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Abstract—As a popular routing protocol in wireless sensor
networks (WSNs), greedy routing has received great attention.
The previous works characterize its data deliverability in WSNs
by the probability of all nodes successfully sending their data
to the base station. Their analysis, however, neither provides
the information of the quantitative relation between successful
data delivery ratio and transmission power of sensor nodes nor
considers the impact of the network congestion or link collision on
the data deliverability. To address these problems, in this paper,
we characterize the data deliverability of greedy routing by the
ratio of successful data transmissions from sensors to the base
station. We introduce η-guaranteed delivery which means that the
ratio of successful data deliveries is not less than η, and study the
relationship between the transmission power of sensors and the
probability of achieving η-guaranteed delivery. Furthermore, with
considering the effect of network congestion and link collision,
we provide a more precise and full characterization for the
deliverability of greedy routing. Extensive simulation and real-
world experimental results show the correctness and tightness of
the upper bound of the smallest transmission power for achieving
η-guaranteed delivery.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been increasingly
deployed for environment monitoring [1], [2]. Usually sensor
nodes (sensors in short) are distributed over a geographic
region of interest and transmit the sensed data to a remote
base station using multi-hop routing. Thus, data delivery, as a
fundamental function of WSNs, has received great attention.
Considerable research efforts have been devoted to studying
the reliability [3], timeliness [4] and energy-efficiency [5], [6]
of data delivery.

High delivery ratio with low energy consumption is a
challenging issue of data delivery in WSNs. Many routing pro-
tocols have been proposed to address this challenge, including
data-centric [7], hierarchical [8] and location-based [9], [10]
design. Among these protocols, the location-based greedy rout-
ing (greedy routing in short) protocol [9], [10] is particularly
attractive for large-scale sensor networks due to its simplicity,
efficiency and scalability, and thus has been widely exploited.
In this protocol, each node makes routing decision with only
local knowledge and forwards the packet to its neighbor that
has the smallest distance to the destination until the packet
reaches the destination.

A well-known problem with greedy routing is that it fails at
a node called void node that has no neighbor closer to the desti-
nation. To handle this problem, many previous works [11]–[13]
theoretically analyzed the relationship between the transmis-
sion radius and the deliverability of greedy routing. Specifi-
cally, Wan et al. [11] studied the critical transmission radius

(i.e., smallest transmission radius) for greedy routing to ensure
that packets can be delivered between any source-destination
pairs in randomly deployed wireless ad hoc networks. Wang
et al. [12] further derived higher accurate asymptotic bounds
on the critical transmission radius. Yang et al. [13] studied
the relationship between the critical transmission power (i.e.,
smallest transmission power) and the probability of guaranteed
data delivery from all sensors to the central base station
(referred to as many-to-one).

These works have studied the deliverability of greedy
routing in terms of probability of guaranteeing all deliveries
(i.e., probability of guaranteed delivery) and the transmission
condition (e.g., critical transmission power/radius) to eliminate
void nodes in the network. However, no previous works have
studied the relationship between the transmission power and
the packet delivery ratio of greedy routing, which is the ratio
of the nodes that successfully deliver their data to the base
station. We call these nodes delivery-success nodes, otherwise,
delivery-failure nodes. The work in [14] demonstrates that data
delivery in WSNs is inherently faulty and unpredictable, and
thus the fault tolerant protocols are necessary for sensor appli-
cations and the protocols should ensure reliable data delivery
while minimizing energy consumption [15]. Therefore, the
relationship between transmission power and packet delivery
ratio of greedy routing is of great interest for WSN designers in
practice. It helps to infer the number of delivery-failure nodes
with a given transmission power, and provides insights on the
impact of void nodes on the number of delivery-failure nodes.
Accordingly, the designers can determine whether it is accept-
able to use a relatively lower transmission power for sensors
by estimating the number of delivery-failure nodes, since a
limited number of delivery-failure nodes may be acceptable
for possible reasons like redundant node deployment. Thus,
η-guaranteed delivery is not trivial [16], [17].

