cooperative. However,
MCD is not equivalent to MCP in general because their
objective functions are different. This leads to a question:

2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2823330, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 4

õz
n
*

õnzn Feasible

region of I

o

o

zn

zn

d

d

≥1

Construct

instance I’ by

scaling the

instance I

z
*

z
**

ẑn

ẑ
n
*

Construct a new

instance I’’

H
*

C
*

H
**

C
**

(a)

(b)

Feasible

region of I’

õz
n
*

o

ẑ
n
*

H
**

C
**

(c)

a

Feasible

region of I’’

C

Generate a

better solution

zn

Fig. 2. Proof of Theorem 2.1.

what pricing policies (i.e., Ln(·)) make MCP equivalent
to MCD?

In what follows, we discuss the necessary and suf-
ficient conditions that make the objective functions of
MCD and MCP equivalent. First, it is trivial to find that
when Ln(z) = βanzn ∀n (an is the cost of each server
from provider n, as we assume the servers from the
same provider have the same cost), the two problems
are equivalent, since

f ′(z) =
∑
n

Ln(zn) =
∑
n

βanzn (12)

=
∑
n

βan
∑
si∈Sn

xi = β
∑
i

aixi = βf(x), (13)

which means they have the same objective functions.
However, it requires more discussion to find the nec-

essary condition, as we need to not only prove that the
policies under this condition meet the requirement, but
also exclude all other possible pricing policies. In the
following, Theorem 2.1 concludes that Ln(z) = βanzn ∀n
is also necessary condition to make the two problems
equivalent.

Lemma 2.1: Suppose that MCD and MCP are equiva-
lent. Let I be an instance of both MCD and MCP, where
the optimal point is z∗, and let H∗(z) and C∗(z) be
the hyperplane and the hypersurface passing through
z∗ = [z∗1 , ..., z

∗
L], respectively:

H∗(z) :
∑
n

anzn − c∗A = 0 (14)

C∗(z) :
∑
n

Ln(zn)− c∗L = 0, (15)

where c∗A =
∑
n anz

∗
n and c∗L =

∑
n Ln(z∗n), then H∗(z)

and C∗(z) coincide.
Proof: Since MCP and MCD have the same linear

constraints, their feasible regions are the same convex
polyhedron. As Fig. 2(a) shows, let each z̃n = z̃nen be
the point at which H∗ intersects with zn axis, where z̃n =

∑
i aiz

∗
i

an
, and en is a N dimension vector with all entries

equaling 0 except the nth entry equaling 1. Notice zn
does not have to be an integer. As z∗ is in a hyperplane,
z∗ can be represented as a linear combination of z̃1, ...,
z̃L:

z∗ =
∑
n

λnz̃
n, (16)

where
∑
n λn = 1 and each λn ≥ 0. Also, f ′(z) is

concave, we can derive that

f ′ (z∗) = f ′
(∑

n

λnz̃
n

)
≥
∑
n

λnf
′ (z̃n) , (17)

which implies that
∑
n λnf

′ (z̃n) ≤ c∗L.
Similarly, let ẑn = ẑnen be the point that C∗ intersects

with zn axis (n = 1, 2, ..., L), respectively,

ẑn = L−1
n

(∑
i

Ln(z∗i)

)
. (18)

On the other hand,∑
n

λnf
′ (ẑn) =

∑
n

λnc
∗
L = c∗L. (19)

Accordingly,
∑
n λnf

′ (z̃n) ≤
∑
n λnf

′ (ẑn).

Now, we need to prove that ẑn = z̃n ∀n, which makes
C∗ a hyperplane and hence completes the proof. For the
sake of contradiction, suppose that exists ẑn 6= z̃n. Since
f ′ is monotonically increasing, then ∃z̃n < ẑn; otherwise,∑
n λnf

′ (z̃n) >
∑
n λnf

′ (ẑn).
First, we consider moving a point from z∗ towards

the zn axis in both C∗(z) and H∗(z). For simplicity, we
let v denote the direction from z∗ to the zn axis and let
5vf(z) denote the gradient of f(z) along v at point z.
Then, 5vH

∗(z) is a constant. As C∗(z) is convex, C∗(z)
is monotone. Hence, to make sure z̃n < ẑn, C∗(z) is
monotonically increasing and 5vC

∗(ẑ) > 5vH
∗(z̃). We

let
δ = 5vC

∗(ẑn)−5vH
∗(z̃n) (20)

And then, we construct a new instance I ′ by scaling
the feasible region of instance I by

⌈
1
δ

⌉
, as Fig. 2(b)

shows. Let the optimal solution of both MCD and MCP
in I ′ be z∗∗, and we can move H∗(z) and C∗(z) from z∗

to z∗∗ to construct two new hypersurfaces H∗∗(z) and
C∗∗(z): both of which pass through the optimal point
z∗∗ = [z∗∗1 , ..., z∗∗L]:

H∗∗(z) :
∑
n

anzn −
∑
n

anz
∗∗
n = 0 (21)

C∗∗(z) :
∑
n

Ln(zn)−
∑
n

Ln(z∗∗n) = 0. (22)

Let each z̃n∗ = z̃n∗en and ẑn∗ = ẑn∗en be the points at
which H∗∗ and C∗∗ intersect with zn axis, respectively.
Note that the direction from z∗∗ to the zn axis is still v.

Similar to C∗(z) and H∗(z), we can infer that5vC
∗(ẑ)

is monotonically increasing and 5vH
∗(z̃) is a constant.

Then, ẑn∗ − z̃n∗

≥ (5vC
∗(ẑn)−5vH

∗(z̃n))

(⌈
1

δ

⌉
− 1

)
+ δ

= δ

(⌈
1

δ

⌉
− 1

)
+ δ ≥ 1, (23)

where indicates that there exists an integer, denoted by
a, between ẑn∗ and z̃n∗.

2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2823330, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 5

Finally, we construct a new instance I ′′ that only has
the feasible points in the zn axis with zn ≥ a, as Fig. 2(c)
shows. Then, the optimal solution in MCP is a·en, but the
optimal solution of MCD is z̃n∗. Because MCD and MCP
have different optimal solutions in I ′′, it contradicts the
assumption that MCP and MCD have the same optimal
solution in all instances.

Theorem 2.1: MCP and MCD have the same optimal
solution only if Ln(z) = βanz, ∀n where β > 0 is a
constant.

Proof: Let I be an instance of both MCD and MCP,
where the optimal point is z∗, then hyperplane H∗(z)
and the hypersurface C∗(z) (defined by Equ. (14) and
Equ. (15)) coincide, indicating that C∗(z) is a hyperplane:

C∗(z) :
∑
n

Ln(zn)− c∗L =
∑
n

a′nzn − c∗L = 0, (24)

where each a′n =
c∗L
c∗A
an, which implies that∑

n

Ln(zn) =
∑
n

a′nzn ∀z ∈ C∗(z). (25)

For each n, let each zi = 0 if i 6= n. Then, from Equ. (25)
we can obtain

Ln(zn) =
c∗L
c∗A
anzn = βanzn. (26)

The proof completes.

Theorem 2.1 suggests that: to encourage a profit-driven
CSB to minimize the total energy cost of multiple clouds, the
price of each server should be proportional to its energy cost;
If a pricing policy is not proportional to the energy cost, it
cannot always encourage a profit-driven CSB to minimize the
energy cost.

Given the pricing policy, the MCD problem for CSB
can be considered as a general version of the traditional
demand allocation problem, which is equivalent to the
VBP problem [7]. However, the methods for VBP, like
FFD and BFD, cannot be directly applied to MCD,
because in MCD the servers are chosen among multiple
cloud providers, and it is non-trivial to find an optimal
solution among heterogonous servers with different ca-
pacities and different prices. For example, some servers
serve the requests more efficiently, but their prices are
higher, so they may not be the optimal choice. In the
following part, we will introduce how to solve this new
demand allocation problem.

3 MIN-ENERGY CSB DEMAND ALLOCATION
In this section, we address Q2 in Section 1, i.e., how
a CSB distributes its tenants’ requests to achieve the
objective of minimizing the energy cost. As opposed to
many existing works that target homogeneous servers
(i.e., in terms of both capacity and cost), our demand
allocation strategy considers the heterogeneous servers
across multiple providers. We note that the capacity of
different servers can be different (e.g., servers can be
characterized with “higher CPU capacity” or “higher
memory capacity”), and the selection of servers highly
depends on the demands’ requirement for different types
of resources. The problem is an extension of well-known
bin-packing problem, which is NP-hard.

