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To provide robust infrastructure as a 
service (IaaS), clouds currently perform 
load balancing by migrating virtual 
machines (VMs) from heavily loaded 
physical machines (PMs) to lightly loaded 
PMs. Previous load balancing methods 
have the following disadvantages: 
1. A delay to achieve load balance; 
2. No long-term load balance; 
3. High overhead. 

 
To overcome these problems, we propose 
a proactive Markov Decision Process 
(MDP)-based load balancing algorithm.  

Make our algorithm fully distributed to 
increase its scalability. 

We conducted trace-driven experiments 
on CloudSim. We implemented two 
versions: MDP uses the MDP model for 
identifying VMs to migrate; and MDP* 
uses the model for both VM selection and 
PM selection. We compared them with 
Sandpiper [1] and CloudScale [2]. 

To handle challenge 2, we carried out 
experiments to study the transition 
probability and show that the transition 
probability matrix remains stable.   
 
 
 
 

Overview: 
MDP classifies the resource utilization 
degree of a PM to states, and treats VM 
migrations as actions. MDP learns the 
probabilities of PM state transitions from 
traces, and computes the optimal polity 
that PMs should perform in order to 
achieve maximum rewards. 
 
The optimal policy π is a mapping from 
states to actions. Following a policy π , 
every PM: 
1. Determines its current state s; 
2. Executes action π(s); 
3. Periodically go to step 1. 

       Acknowledgments 

Result: MDP*<MDP<CloudScale<Sandpiper 

Result: MDP*<MDP<Sandpiper<CloudScale 

U.S. NSF grants NSF-1404981, IIS-
1354123, CNS-1254006, CNS-1249603, 
Microsoft Research Faculty Fellowship 
8300751. 

Challenges: 
1. MDP components must be well 

designed for low overhead; 
2. Transition probabilities in the MDP 

must be stable. 

Advantages of MDP-based load balancing: 
1. Reduces SLA violations and achieves 

long-term load balance; 
2. Reduces the overhead and delay; 
3. Build one MDP used by all PMs. 

MDP components: 
1. State: classification of resource uti-

lization of a PM. 
2. Action: a migration of VM in a certain 

state (VM-State).  
3. Probability: the probability that state 

s will transit to state s’ after taking 
action a. 

4. Reward: given after transition to state 
s’ from state s by taking action a in 
order to encourage PMs to become 
lightly loaded. 

 

Result: MDP*<MDP<Sandpi per<CloudScale  

Result: MDP*<MDP<Sandpiper<CloudScale 
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Figure 2 Probability of state transitions. 
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Figure 1 Overview of MDP-based load balancing. 
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Figure 3 Example of a simple MDP. 
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Figure 6 The CPU time consumption. 
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Figure 4 The number of VM migrations 
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Figure 5 The number of overloaded PMs. 
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Figure 7 Energy consumption. 

To handle challenge 1, our designed MDP 
intelligently uses a PM load state as a 
state and records the transitions between 
PM load states by moving out a VM in a 
specific load state. 

A PM-high has similar probabilities to 
transit to state medium under slightly 
varying threshold, when it migrates VM-
high, VM-medium and VM-low. 
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