Another limitation of these previous works is that they
neglect the impact of network congestion and link collision
on the deliverability of greedy routing in theoretical analysis,
though these two factors are also well-known causes for
packet delivery failure in WSNs [18]–[20]. Since greedy
forwarding decisions are made based on location information
without the knowledge of traffic flows in the WSN, it could
generate spatial congestion and collision, which may reduce
packet delivery ratio. The impact of network congestion
and collision on data deliverability poses a challenge to the
characterization of data deliverability.

In this paper, we analyze the greedy routing deliverability
for many-to-one data delivery in WSNs. Unlike the previous
work [13] that considers the deliverability in terms of the



probability of guaranteeing all sensors to successfully send
their data to the base station, we consider the deliverability in
terms of the ratio of delivery-success nodes. In particular, we
study the critical transmission power required to ensure that the
ratio of delivery-failure nodes does not exceed a threshold with
a given probability. We also consider the impact of network
congestion and link collision on the deliverability in the study.
Compared with the previous work [13], our results characterize
the deliverability in general sense and is much more practical
with the additional consideration of the two factors. The main
contributions of this paper are as follows:
• We introduce the concept of η-guaranteed delivery, which
guarantees that the ratio of delivery-failure nodes is at most
1−η. Based on this concept, we study the relationship between
the critical transmission power and the ratio of delivery-failure
nodes, which provides a more general characterization of the
many-to-one deliverability of greedy routing compared to the
previous works.
• We derive analytical upper bounds on critical transmis-
sion power for the η-guaranteed delivery under Signal-to-
Interference-plus-Noise-Ratio (SINR in short) [21] model.
Simulation and real-world experimental results are provided
to validate our analysis results.
• We further conduct our analysis with the consideration of net-
work congestion and link collision to provide a more accurate
characterization of the deliverability of greedy routing.

The remainder of this paper is organized as follows. Section
II reviews the related work. Section III describes the problem
definition and the system model used in this paper. In Sections
IV and V, we derive the upper bounds on critical transmission
power with and without network congestion and link collision
considerations. Section VI presents the numerical analysis,
simulation results and real-world experimental results. Section
VII concludes our work with remarks on our future work.

II. RELATED WORK

Greedy forwarding with geographical locations in a WSN
may fail at void nodes. The most well-known method to handle
the problem is face routing [9]. It planarizes the network graph
and forwards a message along one or a sequence of adjacent
faces, which provides progress towards the destination node.
Another method is using virtual coordinates. Sarkar et al. [22]
propose to compute a new embedding of the sensors in the
plane such that greedy forwarding with the virtual coordinates
guarantees delivery.

To handle this “void node” problem, many works [11]–
[13], [23], [24] theoretically analyzed the deliverability of
geographic greedy routing in WSNs or wireless ad hoc
networks. The works in [11], [12], [23], [24] focus on
the deliverability between any pair of source-destination
nodes by greedy routing. However, these works assume
packet transmission with no interference, which makes them
impossible to accurately characterize the data deliverability in
practical scenarios. Yang et al. [13] modeled the relationship
between the critical transmission power and the probability
of guaranteed delivery in the many-to-one delivery in a 2-D
WSN. They showed that the critical transmission radius for
many-to-one deliverability can be much smaller than that for
any-to-any deliverability. However, they studied the routing
deliverability of all nodes in terms of the probability of
guaranteed delivery instead of the packet delivery ratio, as
indicated in Section I. Also, their analysis neglect the network
congestion and link collision, which are main causes that affect

deliverability. Considering the importance of many-to-one data
collection for sensor networks, our work targets at many-to-
one deliverability of greedy routing and studies the relationship
between the critical transmission power and the probability
of η-guaranteed delivery. Further, our work is the first to
analyze the effect of network congestion and link collision on
the deliverability of greedy routing in the physically realistic
SINR model, which makes our work substantially different
from previous works and enables our work to accurately
characterize the data deliverability in practical scenarios. Thus,
our work is a notable extension compared to previous works.

III. SYSTEM MODEL AND PROBLEM DEFINITION

A. System Model
For analytical tractability, we assume that a WSN with N

nodes is deployed in a 2-D disk region with radius R. The
base station Xbs is located at the center of the region. The
disk region is denoted by D(Xbs, R). The distribution of the
sensors over the region follows a homogeneous Poisson point
process with constant density λ [11]. Each sensor, denoted
by Xi, has the same transmission power. We model the WSN
as a graph G(V,E), in which V represents the set of nodes
in the network, and E stands for the links of the network.