Due to the hardness of this problem, we then pro-
pose two time-efficient algorithms: a greedy algorithm,

Storage CPU Memory Storage

CPU Memory Storage

Server 1 Server 2

Demand 1

40 units
10 GB

4000 GB

30 units

15 GB 4000 GB

15 units
8 GB

4000 GB

CPU Memory

CPU Memory Storage

Demand 2

4 GB

3400 GB31 units

BFDSum BaFD

Fig. 3. Demand allocation in BFDSum and BaFD.

called Balance Fit Decreasing (BaFD), based on the Best
Fit Decreasing (BFD) algorithm [28], [29], and an ap-
proximation algorithm through linear programming (LP)
relaxation and Lagrangian dual decomposition [6].

3.1 A Heuristic: Balanced Best Fit Decreasing
When the servers in all different cloud providers have
the same capacity for different resources, b1,k = b2,k =
... = bN,k ∀k, MCD maps to the classical optimization
problem called vector bin packing (VBP) [3], where the
servers are conceived as bins and the demands as objects
that need to be packed into the bins. Since vector bin
packing is NP-hard, MCD is also NP-hard. Due to the
hardness of MCD, we cannot find an optimal solution for
this problem. Hence, we turn our attention to designing
a time-efficient heuristic algorithm for MCD, called Bal-
ance Fit Decreasing (BaFD) algorithm. BaFD is improved
from the existing algorithm Best Fit Decreasing (BFD)
algorithm, a natural heuristic for one-dimensional bin
packing problem. BFD orders the objects in decreasing
order of size. Starting from the first object, it iterates over
the bins, finds out the bin that has the least amount
of space left after accommodating the object. It then
proceeds to the second object, and repeats the same
procedure until all the objects are packed.

As mentioned above, MCD is a generalized form of
the bin packing problem, and MCD’s problem instance
is constrained by more than one dimension and each bin
(server) has different capacity vector and each object (de-
mand) has different consumption vector. Hence, we need
some generalization of BFD for multiple dimensions. A
traditional approach such as BFDSum [27] (or BFDProd)
is to map capacity vector into a single scalar (called
volume) and map consumption vector into a single scalar
(called weight) using the sum (or product) function, and
then perform a one-dimensional BFD algorithm on the
volumes and weights. However, a single scalar cannot
accurately reflect a server’s ability to fit a demand be-
cause one type of resource may become the bottleneck of
a server which makes other available resources unable to
be used. We use a BFD-based algorithm, BFDSum ([27]),
as an example to illustrate this problem. In BFDSum, the
volume of a server is the sum of all entries in the capacity
vector, and the weight of a demand is the sum of all en-
tries in the consumption vector. Before fitting the objects
into bins, BFDSum first needs to map each capacity vec-
tor and consumption vector into single scalars (volume
and weight) by summing all the entries in each vector.
After that, BFDSum follows the same procedure of BFD
algorithm based on the calculated volumes and weights.
As shown in Fig. 3, the maximum CPU, memory, and

2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2823330, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 6

Fig. 4. An example of the BaFD algorithm.

storage of all the servers are 40 units, 15GB, and 4000GB,
respectively. The normalized capacity vectors of s1 and
s2 are [1, 0.6, 1] and [0.75, 1, 1], respectively (the three
entries in the vector denote CPU, memory, and storage,
respectively). The volume of Server1 and Server2 are
2.6 and 2.75, respectively, and the weight of Demand1
and Demand2 are 1.905 and 1.895, respectively. BFDSum
allocates Demand1 first since Demand1 has a higher
weight than Demand2, and then selects Server1 because
it has less volume left after accommodating Demand1
than Server 2. Then, Demand2 cannot be allocated to
either Server1 or Server 2. Obviously, a better schedule
is to allocate Demand1 to Server 2 and Demand 2 to
Server1. BFDSum has worse performance because it
ignores that Server2’s CPU is the bottleneck for running
a demand.

To avoid the bottleneck of one type of resource in each
server, BaFD aims to balance the resource utilizations of
different resources in each server to increase the server’s
“volume” for allocating more demands. To this end, in
each iteration, say the nth iteration, BaFD attempts to
minimize the variance of the allocated resources of the
selected server, denoted by s(n),

min Var(u(n)) =
∑
k

(
u
(n)
k − u(n)

)2
, (27)

where u(n)k represents the utilization of type-k resource
of server s(n), u(n) represents the mean value of u(n)1 ,
..., u(n)K , and u(n) = [u

(n)
1 , ..., u(n)K]. Accordingly, when

selecting an object for a bin, BaFD tries to place the object
(demand) that can balance the resource of a given bin
(server).

Before introducing the details of BaFD, we first present
some definitions. Let V (n)

a and V
(n)
u represent the set of

demands allocated in the nth iteration and the set of
demands unallocated after the nth iteration, respectively.
We define the efficiency of a server si, denoted by e(si),
by the ratio of the sum of the weights of all VMs placed
in this server to its energy cost:

e(si) =

∑
vl∈si w(vl)

ai
. (28)

A higher efficiency of a server means it can support
more VM resource consumption per unit energy cost. To
minimize the total energy cost when allocating a given
group of VMs, BaFD tries to find the servers with higher
efficiency values.

The basic idea of BaFD is to iteratively find the “best
fit” demands that make each server’s resource utilization
be most balanced (according to Equ. (27)), and then picks
up the server (along with the demand allocation) with

the highest efficiency among all servers. Here, we pick
up the server with the highest efficiency, because our
goal is to minimize the total server cost, thus in each iter-
ation we try to accommodate the demands by the server
that has the smallest cost per unit weight. To find the
“best fit” demands for a given server, BaFD iteratively
picks up the demand that leads to the highest efficiency
of the server until its remaining resources cannot hold
any existing unallocated demand. In each iteration, there
are two parts. Part 1 temporarily determines the VMs
that can be allocated to each server to fully utilize its
resources. Part 2 chooses the server that leads to the
highest efficiency value for the actual demand allocation.

Algorithm 1: Pseudocode of the BaFD algorithm.

1 // Initialization setup

2 Initialize V (n)
a ← φ and V

(n)
u ← V , n = 1;

3 // Main step
4 while there are unallocated demands do
5 // Part 1
6 for each cloud ci do
7 Pick one server si;
8 while si still has enough resource for vl ∈ V

(n)
u do

9 j ← arg max
vl∈V

(n)
u

Var(u(n));
10 Put vj into si;

11 // Part 2
12 j ← arg maxi e(si);
13 s(n) ← sj // Select sj as the nth server;

14 V
(n)
a ← VMs in sj ;

15 Remove all the demands in V
(n)
a from V

(n)
u ;

16 n+ = 1;

Part 1 (line 5-10). For each server si, iteratively choose
the demand from V

(n)
u that best balances si’s resource

utilization by Equ. (27) and temporarily allocate it to si.
Repeat this process until no demand can be fitted into
si due to its resource limit. Go to Part 2.
Part 2 (line 11-16). Among all the servers with the
temporary demand allocation in Part 1, select the server
si with the highest efficiency e(si). Then, si is selected
as s(n) and V

(n)
a equals all the demands fit into si in Part

1. Remove all the demands in V
(n)
a from V

(n)
u . Go to the

next iteration.
As Fig. 4 shows: in part 1, Demand1 and Demand2 are

iteratively selected among all demands that lead to the
highest efficiency of server 1 in each step, so they are
put into server 1. Similarly, Demand2, Demand3, and
Demand4 are put into server 2; Demand4 and Demand5
are put into server 3. In part 2, we find that server 2 has
the highest efficiency among all servers. Then, Demand2,
Demand3, and Demand4 are allocated to server 2, while
Demand1 and Demand5 remain unallocated.
Time complexity. We first look at the time complexity
of each iteration, composed of part 1 and 2. Part 1
needs to put M demands into servers, which requires
calculating Equ. (27) O(M) times. Part 2 needs to picks
up the server with the highest efficiency, which has time
complexity O(N). Hence, the time complexity of each
iteration is O(M + N). Since each iteration allocates at
least 1 demand to a server, the algorithm has at most
M iteration, implying the time complexity of BaFD is
O(M(M +N)).

