
Liuhua Chen, Haiying Shen and Karan Sapra
Department of Electrical and Computer Engineering, Clemson University

 ({liuhuac, shenh, ksapra}@clemson.edu)

Background and
Motivation

Design Details

Future Work

Distributed Autonomous Virtual Resource
Management in Datacenters Using Finite-

Markov Decision Process

Experimental Results

To provide robust infrastructure as a
service (IaaS), clouds currently perform
load balancing by migrating virtual
machines (VMs) from heavily loaded
physical machines (PMs) to lightly loaded
PMs. Previous load balancing methods
have the following disadvantages:
1. A delay to achieve load balance;
2. No long-term load balance;
3. High overhead.

To overcome these problems, we propose
a proactive Markov Decision Process
(MDP)-based load balancing algorithm.

Make our algorithm fully distributed to
increase its scalability.

We conducted trace-driven experiments
on CloudSim. We implemented two
versions: MDP uses the MDP model for
identifying VMs to migrate; and MDP*
uses the model for both VM selection and
PM selection. We compared them with
Sandpiper [1] and CloudScale [2].

To handle challenge 2, we carried out
experiments to study the transition
probability and show that the transition
probability matrix remains stable.

Overview:
MDP classifies the resource utilization
degree of a PM to states, and treats VM
migrations as actions. MDP learns the
probabilities of PM state transitions from
traces, and computes the optimal polity
that PMs should perform in order to
achieve maximum rewards.

The optimal policy π is a mapping from
states to actions. Following a policy π ,
every PM:
1. Determines its current state s;
2. Executes action π(s);
3. Periodically go to step 1.

 Acknowledgments

Result: MDP*<MDP<CloudScale<Sandpiper

Result: MDP*<MDP<Sandpiper<CloudScale

U.S. NSF grants NSF-1404981, IIS-
1354123, CNS-1254006, CNS-1249603,
Microsoft Research Faculty Fellowship
8300751.

Challenges:
1. MDP components must be well

designed for low overhead;
2. Transition probabilities in the MDP

must be stable.

Advantages of MDP-based load balancing:
1. Reduces SLA violations and achieves

long-term load balance;
2. Reduces the overhead and delay;
3. Build one MDP used by all PMs.

MDP components:
1. State: classification of resource uti-

lization of a PM.
2. Action: a migration of VM in a certain

state (VM-State).
3. Probability: the probability that state

s will transit to state s’ after taking
action a.

4. Reward: given after transition to state
s’ from state s by taking action a in
order to encourage PMs to become
lightly loaded.

Result: MDP*<MDP<Sandpi per<CloudScale

Result: MDP*<MDP<Sandpiper<CloudScale

0.0

0.3

0.5

0.8

1.0

0.7 0.8 0.9
Threshold

VM-high VM-medium

VM-low

T
ra

n
s
it
io

n
 p

ro
b

a
b

ili
ty

Figure 2 Probability of state transitions.

Transition

Probability
Reward

PM

State

PM

Action

MDP Model

Optimal Policy π

Check

State

Take

Action

Periodically

Resource

Utilization

Monitor

Refer to π

Periodical

Update

Figure 1 Overview of MDP-based load balancing.

CPU

MEM

Low Med High

Low

Med

High

s9 s6 s3

s8 s5 s2

s7 s4 s1

s1 s2

a1

a2

a2

a1
0.2

0.8
6 -1

0.5

0.5

0.3

0.7 0.4
0.6

-5
8

-2

-3
4

2

Figure 3 Example of a simple MDP.

0.0

2.0

4.0

6.0

2.5 3 3.5

C
P

U
 t

im
e

 (
m

s
)

VM/PM ratio

MDP

MDP*

Sandpiper

CloudScale

Figure 6 The CPU time consumption.

0

20

40

60

80

1.5 2 2.5

T
o
tl
a
l
n
u

m
b
e

r
o
f
m

ig
ra

ti
o
n

s
 MDP MDP*

Sandpiper CloudScale

Load (x original load in trace)

Figure 4 The number of VM migrations

0

10

20

30

40

50

1.5 2 2.5

MDP MDP*
Sandpiper CloudScale

T
o
ta

l
n

u
m

b
e
r

o
f

o
v
e
rl

o
a
d

e
d

 P
M

s

Load (x original load in trace)

Figure 5 The number of overloaded PMs.

0.0

2.0

4.0

6.0

2.5 3 3.5

E
n
e
rg

y
 (

k
W

h
)

VM/PM ratio

MDP MDP*

Sandpiper CloudScale

Figure 7 Energy consumption.

To handle challenge 1, our designed MDP
intelligently uses a PM load state as a
state and records the transitions between
PM load states by moving out a VM in a
specific load state.

A PM-high has similar probabilities to
transit to state medium under slightly
varying threshold, when it migrates VM-
high, VM-medium and VM-low.

References:

[1] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif. Black-box
and gray-box strategies for virtual machine migration. In Proc. of NSDI,
2007.

[2] Z. Shen, S. Subbiah, X. Gu, and J.Wilkes. CloudScale: Elastic resource
scaling for multi-tenant cloud systems. In Proc. Of SOCC, 2011.