B. Channel Model
In this paper, we use the SINR model to capture channel

characteristics in WSNs. Many previous works [25], [26] on
data deliverability assume Unit Disk Graph (UDG) model
for communication. The UDG model, which assumes that
two nodes within certain distance can communicate directly,
oversimplifies the channel model [27], because it does not
consider interference from other on-going transmissions. In
SINR, the successful reception of a transmission depends not
only on the received signal strength but also the interference
caused by simultaneously transmitting nodes and the ambient
noise level. Thus, based on SINR, we are able to provide
more realistic and accurate analysis on the data deliverability
of greedy routing in WSNs.

We use vs and vr to denote a source transmitter and a
receiver. Let Prec be the received signal power at the receiver
vr from the transmitter vs. Denote Ir as the amount of
interference generated by other nodes in the network. Let Nn

be the ambient noise power level. Then, in the SINR model,
receiver vr receives a transmission iff

Prec/(Nn + Ir) ≥ β (1)

where β is a small constant (depending on the hardware) and it
denotes the minimum signal to interference ratio required for a
message to be successfully received. The value of the received
signal power Prec is a decreasing function of the Euclidean
distance dsr between the transmitter vs and the receiver vr,
represented by

Prec(dsr) = Pt/d
α
sr (2)

where Pt is the transmission power of the transmitter, and
the so-called path-loss exponent α is a constant between 2
and 6. α indicates the rate at which the received signal power
decreases with the distance between the transmitter and the
receiver. Based on (1), the transmission radius r for successful
delivery can be represented as

r = sup{d|Prec(d) ≥ β(Nn + Ir), 0 < d < +∞} (3)

where sup represents the least upper bound. In WSNs on 2-D
plane, Ir can be represented by



Ir =
∑

vi∈V \{vs}

Pt

dir
α (4)

where V ⊂ R
2 is the set of nodes in the 2-D plane.

C. Problem Definition
Definition 1: η-guaranteed delivery: Given a WSN G with

N sensors, and a minimum delivery ratio requirement (η), a
data gathering of G achieves η-guaranteed delivery if Ns/N ≥
η, where Ns is the number of delivery-success nodes in the
data gathering.

η-guaranteed delivery with η < 100% is usually desired in
the applications that can tolerate a limited number of delivery-
failure nodes, such as statistical inference to the population
with sensed data samples. The determination of η depends
on the number of delivery-failure nodes that can be tolerated.
When η < 100%, the transmission power of sensors to achieve
η-guaranteed delivery is much lower than that required by
100%-guaranteed delivery. Based on η-guaranteed delivery, we
define the critical transmission power and radius and present
our problems below.

Definition 2: Critical transmission power: The critical
transmission power P cri

t (η, Prth) denotes the minimal trans-
mission power, which ensures that the probability of achiev-
ing η-guaranteed delivery is no less than a threshold Prth

(0 < Prth < 1), i.e.,
Pr{Ns/N ≥ η} ≥ Prth (5)

Definition 3: Critical transmission radius: The critical
transmission radius rcri(η, Prth), corresponding to the critical
transmission power P cri

t (η, Prth), denotes the minimal trans-
mission radius which ensures that the probability of achieving
η-guaranteed delivery is no less than Prth.

According to the definition, critical transmission power
P cri
t (η, Prth) is determined by the delivery ratio η and

threshold Prth. It ensures that the probability of achieving η-
guaranteed delivery for a WSN is no less than a threshold with
minimal energy consumption. To ensure η-guaranteed delivery
with a certain probability, we need to find the critical trans-
mission power P cri

t (η, Prth). Obviously, a sensor using the
critical transmission power P cri

t (η, Prth) has a corresponding
critical transmission radius rcri(η, Prth). Based on the above
definitions, we can formulate our problems as follows:

Problem 1: Given a desired ratio of delivery-success n-
odes η and a probability threshold Prth, what is the critical
transmission power P cri

t (η, Prth) to achieve η-guaranteed
delivery?

From the above, we can see the previous work [13] is a
special case of our problem with η = 100%. Our problem
provides a more in-depth and precise characterization on
the data deliverability of greedy routing. The study of our
problem is also very useful to WSN applications that use
approximate data collection that collects incomplete data from
WSNs, which has been widely studied due to its energy-
efficiency [28], [29].