2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2823330, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 7

3.2 Approximation Algorithm

The greedy algorithm can efficiently get a suboptimal so-
lution for MCD, but it has no performance guarantee for
its solution, i.e., how the worst result can be compared
to the optimal solution. Hence, in this section, we devise
an approximation algorithm using LP-relaxation [6]. LP-
relaxation is a technique that relaxes an NP-hard ILP into
a related LP problem that is solvable in polynomial time,
and the solution to the relaxed LP can be used to gain
the solution to the original ILP. To be more specific, first,
we get a relax-version of MCD, called MCD-relaxation
(MCD-RL) by relaxing the feasible region of MCD’s solu-
tion from integers ([x,y] ∈ {0, 1}N+MN) to real numbers
([x,y] ∈ [0, 1]N+MN). Then, MCD-RL becomes an LP
problem, which can be solved efficiently by simplex
method [17]. By combining and rounding the solution of
MCD-RL, we get the solution of MCD. We also show that
the solution of MCD-RL has a constant approximation
ratio to the solution of the MCD problem (Theorem
3.2). For high algorithm scalability, we further propose
a decomposition-based algorithm, called Decomposition-
based demand Fit Decreasing (DFD) for MCD, which can
be implemented in multiple machines in parrell. Finally,
we prove that the decomposition-based algorithm also
has an approximation ratio of factor 2 (Theorem 3.3).

3.2.1 MCD-Relaxation and its Rounded Solution

In this part, we propose our centralized approximation
algorithm.

Definition 3.1: MCD-RL is defined as MCD such that
Constraints (9) in MCD is relaxed to (1) xi ∈ [0, 1] ∀i and
(2) yi,l ∈ [0, 1] ∀i, l, respectively.

In the following, we use [x,y], [x̂, ŷ], and [x∗,y∗]
to distinguish the optimal solution of MCD-RL, the
rounded solution of MCD-RL, and the optimal solution
of MCD.

Since MCD-RL is an LP problem, using simplex
method, we can get MCD-RL’s optimal solution [x,y].
Note that [x,y] is not necessarily integral. Since the
feasible region of MCD-RL is larger than the feasible
region of MCD, we have∑

i

aixi ≤
∑
i

aix
∗
i . (29)

The rounded solution [x̂, ŷ] is derived from [x,y] (the
optimal solution of MCD-RL), hence [x̂, ŷ] is not neces-
sarily optimal for MCD. Therefore,

∑
i aix

∗
i ≤

∑
i aix̂i.

Accordingly, we have the following relationship among
[x,y], [x̂, ŷ], and [x∗,y∗]:

Proposition 3.1: [x,y] and [x̂, ŷ] provide a lower
bound and an upper bound of the optimal solution
[x∗,y∗], respectively:

f(x) ≤ f(x̂) ≤ f(x∗). (30)

Now, we turn our attention to getting the rounded
solution [x̂, ŷ] from [x,y]. Rounding y is straightforward:
for each vector yl = [y1,l,...,yN,l], we set each ŷi,l by 1 if
yi,l = max{y1,l, ...,yN,l}, or 0 elsewhere [6]. We also need
to update x to x̃ to ensure that

∑
l ŷi,lwl,k − x̃ibi,k ≤

0,∀i, k is satisfied (Constraint (7) in MCD). Thus, we
update x to x̃ by

x̃i = max
k

{∑
l ŷi,lwl,k
bi,k

}
. (31)

What remains to be done is to round the entries in x̃ to
generate x̂. A typical approach to get x̂ is directly round-
ing up x̃. For example, if x̃1 = 0.3, then x̂1 = d0.3e = 1.
However, directly rounding up x̃ may be wasteful if
each x̃i is much smaller than 1. Consider the following
scenario: s1 and s2 have the same capacity vector and
cost a1, and x̃1 = 0.3 and x̃2 = 0.4. Then, by up rounding,
we get x̂1 = d0.3e = 1 and x̂2 = d0.4e = 1, which implies
the cost is 2a1. However, since x̃1 + x̃2 = 0.7 < 1, we also
combine the demands of s2 and s1, and put the demands
into s1, which implies the cost is a1, better than directly
rounding up. Hence, combing entries in x̃ can further
decrease the cost than directly rounding up. Note that if
si and sj are two different types of servers, we cannot
combine x̃i and x̃j because the combined value cannot
reflect the resource utilization of either si or sj if we put
all demands in one of them (Constraint (7) in MCD).
Thus, the combination can only be executed among the
same type of servers. Therefore, we first partition x̃
into a set of subvectors x̃1, ..., x̃L, such that the servers
corresponding to the entries in each x̃n (n = 1, 2, ..., L)
are from the same cloud provider cn, i.e., have the same
vector capacity and cost. Then, in each x̃n, we combine
as more non-zero entries as possible with the condition
that the sum of the combined entries does not exceed
1. The combining process can also be considered as
putting a set of objects with size ranging from [0, 1] into
minimum number of bins with size 1, which is a typical
bin packing problem, and can be solved by BFD efficiently.
After combining the entries in x̃, we get a new vector
x′ = [x′1, ..., x

′
N]. Consequently, we round up each entry

in x′ to get our rounded solution x̂ = [x̂1, ..., x̂N], in
which x̂i = dx′ie 1 ≤ i ≤ N .

Lemma 3.1:
∑
si∈Sn

x̂i < 2
∑
si∈Sn

x̃i + 1, where Sn
denotes the set of all the servers in cn.

Proof: The detailed proof is Appendix.
Theorem 3.2: The approximation algorithm achieves

a constant approximation ratio.
Proof: Detailed proof can be found in the appendix.

3.3 Decomposition-based Fit Demand Algorithm
As a huge number of tenants are active in the system,
the approximation algorithm introduced in Section 3.2
is not time-efficient. Considering the scalability of our
system, we need to find a way to realize the algorithm
in a more efficient way. In this section, we propose
a decomposition-based algorithm for MCD-RL, called
Decomposition-based demand Fit Decreasing algorithm
(DFD). It relies on the Lagrangian decomposition, which
is a classical method in combinatorial optimization and
is widely applied to distributed and parallel computa-
tion [6].

From our observation, MCD-RL’s dual problem is eas-
ier to decompose than MCD-RL itself. Hence, we first de-
rive the dual problem, called dual MCD-RL (or DMCD-
RL for short) and then decompose DMCD-RL. We use

2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2823330, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 8

the technique called Lagrangian dual decomposition, which
is a classical method in combinatorial optimization and
has been widely applied to distributed and parallel
computation [6]. After calculating the optimal solution of
MCD-RL, DFD rounds this solution to form a solution of
MCD, like the approximation algorithm in Section 3.2.1
does. To define DMCD-RL, specifically, we define the
Lagrangian function Λ : ZN × ZNM × RNM × RM → R
as follows.

In the function, the vectors λ = [λ1,1, λ1,2, ..., λN,K] and
ν = [ν1, ..., νM] are called the Lagrange multiplier vectors
(λ ∈ RNM , λ � 0, and ν ∈ RM) associated with MCD-RL:

Λ(x,y, λ, ν)

+
∑
i

∑
k

λi,k

(∑
l

yi,lwl,k − xibi,k

)

=
∑
i

(
ai −

∑
k

λi,kbi,k

)
xi [1]

+
∑
l

(∑
i

(
νl +

∑
k

λi,kwl,k

)
yi,l − νl

)
[2] (32)

Then, we define the Lagrangian dual function by

Θ(λ, ν) = inf
[x,y]∈D

Λ(x,y, λ, ν). (33)

where D = {[x,y] : x ∈ ZN and y ∈ {0, 1}NM}.
Therefore, DMCD-RL is to find

max Θ(λ, ν) s.t. λ � 0 (34)

The dual function Θ(λ, ν) is always concave, because it
is a point-wise infimum of affine functions [6]. Hence,
the Lagrangian dual problem is a convex problem [6].

Lemma 3.2: Let S be the feasible region of MCD. Since
MCD-RL is a convex problem, based on the Strong duality
theorem [6], we can get

inf { f(x) : [x,y] ∈ S } = sup

{
Θ(λ, ν) : λ ∈ RNM
λ � 0, ν ∈ RM

}
. (35)

That is, there is no gap between the optimal solutions of
MCD-RL and its dual problem DMCD-RL.

Then, we attempt to find the optimal solution of MCD-
RL by finding the optimal solution of DMCD-RL. To do
this, we use the Lagrangian decomposition, which first
decomposes the original problem into a set of subprob-
lems, solves each subproblem, and finally combines the
results to solve the original problem. We present these
two steps below.

3.3.1 DMCD-RL decomposition
Note that the Lagrangian function in Equ. (32) has two
parts (indicated by [1] and [2]). Accordingly, we decom-
pose the problem to two parts denoted by Λ0(x, λ, ν) and
Λl(yl, λ, νl) (l = 1, ...,M), respectively.

Λ0(x, λ, ν) =
∑
i

(
ai − λTi bi

)
xi (36)

Λl(yl, λ, νl) ,
∑
i

(
νl + λTi wl

)
yi,l − νl (37)

where λi = [λi,1, ..., λi,K]T and bi = [bi,1, ..., bi,K]T, yl =
[y1,l, ..., yN,l]T and wl = [wl,1, ..., wl,K]T. Then, we define
sub-problem functions Θ0(λ) and Θl(λ, νl), respectively.

Θ0(λ) , inf
x∈D0

{Λ0(x, λ, ν)}, (38)

λ
(k) , ν

(k)

λ (k)
, ν (k)

Master

Adjusts x, y

using

subgradient

method

Find the

optimal

solution λl,

νl of each

subproblem

in parallel

sub1

...

subM

x
(k) , y

(k)

1
1

x (k)
, y (k)

M

M

Fig. 5. Decomposition-based Fit Demand algorithm.

and Θl(λ, νl) , infyl∈Dl
{Λi(yl, λ, νl)}, where D0 ={

x : x ∈ ZNM
}

and Dl =
{
yl : yl ∈ {0, 1}M

}
.

Algorithm 2: Pseudocode of the decomposition-
based subgradient method.

input : ε;
output : x,y;

1 // Initialization setup
2 Select a starting solution: [x(1),y(1)] = 0;
3 Let current incumbent solution [x∗,y∗] equal [x(1),y(1)];
4 Put k = 1;
5 // Main step
6 repeat
7 Given x(k) and y(k), solve each subl in parallel:

[λ
(k)
l , ν

(k)
l]← Subl(x(k), y(k));

8 Each subl sends λ(k)l and ν
(k)
l to Master;

9 Given λ(k) and ν(k), Master finds a subgradient
ξ(k) ∈ ∂Λ(x(k),y(k), λ(k), ν(k));

10 if ξ(k) = 0 then
11 Break;

12 else

13 d(k) ← ξ(k)

‖ξ(k)‖
;

14 Select a step size α(k) > 0 and compute
[x(k+1),y(k+1)]← [x(k),y(k)] + α(k)ξ(k);

15 [x∗,y∗]← [x(k+1),y(k+1)];
16 Master sends x(k+1) and y(k+1) to each subl;
17 k = k + 1;
18 until ξ(k) < ε;
19 [x,y] = [x(k),y(k)];
20 return x,y;

Hence, the Lagrangian dual function can be written
as:

Θ(λ, ν) = inf
[x,y]∈D

Λ(x,y, λ, ν) = Θ0(λ) +
∑
l

Θl(λ, νl). (39)

Note that all Θl(λ, νl) can be evaluated independently,
e.g., in parallel. As for Θ0(λ), if ∃i s.t. ai−λibi < 0, then
setting xi = −∞ and xj = 0 (j 6= i) leads to Λ0(x, λ, ν) =
−∞, which implies that Θ0(λ) = −∞; if ∀i, ai−λibi ≥ 0,
Λ0(x, λ, ν) achieves its minimum value when x = 0. In
summary,

Λ0(x, λ, ν) =

{
−∞ if ∃i, ai − λibi < 0
0 otherwise (40)

Since when Λ0(x, λ, ν) → −∞, Θ(λ, ν) → −∞, which
cannot be the optimal solution of Θ(λ, ν), in the
following, we only consider the case of ai−λibi ≥ 0, ∀i.

Then, we can decompose DMCD-RL to a set of sub-
problems subl (l = 1, ..., N): max Θl(λ, νl).

3.3.2 Subproblem solution
To solve the subproblems to get the final problem
solution, we use the Master algorithm [6], which is a
method to solve dual decomposition problems. It adjusts
and combines the solutions from all the subproblems.
We define the objective function of master algorithm by:

2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2823330, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 9

max
∑
l Θl(λ, νl). The master algorithm collects and

compares the subproblems’ solutions and sends feed-
back to subproblems to adjust the solutions if conflicts
exist. The output of the master algorithm, [x,y], is the
optimal solution of the DMCD-RL problem.

Algorithm 2 shows the pseducode of the
decomposition-based subgradient method. To
implement DFD, the broker needs to use resources
from a cluster of computers to realize the algorithm. At
the beginning, the algorithm initiates [x(1),y(1)] by 0
(line 1). It then enters the main step (lines 4-16), which
iteratively moves point [x,y] to search the optimal
point. In the kth iteration, the master algorithm sends
[x(k),y(k)] to each subl; given [x(k),y(k)], each subl finds
its own optimal solution [λ

(k)
l , ν

(k)
l] and sends back

to the master algorithm. Then, the master algorithm
calculates the subgradient ξ(k) according to [λ

(k)
1 , ν

(k)
1],

..., [λ
(k)
M , ν

(k)
M] (line 7) and finds whether ξ(k) = 0, which

means that the optimal solution is found. If not, the
master program figures out a direction to move to the
next point [x(k+1),y(k+1)] by calculating [x(k),y(k)]’s
subgradient (line 7). Then, the master program sends
[x(k+1),y(k+1)] to each subproblem (lines 14) and the
process repeats. Otherwise, the algorithm completes
(line 9) and the optimal solution is obtained (line 17).

Theorem 3.3: DFD has O(1) approximation ratio.
Proof: According to Lemma 3.2, there is no gap

between the optimal solutions of MCD-RL and DMCD-
RL. Hence, DFD has the same performance guarantee
with the centralized algorithm introduced in Section 3.2.
According to Theorem 3.2, DFD has O(1) approximation
ratio.
4 PERFORMANCE EVALUATION
In this section, we conducted both simulation and real-
world experiments (on Amazon EC2 [1]) driven by the
Google Cluster [13] and PlanetLab [9] real traces. The
Google Cluster trace records the CPU and memory
resource utilization on a cluster of about 11000 VMs
from May 2011 for 29 days in every 10 seconds. The
PlanetLab trace contains the CPU utilization of VMs in
PlanetLab every 5 minutes for 24 hours in 10 random
days in March and April 2011. In both Google Cluster
and PlanetLab traces, the capacity of the CPU and
memory of all the servers are not provided [9], [13].
We evaluated the effectiveness of our demand allocation
algorithms (BaFD and DFD) in comparison with two
typical demand allocation algorithms, BFDSum [27] and
Sandpiper [36]. In Sandpiper, all servers’ capacity vectors
and demands’ consumption vectors are mapped into
singular scales, called volumes and weights, respective-
ly. More specifically, Sandpiper calculates each server’s
volume and each demand’s weight by Voli =

∏
k

1
1−bi,k

and Weil =
∏
k

1
1−wl,k

, where Voli and Weil represent the
volume of si and the weight of demand vl, respectively.

In our simulation, we read the utilization data from
the trace every 10 seconds and consider this data as the
resource consumption of demands. We set two types of
servers and each type has 50 servers. The first type of
servers has the same CPU and memory capacity as in the
traces. The memory capacity, CPU capacity and energy
cost of the second type of servers are 1, 1.2 times and

1.1 times of those of the first type, respectively. We nor-
malize the CPU capacity, memory capacity and energy
cost of the first type of server to 1, and hence the second
type of server have CPU capacity, memory capacity and
energy cost equal to 1.2, 1, and 1.1, respectively. The
metrics we measured include:

1. Total server cost. It is defined as the total energy cost
of all the servers purchased by CSB.

2. Average ratio of server overload. A server’s ratio of
server overload is defined as the percentage of time
points in a time period that it is overloaded. An
overload in a server’s any resource leads to the
server overload. This metric is the average values
of all servers.

3. CPU/memory utilization. It is defined as the percent-
age of a server’s CPU/memory capacity that is actu-
ally consumed. Higher utilization of a server means
that the server’s resource is more fully utilized,
which reduces the total cost of all servers required
for a given amount of demands.