Because network congestion and link collision affect
greedy routing deliverability, we further study Problem 1 with
the consideration of these factors. We present this new problem
as Problem 2 in the following. We consider a continuous
data gathering scenario, in which all sensors periodically send
sensed data to the base station, and the data is collected round
by round. In one round of data gathering, the ratio of delivery-
success nodes is affected by the current status of network
congestion and link collision.

Problem 2: Given a desired ratio of delivery-success n-
odes η for each round of a continuous data gathering and a
probability threshold Prth, what is the critical transmission
power P cri

t (η, Prth) to achieve η-guaranteed delivery with the
consideration of the impact of network congestion and link
collision on the ratio of delivery-success nodes?

IV. CRITICAL TRANSMISSION POWER

In this section, we address Problem 1 and derive the upper
bounds on critical transmission power for the problem solution
in the SINR model. We first establish the relationship between
the probability of η-guaranteed delivery and the probability of
a node being a delivery-failure node. Then, we formulate the
relationship between the probability of a node being a delivery-
failure node and the transmission power. As a result, we can
find the upper bounds on critical transmission power.

A. The Relationship between η-guaranteed Delivery and De-
livery Failure Probability

For a sensor Xi, C(Xi) denotes a Bernoulli random
variable that equals one iff Xi is a delivery-failure n-
ode. For all nodes V = {X1, · · · , X|V |} in the network,
C(X1), · · · , C(Xn) are identically distributed random vari-
ables, where |V | is the cardinality of V . As the work in [30],
we assume the distribution of the delivery-failure nodes is
statistically independent. Let Z be the number of delivery-
failure nodes in the network, and we have

Z =
∑
xi∈V

C(Xi) (6)

According to Definition 2, for critical transmission power,
we have

Pr{Z ≤ (1− η)N} ≥ Prth (7)

According to Markov’s inequality, we have

Pr[Z ≤ (1− η)N ] = 1− Pr[Z ≥ ((1− η)N + 1)]

≥ 1− E(Z)/((1− η)N + 1)
(8)

Suppose that C(Xi) (1 ≤ i ≤ N) are identically distributed
random variables. Then, the expectation of random variable Z
can be computed by

E[Z] =

+∞∑
k=0

E[

k∑
i=1

C(Xi)]Pr(|V | = k)

=

+∞∑
k=0

(kE[C(Xi)]Pr(|V | = k))

= E[C(Xi)]

+∞∑
k=0

k(λπR2)kexp(−λπR2)/(k!)

= λπR2E[C(Xi)] = λπR2Pr(C(Xi) = 1)

(9)

where the distribution of the delivery-failure sensors over the
region follows a homogeneous Poisson point process with
constant density λπR2.

Combining Formulas (7), (8) and (9), we have

Pr(C(Xi) = 1) ≤ (1− Prth)((1− η)N + 1)/(λπR2) (10)

In order to achieve η-guaranteed delivery, the critical
transmission power should be chosen to make the delivery
failure probability of any node satisfy (10).
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B. Upper Bound on Critical Transmission Power
Definition 4: Void node: Xi is a void node iff it cannot

directly communicate with the central base station Xbs and it
is closer to Xbs than all its neighbors.

Xi is a delivery-failure node if it cannot directly communi-
cate with the base station Xbs, and also cannot communicate
with Xbs via multi-hop due to the existence of void nodes
on the routing path. To compute the probability of Xi being
a delivery-failure node, we first consider the probability of
Xi being a delivery-success node. Suppose that the distance
between Xi and Xbs is ρ and the transmission radius is r,
Xi is a delivery-success node only if it falls into either of the
following two cases:

Case 1: ρ is less than or equal to r, that is, Xi can directly
communicate with Xbs.

Case 2: ρ is greater than r, and there exists a multi-hop
greedy routing path to Xbs with no delivery-failure nodes.

Suppose Xi+1, · · · , Xi+k, · · · , Xi+n are intermediate n-
odes from Xi to the base station, as shown in Fig. 1. ρi+k is
the distance between the node Xi+k(k = 0, 1, · · · , n) and the
base station Xbs. n = 0 if Xi can directly communicate with
Xbs. Case 2 is satisfied iff Xi satisfies both of the following
two conditions:
• Condition E1: There exists at least one node located in Xi’s
transmission range which is closer to the base station than Xi.
• Condition E2: The next forwarding node Xi+1, one of Xi’s
neighbors who has the smallest distance to the base station
among Xi and all its neighbors, can successfully forward the
packet to the base station.

Next, we first consider the probability of E1, then derive
the probability of Xi being a delivery-success node which is
equal to the probability of both E1 and E2 are satisfied.

1) Probability of Condition E1: We call the area where
the potential next forwarding node Xi+1 can be located as
the feasible region of node Xi. Because Xi+1 must be in the
transmission range of Xi and also must have smaller distance
to the base station than Xi, the feasible area of Xi is the
intersection area of the two circles of radius r and ρ centered
at Xi and the base station, respectively.

We use random variable U to denote the distance between
the base station (Xbs) and the next forwarding node chosen by
the greedy routing algorithm. Consider the feasible region of
Xi, where potential next forwarding nodes can be located at
some distance u or less from the base station (shaded region
in Fig. 2). The area of the feasible region is denoted by Sρ(u).
According to [31], because when ρ is greater than r, the
probability of no next forwarding nodes existing in the feasible
region of area is equivalent to the probability that U is strictly
greater than u. The complement of this probability yields the
distribution of U [31] which varies with u

F (u) =

{
1− exp(−λSρ(u)), ρ− r ≤ u < ρ
1, u ≥ ρ
0, u < ρ− r

(11)

We can obtain the following probability density function
by differentiating the distribution F (u) which is absolutely
continuous

f(u) = λS
′
ρ(u)exp(−λSρ(u)), ρ− r ≤ u < ρ (12)

where S
′
ρ(u) is the derivative of Sρ(u) with respect to u.

We define the angles of the two intersecting sectors as 2αρ,
2βρ, as shown in Fig. 2. By the Law of Cosines, we have

αρ(u) = arccos(
r2 + ρ2 − u2

2rρ
) (13)

βρ(u) = arccos(
u2 + ρ2 − r2

2uρ
) (14)

Then, we have

Sρ(u) = r2αρ(u) + u2βρ(u)− uρ sinβρ(u), ρ− r ≤ u < ρ (15)

Based on (13), (14) and (15), we have

S
′
ρ(u) ≈ 2uβρ(u) (16)

2) Probability of Being a Delivery-success Node: Consid-
ering that the sensors are uniformly distributed on 2-D plan,
the nodes which has the same distance to the base station are
equal on the network deliverability for their packets. Thus, for
a given node Xi which has distance ρ to the base station, we
let the probability of Xi being a delivery-success node is a
function of the distance ρ, denoted by P (ρ).

The distance U has probability density function f(u) given
by (12). When U = u, the probability of Xi+1 being delivery-
success node is P (u). Because Xi can successfully send a
packet to Xbs only if it satisfies both Condition E1 and
Condition E2, we have

P (ρ) =

∫ ρ

ρ−r

P (u)f(u)du (17)

We take the derivative of this equation with respect to
ρ first, and get a differential equation. After computing this
differential equation using Mathematica, we get the following
analytic solution:

P (ρ) =exp(−
∫ r

1

−2exp(−λ(r2 arccos(
r

2t
)

+ arccos(
−r2 + 2t2

2t2
)t2 − 1

2
t2
√

r2(−r2 + 4t2)

t4
))

λ arccos(
−r2 + 2t2

2t2
)tdt+

∫ ρ

1

−2exp(−λ(r2

arccos(
r

2t
) + arccos(

−r2 + 2t2

2t2
)t2 − 1

2
t2√

r2(−r2 + 4t2)

t4
))λ arccos(

−r2 + 2t2

2t2
)tdt)

(18)

Accordingly, the probability of the node Xi being a delivery-
failure node is

(P (ρ))c = 1− P (ρ) (19)

where superscript c means the complement of P (ρ).