In both Google Cluster and PlanetLab traces, the
CPU and memory consumption fluctuate over time,
which implies that the resource requirement for each
VM should be appropriately predetermined for demand
allocation so that the real requirements can be satisfied
but are close to the determined requirements most of the
time. As Service-Level Agreement (SLA) usually speci-
fies a high probability that the real demands must be
satisfied, we aim to satisfy all the demands with a high
probability (i.e., above 95%). According to the traces, for
each user’s demand, we first determine the consumption
vector of each demand by taking the average value of
the trace. Here, we use the following method [25] to
determine the consumption vector. Let {wtl,k|t = 1,, T}
be the trace of type-k resource of demand vl, then wl,k
is given by: wl,k = E(wtl,k) + ησ(wtl,k), where E(wtl,k)
and σ(wtl,k) represent the expectation and the standard
deviation of {wtl,k}, respectively, and η is a coefficient to
determine the percentage of trace data in {wtl,k} that is
lower than wl,k. If η = 1.28, then about 80% trace data in
{wtl,k} is lower than wl,k [25], which means we set SLA
to 80% demand satisfaction [25]. In all our experiments
below, all algorithms achieve no less than 95% demand
satisfaction.
4.1 Trace-driven Simulation
4.1.1 Google Cluster trace
First, we evaluate the performance of the four algorithms
in simulation using the Google cluster trace. Fig 6(a)
shows the total server cost of different algorithms when
the number of demands that are required to allocated
to servers was varied from 40 to 60 with 2 increase in
each step. We also draw the total server cost of MCD-
RL’s optimal solution, which provides a lower bound
of the optimal total server cost (according to Proposition
3.1). We see that the result follows Sandpiper>BFDSum>
BaFD ≈ DFD. Recall that, when selecting a server, BaFD
jointly takes into account server cost and the balance
of the utilization of different resources, while BFDSum
and Sandpiper simply map all the capacity vectors and
consumption vectors to single scalars without consid-
ering the balance. As we have analyzed in Section 3.1,

2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2823330, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 10

40 45 50 55 60

5

10

15

20

25

30

Number of demands

To
ta

l s
er

ve
r c

os
t

DFD
BaFD
BFDSum
Sandpiper
Lower bound

(a) Total cost of servers

Approx BaFD BFDSum Sandpiper
20

40

60

80

100

Algorithms

U
til

iz
at

io
n

(%
)

40 demands
50 demands
40 demands
50 demands

(b) CPU utilization

0 50 100 150 200 250

20

40

60

80

100

Time

C
P

U
 u

til
iz

at
io

n
(%

)

Approx
BaFD
BFDSum
Sandpiper

(c) CPU utilization vs. time (sec)

0 100 200
80

85

90

95

TimeM
em

or
y

ut
iliz

at
io

n
(%

)

Approx
BaFD
BFDSum
Sandpiper

(d) Mem utilization vs. time (sec)

Fig. 6. Simulation using the Google Cluster trace.
balancing the resource utilization for each server can
increase each server’s remaining capacity for allocating
more demands. As for DFD, it sets the total costs of all
used servers as its objective function, implying that DFD
aims to search the demand allocation such that the total
server cost is minimized. To achieve this goal, DFD first
calculates the optimal solution of the relaxed problem,
and then rounds the optimal solution to integers, which
is still near to the optimal. Since BaFD and DFD use
less energy cost and fewer servers to support a given
amount of demands, we are interested in checking if they
generate many server overload occurrences. Finally, we
see that BaFD and DFD’s server cost is close to the lower
bound derived by MCD-RL. As the optimal solution
must be higher than this lower bound, it indicates that
both BaFD and DFD are close to the optimal solution.

We measured the CPU and memory utilizations every
10 seconds for all servers. Fig 6(b) shows the median, 5th
percentile and 95th percentile of these CPU and memory
utilizations, respectively, of the four algorithms with 40
and 50 demands. The utilization data is collected from
all the servers at each time slot. In both figures, we
observe that the median utilization follows: Sandpiper
≈ BFDSum < BaFD ≈ DFD, which indicates our two
algorithms can more fully utilize the resources of servers
and hence save the energy cost. The reason is the same
as in Fig 6(a). We also compare the CPU and memory
utilization of a randomly selected server under different
algorithms over time in Fig 6(c) and Fig 6(d), respec-
tively. Comparing these two figures, we find that for
both CPU and memory resource utilizations, Sandpiper
≈ BFDSum < BaFD ≈ DFD, which is consistent with the
results in Fig. 6(b) due to the same reasons.

4.1.2 PlanetLab trace
We also evaluate the performance of the different algo-
rithms using the PlanetLab trace. Fig 7(a) shows the total
cost of servers of the four algorithms when the number
of demands was varied from 40 to 60 with 2 increase
in each step. From the figure, we can find that the total
cost of servers follows Sandpiper ≈ BFDSum > BaFD
≈ DFD. It demonstrates that BaFD and DFD generate
less energy cost than Sandpiper and BFDSum. Besides
balancing the resource utilization, both BaFD and DFD

40 45 50 55 60
2

4

6

8

10

12

14

16

18

Number of demands

To
ta

l s
er

ve
r c

os
t

DFD
BaFD
BFDSum
Sandpiper
Lower bound

(a) Total cost of servers

DFD BaFD BFDSum Sandpiper

40

60

80

100

Algorithms

C
P

U
 u

til
iz

at
io

n
(%

)

40 demands
50 demands

(b) CPU utilization

0 50 100 150 200

20

40

60

80

Time

C
P

U
 u

til
iz

at
io

n
(%

)

DFD
BaFD
BFDSum
Sandpiper

(c) CPU utilization. vs time

Fig. 7. Simulation using the PlanetLab trace.
take into account the servers’ cost when they allocate
demands to servers. More specifically, BaFD always tries
to allocate each demand to the server with the highest
ratio of the sum weight of demands to the server’s
cost. DFD sets the total costs of all used servers as
its objective function, which means that DFD aims to
search the demand allocation such that the total cost
of all servers is minimized. In contrast, BFDSum and
Sandpiper do not consider the energy cost of servers
in demand allocation. Finally, we can observe that both
BaFD and DFD have total server cost close to the lower
bound derived from MCD-RL, indicating BFD and DFD
are close to the optimal solution.

Fig 7(b) shows the median, 5th percentile and 95th
percentile of the CPU utilizations at all time points of all
servers of the four algorithms with 40 and 50 demands.
The CPU utilization data is collected from all the servers
at each time slot. We observe that the average utilization
of CPU follows Sandpiper ≈ BFDSum < BaFD ≈ DFD,
which indicates that our two algorithms can more fully
utilize the resources of servers. The reason is the same as
in Fig 7(a). We also compare the CPU utilization of one
server under different algorithms over time in Fig 7(c).
We can have a similar observation as Fig. 6(c): Sandpiper
≈ BFDSum < BaFD ≈ DFD, which is also consistent
to the results in Fig. 7(b) due to the same reasons. The
results confirm that BaFD and DFD more fully utilize
resources in each server and hence reduce the number
of servers and save energy cost.
4.1.3 Comparison of BaFD and DRR
The idea of balancing servers’ utilization on different

40 45 50 55 60
10

15

20

25

To
ta

l s
er

ve
r c

os
t

BaFD
DRR

40 45 50 55 60

Number of demands

10

15

20

25

BaFD
DRR

PlanetLab trace

Google cluster trace

Fig. 8. BaFD vs. DRR.

types of resources has
been investigated by
many existing work-
s. Here, we pick up
one method, namely
Dominant-Residual Re-
source aware FFD [40]
(or simply DRR), as
a compared method.
Similar with BaFD, the
basic idea of DRR is
to balance the resource

2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2823330, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 11

40 45 50 55 60
0

10

20

30

40

50

60

70

Number of demands

R
un

ni
ng

 ti
m

e
(s

ec
)

DFD
BaFD
BFDSum
Sandpiper
Approx

(a) Google Cluster trace

40 45 50 55 60
0

10

20

30

40

50

60

70

Number of demands

Ru
nn

in
g

tim
e

(s
ec

)

DFD
BaFD
BFDSum
Sandpiper
Approx

(b) PlanetLab trace

Fig. 9. Running time for different pricing functions.

utilizations across all
dimensions by matching up the server’s residual re-
source capacity with the next demand to be allocated.
However, DRR assumes homogenous servers and hence
cannot achieve high energy efficiency when it is applied
heterogenous servers with different cost. We compare the
total server cost of BaFD and DRR-FFD by using both
Google cluster trace and PlanetLab trace in Fig. 8. From
both figures, we can observe that the cost of DRR-FFD
is lightly higher than that of BaFD.