3) Upper Bound on Critical Transmission Power: Consid-
ering all the possible locations of Xi, the probability of a node
being a delivery-failure node is

P c =

∫ 2π

0

∫ R

r

(P (ρ))c

πR2
ρdρdθ =

2

R2

∫ R

r

ρ(P (ρ))cdρ =
2g(r)

R2
(20)

where
g(r) =

∫ R

r

ρ(1− P (ρ))dρ (21)

Hence
Pr(C(Xi) = 1) = (2g(r))/R2

(22)



Let x = (1− η)N . Based on (8), (9) and (22), we have

Pr[Z ≤ x] ≥ 1− (λπR2(2g(r))/R2)/(x+ 1) (23)

To ensure that Pr[Z ≤ x] ≥ Prth, we have

g(r) ≤ (1− Prth)(x+ 1)/(2λπ) (24)

Based on Lemma 2 in the Appendix, g(r) is strictly decreasing
for r. Hence, we can ensure Pr[Z ≤ x] ≥ Prth as long as
the critical transmission radius rcri(η, Prth) satisfies

rcri(η, Prth) ≤ r̃ = inf{r|g(r) ≤ (1− Prth)(x+ 1)

2λπ
} (25)

where inf represents the greatest lower bound. Letting dsr
in (2) be r̃, with Prec(dsr) ≥ (Nn + Ir)β we can obtain the
upper bound of the critical transmission power P cri

t (η, Prth),
that is

P cri
t (η, Prth) ≤ ˜Pt = β(Nn + Ir)r̃

α (26)

where Ir can be computed based on Formula (4).

V. EFFECTS OF NETWORK CONGESTION AND LINK

COLLISION

In this section, we derive the upper bound on the critical
transmission power for η-guaranteed delivery with considera-
tion of the effects of congestion and collision. The congestion
at the receiver node introduces packet loss due to buffer
overflow. Also, when multiple active sensor nodes try to access
the channel simultaneously, collisions could occur and corrupt
the packet in transmission. A sensor fails in delivering data
to its next hop when the transmission experiences a collision
or the buffer of its next hop is full. Since the congestion and
collision are well-identified causes of packet loss in WSNs
[18], [32], we investigate their effects on the deliverability of
greedy routing to provide realistic analysis results. Here, we
assume each sensor in the WSN has a buffer size of m packets.

To compute the probability that a given node Xi delivers
data to Xbs, we assume the data delivery path from Xi to
Xbs is Xi → Xi+1 →, · · · ,→ Xi+n → Xbs. n = 0 if
Xi can directly communicate with Xbs. We first consider the
probability of successful data transmission at one hop in the
path.

A. Probability of Delivery Success in One Hop
For a successful one-hop data transmission, say Xj →

Xj+1, the following two conditions must be satisfied.

• Condition EA: Xj is not a void node, i.e., Xj has a neighbor
whose distance to Xbs is smaller than Xj’s.

• Condition EB : No link collision occurs during the packet
transmission from Xj to Xj+1, and when the packet arrives at
Xj+1 the buffer queue of Xj+1 is not full, i.e., no congestion
occurs to the packet.

Hence, we have
Pr(Xj → Xj+1) = Pr(EA)Pr(EB) (27)

1) Probability of Condition EA: The probability that Xj

is a void node is the probability that no nodes exist in Xj’s
feasible region. The area of Xj’s feasible region where any
node has smaller distance from the base station than Xj ,
denoted by S(ρj , r), can be computed by (15) with u = ρj
where ρj , is the distance between Xj and Xbs, i.e.,

S(ρj , r) = 2ρ2jarcsin
r

2ρj
+ r2 arccos

r

2ρj
− r

√
ρ2j −

r2

4
(28)

According to spatial Poisson point process distribution of
nodes, we have

Pr(EA) = 1− exp(−λS(ρj , r)) (29)

2) Probability of Condition EB: Next, to compute
Pr(EB), we first derive the probability of packet loss caused
by network congestion and link collision respectively, and then
obtain Pr(EB).