4.2 Computing time
Fig. 9(a) and Fig. 9(b) compare the running time of differ-
ent algorithms using Google Cluster trace and PlanetLab
trace, respectively. Besides the four algorithms, we also
ran the approximation algorithm introduced in Section
3.2 (denoted by Approx) and depicted its running time
in both figures, to measure how much time DFD can
save compared with Approx. Because the computing
time of the five algorithms are the same in both simu-
lation and Amazon EC2, we will not show these results
for Amazon EC2. From both figures, we find that the
computation time of DFD is much lower than that of
Approx. The figures also show that, as the number of
demands increases, the computing time of DFD, BFD-
Sum, and Sandpiper remains at the same level, while the
computing time of BaFD and Approx increases. Different
from BFDSum and Sandpiper that only greedily select
the server with the minimum remaining capacity in each
iteration, BaFD needs to 1) first iteratively fits all the
unallocated demands into each server, and then 2) selects
the server with the highest efficiency. To obtain the
solution of MCD-RL, Approx needs to first run the sim-
plex method, of which the computation time increases
with the increase of the problem’s scale. Therefore, both
BaFD and Approx’s computing time is more likely to be
affected by the number of demands. The computing time
of DFD does not increase with the increasing number
of demands because DFD divides the problem into a
certain number of subproblems, and figures out each
subproblem in parallel.

4.3 Trace-driven Real-world Experiments on Ama-
zon EC2
In this section, we conducted trace-driven experiments
on Amazon EC2 [1], which is a web service that provides
resizable computing capacity in the cloud [1]. In the sim-
ulation, we calculated each server’s utilization by sum-
ming all the traces’ resource consumption in the server.
However, in reality, the resource utilization of a server is

40 45 50 55 60
5

10

15

20

25

30

Number of demands

To
ta

l s
er

ve
r c

os
t

Approx
BaFD
BFDSum
Sandpiper

(a) Total cost of servers

Approx BaFD BFDSumSandpiper
20

40

60

80

100

120

Algorithms

U
til

iz
at

io
n

(%
)

40 demands (Mem)
50 demands (Mem)
40 demands (CPU)
50 demands (CPU)

(b) CPU utilization

0 50 100 150 200
40

60

80

100

Time

CP
U

ut
iliz

at
ion

 (%
)

Approx
BaFD
BFDSum
Sandpiper

(c) CPU utilization vs. time

20 40 60 80 100 120
20

25

30

35

40

Time

M
em

or
y

ut
iliz

at
io

n
(%

)

Approx
BaFD
BFDSum
Sandpiper

(d) Mem utilization vs. time

Fig. 10. Exp. on Amazon EC2 (Google Cluster trace).

not simply the linear combination of the programs’ load
in the server. Hence, in this part, we ran real programs in
each server and observe the servers’ resource utilization,
which more practically reflects the performance of our
methods. To generate CPU and memory load of these
programs in the servers in Amazon EC2, we use a
generator to read the computation utilization data from
the trace (Google Cluster trace and PlanetLab trace)
every 10 seconds. During each CPU spinning interval
(e.g. 10 seconds), the generator generates approximately
the same CPU utilization with the value of trace data
(e.g. 80%). In the following, we measure the performance
of the four algorithms implemented in Amazon EC2 with
the same metrics from the simulation in Section 4.1, and
then compare the results with the simulation results in
Section 4.1.

4.3.1 Google Cluster trace
Fig. 10 shows the performance of the four algorithms im-
plemented in Amazon EC2 using Google Cluster trace.
Comparing Fig. 6 and Fig. 10, we have the following
observations: (1) in both Fig. 6(a) and Fig. 10(a), the
total cost of servers follows: Sandpiper ≈ BFDSum >
BaFD ≈ DFD, and (2) in all Fig. 6(b)-(d) and Fig. 10(b)-
(d), both CPU utilization and memory utilization follow
Sandpiper ≈ BFDSum < BaFD ≈ DFD, and (3) all
the algorithms have higher ratio of CPU overloads in
Amazon EC2 than in simulation. Observations (1) and
(2) are caused by the same reasons as in Fig. 6(a) and Fig.
6(b). BaFD and DFD have lower servers’ cost and higher
resource utilization due to the same reasons as in Fig.
6(a) and Fig. 6(b), because, as we mention before, both
of them jointly take into account servers’ cost and the
balance of CPU utilization and memory utilization, while
BFDSum and Sandpiper simply map all the capacity vec-
tors and consumption vectors to single scalars, without
considering the balance between different types of re-
sources’ utilization and the servers’ cost. For observation
(3), the experiments in Amazon EC2 have more CPU
overloads because, besides the process generated by the
Google Cluster trace, there are some other background
process in Amazon EC2’s servers, which introduce more
CPU utilization. The results in Fig. 10 demonstrate that

2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2823330, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 12

40 45 50 55 60
8

10

12

14

16

18

20

Number of demands

to
ta

l s
er

ve
r c

os
t

DFD
BaFD
BDFSum
Sandpiper

(a) Total cost of servers

DFD BaFD BFDSum Sandpiper
20

40

60

80

100

120

Algorithms

C
PU

 u
til

iz
at

io
n

(%
)

40 demands
50 demands

(b) CPU utilization

0 20 40 60 80 100 120

30

40

50

60

70

80

Time

C
PU

 u
til

iz
at

io
n

(%
)

DFD
BaFD
BFDSum
Sandpiper

(c) CPU utilization vs. time

Fig. 11. Experiment on Amazon EC2 (PlanetLab trace).

BaFD and DFD more fully utilize resources in each
server and hence save energy cost in Amazon EC2.

4.3.2 PlanetLab

Fig. 11 shows the performance of the four algorithms
implemented in Amazon EC2 using the PlanetLab trace.
Similarly, by comparing Fig. 11 with Fig. 7, we find
that (1) the total cost of servers follows: Sandpiper ≈
BFDSum > BaFD ≈ DFD, and (2) the CPU utilization
for the four algorithms follows: Sandpiper ≈ BFDSum <
BaFD ≈ DFD. These results are consistent to the results
using Google Cluster (Fig. 10) and due to the same
reasons. The results in Fig. 11 confirm that BaFD and
DFD cost less energy and can more fully utilize server
resources.

4.4 Comparison of Different Pricing Policies
Recall that we proved in Section 2 that in order to
incentivize a CSB to minimize the total server cost for
cloud providers, a cloud provider must set the price
of each server to be proportional to its cost of the
total server cost. We then measure the effectiveness of
the pricing policies on the incentives. We compare the
total server cost of three different strictly concave (non-
linear) pricing functions L(x) = x + β log(1 + x) with
our linear pricing function L(x) = βx (β = 2, 3, 4) in
Fig. 12(a) and Fig. 12(b) using two traces respectively.
We find that the linear pricing function generates the
least total server cost and the cost remains nearly the
same regardless of the β. It is because that as long as
the pricing function is linear, CSB always set its goal
to minimize the cost of cloud providers (Theorem 2.1),
and hence achieve the same demand allocation and the
same total energy cost of servers. We also observe that
for total cost of servers, L(x) = x + 5 log(1 + x) is
better than L(x) = x + 4 log(1 + x), which is better
than L(x) = x + 3 log(1 + x). The pricing policy effect
the total server cost that the CSB uses because that the
pricing function determines the objective function of CSB
(Equ. 6) in the MCP problem in Section 2, which further
determines the allocation strategy of the CSB.

30 35 40

12

14

16

18

20

Number of demands

To
ta

l s
er

ve
r c

os
t

x + 5lnx
x + 4lnx
x + 3lnx
4x
3x
2x

(a) Google Cluster trace

30 35 40

6

7

8

9

10

Number of demands

To
ta

l s
er

ve
r c

os
t

x + 5lnx
x + 4lnx
x + 3lnx
4x
3x
2x

(b) PlanetLab trace

Fig. 12. Comparison of total cost of servers for different
pricing functions.

The experimental results in Fig 12(a) and Fig. 12(b)
confirm the effectiveness of our pricing policy to incen-
tivize CSBs to be cooperative in minimizing the energy
cost while satisfy tenants’ demands.