Network Congestion: Let Pnc be the probability that a node
fails to deliver a packet to its next hop due to buffer overflow.
We derive Pnc based on M/M/1/k model. The M/M/1/k
model describes a stochastic process whose state space is
the set I = {0, 1, 2, · · · , k} where the value corresponds
to the number of packets in the node’s buffer. According
to [33], steady state probabilities of the system, denoted by
Pj(j = 0, 1, 2, · · · , k), are

P0 =

{ 1−�

1−�k+1 , 	 �= 1
1

k+1
, 	 = 1

(30)

Pj =

{
�j(1−�)

1−�k+1 , 	 �= 1
1

k+1
, 	 = 1

(31)

Here � = λARR/μ in which μ is the packet transmission rate
and λARR is packet arrival rate. Since it is a many-to-one mod-
el (i.e., all packets go to sink), the arrival rate of the sensor in
the center (closer to the sink) should be higher (more contend-
ing nodes) than that of the sensor away from the sink, and thus
we consider the arrival rate as a function (inverse proportion
to the receiver’s distance to the base station) of the receiver’s
distance to the base station so that it can better reflect the case
in real system [34]. The arrival rate of node Xj+1 is as follows

λARR(ρj+1) = (R/2)/ρj+1 · λ (32)

where R is the radius of the 2-D disk region, ρj+1 is the dis-

tance between Xj+1 and Xbs, and λ is an expected arrival rate.

Each sensor has a buffer size of m packets. With k = m,
the steady state probability Pm is the probability of a buffer
being full which causes packet drop. Obviously,

Pnc = Pm (33)

Hence, the probability that node Xj fails to deliver a packet
to its next hop Xj+1 due to buffer overflow is Pm with � =
λARR(ρj+1)/μ (denoted as Pm(ρj+1)).

Link Collision: Since in WSNs wireless channels are shared
by several nodes using CSMA-like (Carrier Sense Multiple
Access) protocols, we derive the probability of packet loss due
to link collision based on modeling of CSMA/CA in [35].
The binary exponential backoff procedure is modeled as a
Markov chain with the assumption of constant and independent
collision probability of a packet transmitted by each node.
We consider a fix number l of contending nodes, each always
having a packet available for transmission after the completion
of each successful transmission. Based on [35], we can get the
probability of a packet encountering collision Plc as

Plc = 1− (1− τ)l (34)

where τ is the probability that a node transmits in a randomly
chosen slot time.

τ =
2(1− 2Plc)

(1− 2Plc)(W + 1) + PlcW (1− (2Plc)v)
(35)

where W is the minimum contention window size W =
CWmin, and the maximum contention window size is
CWmax = 2vW . v is the maximum backoff stage. In par-
ticular, when v = 0, i.e., no exponential backoff is considered,
the probability τ results to be independent of Plc. Formula
(35) thus simply becomes:

τ = 2/(W + 1) (36)



Computation of Pr(EB): Based on (33) and (34), the prob-
ability of Condition EB is

Pr(EB) = (1− Pnc)(1− Plc) = (1− Pm)(1− τ)l (37)

B. Probability of Delivery Success to the Base Station
For simplicity, we use the average number of hops that

a packet can traverse from a node to the base station to ap-
proximately estimate the probability of successful data delivery
from node Xi to base station Xbs.

1) Average Number of Hops: If a packet travels from a
node with distance ρi to the base station to another node with
distance ρi+1 to the base station, the distance it advances
equals ρi−ρi+1. Previous work [36] shows that the probability
density function of progress in one hop from Xi towards the
base station Xbs is

fc(c| ||Xi, Xbs|| = ρ)

=σ(
2

πr2
)σ2(ρ− c)[

π

2
− arcsin(1 +

c2 − r2

2ρ(ρ− c)
)][(ρ− c)2

arcsin(1 +
c2 − r2

2ρ(ρ− c)
) +

1

2

√
4r2ρ2 − (c2 − r2 − 2ρc)2

− r2 arcsin(
c2 − r2 − 2ρc

2ρr
)− π(ρ− c)2

2
]σ−1, 0 ≤ c ≤ r

(38)

where ρ is the distance between Xi and Xbs, c is the maximum
forward progress in one hop towards the base station Xbs, and
σ is the number of nodes located in the semi-circle with radius
r, computed by σ = λπr2

2 where λ is the constant density.