5 RELATED WORK
5.1 Demand allocation

There have been rich literatures studying how to allocate
multiple demands into fewer servers to save energy.
For example, commercial products such as the VMware
vSphere Distributed Resource Scheduler [4] (DRS), Mi-
crosoft System Center Virtual Machine Manager [3] (VM-
M), and Citirix XenServer [2] offer VM consolidation as
their chief functionality. Research on demand allocation
has generated several clever heuristics for resource effi-
ciency [27], [30], [36]. Sandpiper [36] enables live migra-
tion of VMs from overloaded hosts by taking the product
of CPU, memory, and network loads and migrating
VMs to servers based on the First Fit Decreasing (FFD)
heuristic. Tang et al. [30] proposed a demand allocation
method that combines CPU and memory consumption
into a singular scalar by calculating the ratio of these two
metrics. Srikantaiah et al. [27] proposed to use Euclidean
distance between resource demands and residual capac-
ity as a metric for consolidation, a heuristic analogous
to Norm-based Greedy. Lee [20] et al. addressed two
fundamental issues that are critical to the design and
use of VM consolidation heuristics: 1) how resource
utilization and performance aggregate when demands
are co-hosted, and 2) how resource demands and s-
carcities that span across different dimensions should be
treated. By considering the problem of resource over-
provisioning that may lead to low resource utilization,
Chen and Shen designed a system that excludes bursts in
demand prediction and handles bursts to avoid resource
over-provisioning in [11], and also presented three VM
resource utilization pattern refinement algorithms to im-
prove the original predicted utilization pattern in [12].
All these approaches map the capacity vector into a
single scalar without considering the resource utilization
balance of each server. Thus, they neglect the case that
one type of resource may become the bottleneck in a
server, which prevents from fully utilizing other types of
resources. Though [22], [37], and [40] have the strategies
with the consideration of resource utilization balance
of each server, they assumed homogeneous physical
machines with the same cost and capacity, which still
cannot be directly applied in our scenario. Also, their
algorithms can only be implemented in a centralized

2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2823330, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 13

way, leading to high delay when the number of tenants
is large.

In addition, since the electricity bill of a datacenter
constitutes a significant portion of its overall operational
costs, intensive research efforts have been devoted to
the study of energy efficiency for datacenters [5], [21],
[24], [31]. Some of these works [21], [24], [31] use energy
storage device (e.g., battery or uninterrupted power
supply (UPS) units) while other works [5] arrange data
to the servers that have the highest energy efficiency. All
the above works do not handle demand allocation to
servers for energy-efficiency, which is the focus of our
work. For example, using the technique of Lyapunov
optimization, Urgaonkar et al. [31] developed an online
control algorithm that can optimally exploit uninterrupt-
ed power supply (UPS) units to reduce the energy cost
in a datacenter. Wang et al. [32] presented a theoretical
framework for multiple type energy storage devises (ES-
D) with a multiple-level power delivery hierarchy. They
also developed a generalized optimization platform for
ESD placement and control in the datacenter.

5.2 Pricing problem in clouds
A number of studies apply auctions policies to price
computing resources in a cloud system [33], [35], [38].
Wang et al. [33] proposed an auction-style pricing mecha-
nism, which enable users to compete for cloud resources
and cloud providers to increase their own benefits. Wang
et al. [35] modeled a dynamic auction, where bidders
request to occupy a VM for more than one period, such
that the auction in one decision interval is correlated
with that in another period. Niu et al. [23] considered
a model of cloud bandwidth allocation and pricing
when explicit bandwidth reservation is enabled. Shen
and Li [26] proposed network bandwidth pricing poli-
cies to create a win-win situation, where tenants strive
to increase their own benefits in bandwidth sharing,
which also increases the utilities of cloud provider and
other tenants. Another group of works studied cloud
resource scheduling under given pricing strategies [34]
[39]. Wang et al. [34] studied how a cloud should allocate
its resources between the on-demand market and the
auction market. Zhang et al. [39] proposed a dynamic
scheduling and consolidation mechanism that allocate
VM resources to each spot market, in which VMs are
traded for immediate delivery to maximize the cloud
provider’s total revenue.

6 CONCLUSIONS
It is critical for a Cloud Service Broker (CSB) to guarantee
the high service level performance for their cloud tenants
and meanwhile minimize the total energy cost of clouds
for green computing when it strives to maximize its own
profit. To this end, our research is driven by two intrigu-
ing questions: 1) under what pricing policies of the cloud
providers, a CSB is willing to achieve the above objective
when trying to maximizing its own profit, and 2) how
should a CSB distribute tenants’ demands to multiple
cloud providers to minimize cloud providers’ energy
costs and also satisfy all tenants’ demands? For high
scalability, we also proposed a decomposition-based al-
gorithm to implement the approximation algorithm. To
answer the first question, we found a pricing policy

from cloud providers to the CSBs, such that maximizing
a CSB’s profit is equivalent to minimizing the energy
cost of cloud providers. To answer the second question,
we formulated a demand allocation problem, namely
MCD, and proved its NP-hardness. We then devised a
greedy algorithm and further proposed an approxima-
tion algorithm using LP-relaxation, which was proved to
have constant performance guarantee. The experimental
results demonstrated the superior performance of our
algorithms in both energy efficiency and resource utiliza-
tions, and the effectiveness of our pricing policy to make
CSBs cooperative in achieving the objective. In our fu-
ture work, we will consider the scenario where tenants’
demands change over time and each cloud provider
has heterogeneous servers with different capacities and
prices. Also, we will discuss how to apply our technique
directly between the cloud providers and the tenants,
who do not have enough information of cloud providers
(i.e., servers’ capacity vectors) as CSBs.

7 ACKNOWLEDGEMENT
This research was supported in part by U.S. NSF grants
NSF-1404981, IIS-1354123, CNS-1254006, CNS-1249603,
and Microsoft Research Faculty Fellowship 8300751

REFERENCES
[1] Amazon EC2. http://aws.amazon.com/ec2.
[2] Citrix XenServer. http://www.citrix.com/xenserver.
[3] Microsoft Systems Center Virtual Machine Manager.

http://www.microsoft.com/systemcenter.
[4] VMware DRS - dynamic scheduling of system resources.

http://www.vmware.com/products/vi/vc/drs.html.
[5] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and

K. Schwan. Robust and flexible power-proportional storage. In
Proc. of SoCC, 2010.

[6] M. Bazaraa, H. Sherali, and C. Shetty. Nonlinear programming:
Theory and algorithms. Wiley Interscience, 2006.

[7] R. Buyya, C. S. Yeo, J. B. S. Venugopal and, and I. Brandic. Cloud
computing and emerging it platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Generation
Computer Systems, 2009.

[8] H. S. C. Qiu and L. Chen. Probabilistic demand allocation for
cloud service brokerage. In Proc. of IEEE INFOCOM, 2016.

[9] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and
R. Buyya. Cloudsim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms. SPE, 2011.

[10] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and
F. Zhao. Energy-aware server provisioning and load dispatching
for connection-intensive internet services. In Proc. of USENIX
NSDI, 2008.

[11] L. Chen and H. Shen. Towards resource-efficient cloud systems:
Avoiding over-provisioning in demand-prediction based resource
provisioning. In Proc. of IEEE INFOCOM, 2016.

[12] L. Chen and H. Shen. Considering resource demand misalign-
ments to reduce resource over-provisioning in cloud datacenters.
In Proc. of IEEE INFOCOM, 2017.

[13] G. cluster data. https://code.google.com/p/googleclusterdata/.
[14] A. C. Compute. http://aws.amazon.com/ec2/hpc- application-

s/., 2011.
[15] Z. C. Computing. http://www.zimory.com/.
[16] M. Dayarathna, YonggangWen, and R. Fan. Data center energy

consumption modeling: A survey. 2016.
[17] F. S. Hillier. Linear and Nonlinear Programming. Stanford University,

2008.
[18] IBM. http://www.ibm.com/cloud-

computing/us/en/products/dedicated-bare-metal-
servers.html/.

[19] IBM. Make IT Green - Cloud Computing and its Contribution to
Climate Change.

[20] S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubramanian, K. Tal-
war, L. Uyeda, and U. Wieder. Validating heuristics for virtual
machines consolidation, 2011.

[21] Z. Liu, M. Lin, A. Wierman, and S. H. Low. Greening geographical
load balancing. In Proc. of Sigmetrics, 2011.

2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2823330, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 14

[22] Z. A. Mann. Approximability of virtual machine allocation: much
harder than bin packing. In Proc. of Hungarian-Japanese Symposium
on Discrete Mathematics and Its Applications, 2015.

[23] D. Niu, C. Feng, and B. Li. A theory of cloud bandwidth pricing
for video-on-demand providers. In Proc. of INFOCOM, 2012.

[24] D. S. Palasamudramy, R. K. Sitaramanz, B. Urgaonkary, and
R. Urgaonkar. Using batteries to reduce the power costs of
internet-scale distributed networks. In Proc. of SoCC, 2012.

[25] S. M. Ross. Introduction to Probability Models, 8th Edition. Amster-
dam: Academic Press, 2003.

[26] H. Shen and Z. Li. New bandwidth sharing and pricing policies
to achieve a win-win situation for cloud provider and tenants. In
Proc. of Infocom, 2014.

[27] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware consolida-
tion for cloud computing. In Proc. of HotPower, 2008.

[28] F. TA and R. MG. A probabilistic heuristic for a computationally
difficult set covering problem. Operations research letters, 1989.

[29] F. TA and R. MG. Greedy randomized adaptive search proce-
dures. Journal of global optimization, 1995.

[30] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. A scalable
application placement controller for enterprise data centers. In
Proc. of WWW, 2007.

[31] R. Urgaonkar, B. Urgaonkar, M. J. Neely, and A. Sivasubramanian.
Optimal power cost management using stored energy in data
centers. In Proc. of Sigmetrics, 2011.

[32] D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and
H. Fathy. Energy storage in datacenters: What, where, and how
much? In Proc. of Sigmetrics, 2012.

[33] Q. Wang, K. Ren, and X. Meng. When cloud meets ebay: Towards
effective pricing for cloud computing. In Proc. of INFOCOM, 2012.

[34] W. Wang, B. Li, and B. Liang. Towards optimal capacity segmen-
tation with hybrid cloud pricing. In Proc. of ICDCS, 2012.

[35] W. Wang, B. Liang, and B. Li. Revenue maximization with
dynamic auctions in iaas cloud markets. In Proc. of IWQoS, 2013.

[36] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif. Black-
box and gray-box strategies for virtual machine migration. In
Proc. of NSDI, 2007.

[37] M. G. S. Zaourar. Variable size vector bin packing heuristics
application to the machine reassignment problem. Distributed,
Parallel, and Cluster Computing.

[38] H. Zhang, B. Li, H. B. Jiang, F. M. Liu, A. V. Vasilakos, and J. C.
Liu. A framework for truthful online auctions in cloud computing
with heterogeneous user demands. In Proc. of INFOCOM, 2013.

[39] Q. Zhang, E. Grses, R. Boutaba, and J. Xiao. Dynamic resource
allocation for spot markets in clouds. In Proc. of Hot-ICE, 2011.

[40] Y. Zhang and N. Ansari. Heterogeneity aware dominant resource
assistant heuristics for virtual machine consolidation. In Proc. of
IEEE Globecom, 2013.

[41] J. Zhao, H. Li, C. Wu, Z. Li, Z. Zhang, and F. C. Lau. Dynamic pric-
ing and profit maximization for the cloud with geo-distributed
data centers. In Proc. of INFOCOM, 2009.

Chenxi Qiu Chenxi Qiu received the BS degree
in Telecommunication Engineering from Xidian
University, China, in 2009 and the Ph.D. degree
in Electrical and Computer Engineering in Clem-
son University in 2015. He currently is a Post-
doc scholar in the College of Information and
Science at Pennsylvania State University, PA,
United States. His research interests include cy-
ber security, cyber physical systems, and cloud
computing.

Haiying Shen received the BS degree in Computer Science and Engineering from Tongji
University, China in 2000, and the MS and Ph.D. degrees in Computer Engineering from
Wayne State University in 2004 and 2006, respectively. She is currently an Assistant
Professor in the Holcombe Department of Electrical and Computer Engineering at
Clemson University. Her research interests include distributed and parallel computer
systems and computer networks, with an emphasis on peer-to-peer and content delivery
networks, mobile computing, wireless sensor networks, and grid and cloud computing.
She was the Program Co-Chair for a number of international conferences and member of
the Program Committees of many leading conferences. She is a Microsoft Faculty Fellow
of 2010 and a member of the IEEE and ACM.

Cheng-Zhong Xu received B.S. and M.S. degrees from Nanjing University in 1986 and
1989, respectively, and a Ph.D. degree in Computer Science from the University of Hong
Kong in 1993. He is currently a Professor in the Department of Electrical and Computer
Engineering of Wayne State University and the Director of Sun’s Center of Excellence in
Open Source Computing and Applications. His research interests are mainly in
distributed and parallel systems, particularly in scalable and secure Internet services,
autonomic cloud management, energy-aware task scheduling in wireless embedded
systems, and high performance cluster and grid computing. He has published more than
160 articles in peer-reviewed journals and conferences in these areas. He is the author of
Scalable and Secure Internet Services and Architecture (Chapman & Hall/CRC Press,
2005) and a co-author of Load Balancing in Parallel Computers: Theory and Practice

Haiying Shen Haiying Shen received the BS
degree in Computer Science and Engineering
from Tongji University, China in 2000, and the
MS and Ph.D. degrees in Computer Engineering
from Wayne State University in 2004 and 2006,
respectively. She is currently an Associate Pro-
fessor in the Department of Computer Science
at University of Virginia. Her research interests
include distributed computer systems and com-
puter networks, with an emphasis on P2P and
content delivery networks, mobile computing,

wireless sensor networks, and grid and cloud computing. She was
the Program Co-Chair for a number of international conferences and
member of the Program Committees of many leading conferences. She
is a Microsoft Faculty Fellow of 2010 and a member of the IEEE and
ACM.

Liuhua Chen received both his BS degree and
MS degree from Zhejiang University, in 2008
and 2011, and is currently working toward the
PhD degree in the Department of Electrical and
Computer Engineering at Clemson University.
His research interests include distributed and
parallel computer systems, and cloud comput-
ing.

APPENDIX
.1 Proof of Lemma 3.1

Proof: First, we claim that no pair x′i and x′j s.t. x′i ≤ 1
2

and x′j ≤ 1
2

exist in x′; otherwise we can combine x′i and x′j .
For each x′i >

1
2

, we have x̂i = dx′ie < 2x′i. For each x̃n,
combining its entries does not change the sum of the entries,
i.e.,

∑
si∈Sn

x′i =
∑
si∈Sn

x̃i. When there is no x′i ≥ 1
2∑

si∈Sn

x̂i =
∑
si∈Sn

dx′ie < 2
∑
si∈Sn

x′i = 2
∑
si∈Sn

x̃i. (41)

When there exists x′j ≥ 1
2

, then∑
si∈Sn

x̂i =
∑
si∈Sn

dx′ie < 2
∑

si∈Sn\sj

x′i + dx′je (42)

= 2
∑

si∈Sn\sj

x̃i + 1 (43)

< 2
∑
si∈Sn

x̃i + 1. (44)

.2 Proof of Theorem 3.2
Proof: First, by Lemma 3.1∑

i

aix̂i =
∑
n

an ∑
si∈Sn

x̂i

 <
∑
n

an
2

∑
si∈Sn

x̃i + 1


= 2

∑
i

aix̃i + C (45)

where C =
∑
n an is a constant. Also, based on Equ. (31),

we can derive that∑
i

aix̃i =
∑
i

ai max
k

{∑
l ŷi,lwl,k

bi,k

}
≤

∑
i

ai
∑
l

δi,lŷi,l (δi,l = max
k

{
wl,k
bi,k

}
)

≤
∑
l

βl
∑
i

ŷi,l (βl = max
i
{aiδi,l})

≤ ∆
∑
i

ai
∑
l

yi,lwl,1

bi,1
(∆ = max

i,l,k

{
bi,1βl
wl,1ai

}
)

≤ ∆
∑
i

aixi (46)

Based on Equ. (45), when
∑
i aix̃i is large,∑

i aix̂i/
∑
i aix̃i is asymptotically approximate to

2, and based on Equ. (45) and Equ. (46), then we get∑
i aix̂i < 2

∑
i aix̃i ≤ 2∆

∑
i aixi. Consequently, from∑

i aixi ≤
∑
i aix

∗
i ≤

∑
i aix̂i (Proposition (3.1)), we can

derive that the approximation ratio is upper bounded
by 2∆, which is a constant.