Based on (38), we can get the average progress per hop
towards the base station c̄ for Xi with distance ρ to Xbs as
follows:

c̄(ρ) =

∫ r

0

vfc(v)dv (39)

Consider all the possible locations of Xi, we have,

c̄ =

∫ 2π

0

∫ R

0

c̄(ρ)

πR2
ρdρdθ

=
2

R2

∫ R

0

∫ r

0

vfc(v| ||Xi, Xbs|| = ρ)dvρdρ

(40)

Since the radius of the geographic region D(Xbs, R) is R, we
estimate the maximum number of hops for delivering a packet
to the base station Xbs by

Ĥmax = �R/c̄� (41)

According to [37], the average number of hops a packet
traverses in the network equals

E(H) =

Ĥmax∑
k=1

{k · [e−(k−1)2λπr2 − e−k2λπr2 ] · (1− e−λA)k−1}
(42)

r
r

r<
x<
2r

Xj+1

Xj-1

Xj

Fig. 3:

Geometry of
a two-hop
connection.

where A is the intersection area between two
transmission ranges, illustrated by the shaded
area in Fig. 3, and can be computed by:
A = r2(2 arccos(

x

2r
)−sin(2 arccos(

x

2r
))) (43)

2) The Probability of Delivery Success:
A node succeeds in delivering a packet to the
base station if every hop on the routing path
achieves successful delivery of the packet.
For simplicity, we assume that the delivery of
each hop transmission is independent of other
hop transmissions along the path. Then, given the probability
of delivery success in one hop Pr(EA)Pr(EB) and the
average number of hops for delivering a packet to the base
station E(H), the probability that a node Xi succeeds in

delivering a packet to the base station can be derived by
combining (29), (37) and (42):

Pr(C(Xi) = 0|‖Xi, Xbs‖ = ρi) = (Pr(EA)Pr(EB))
E(H)

=Π
i+E(H)−2
j=i Pr(EA)Pr(EB)

=Π
i+E(H)−2
j=i (1− exp(−λS(ρi, r)))(1− Pm(ρj+1))(1− τ)l

(44)

C. Upper Bound on Critical Transmission Power
Based on (20), (21) and (44), we can obtain the probability

of a node being a delivery failure node:
Pr(C(Xi) = 1|‖Xi, Xbs‖ = ρi)

=1− Pr(C(Xi) = 0|‖Xi, Xbs‖ = ρi)

=1−Π
i+E(H)−2
j=i (1− exp(−λS(ρi, r)))(1− Pm(ρj+1))(1− τ)l

(45)

Considering all the possible locations of Xi, we have
Pr(C(Xi) = 1)

=

∫ 2π

0

∫ R

r

(ρi(1−Π
i+E(H)−2
j=i Pr(EA)

Pr(EB)))/(πR
2)dρidθ

=
2

R2

∫ R

r

ρi(1−Π
i+E(H)−2
j=i (1− exp(−λS(ρi, r)))

(1− Pm(ρj+1))(1− τ)l)dρi

(46)

Because the complexity of computing Pr(C(Xi) = 1), and
P c is the probability of a node being a delivery-failure node
caused by void nodes, and Pr(EA) is the probability that
a node Xj is not a void node, we use Pr(C(Xi) = 1) =

1 − Π
i+E(H)−2
j=i (1 − P c)Pr(EB) to approximately compute

Pr(C(Xi) = 1) then we have Pr(C(Xi) = 1) = h(r), where

h(r) =1−Π
i+E(H)−2
j=i (1− P c)Pr(EB)

=1− (
R2 − 2g(r)

R2
)(E(H)−1)

Π
i+E(H)−2
j=i (1− Pm(ρj+1))(1− τ)l

(47)

Then, based on (8), we can get

Pr[Z ≤ x] ≥1− (λπR2h(r))/(x+ 1) (48)

Thus, to ensure that Pr[Z ≤ x] ≥ Prth, we need to ensure

h(r) ≤ (1− Prth)(x+ 1)/(λπR2) (49)

Based on Lemma 3 in the Appendix, h(r) strictly decreases
with r. Therefore, the critical transmission radius has

rcri(η, Prth) ≤ r̃ = inf{r|h(r) ≤ (1− Prth)(x+ 1)

λπR2
} (50)

Given a WSN G(V,E) deployed over a geographic region
D(Xbs, R) and a probability threshold Prth, the critical trans-
mission power P cri

t (η, Prth) for SINR model satisfies

P cri
t (η, Prth) ≤ ˜Pt = β(Nn + Ir)r̃

α (51)

VI. EXPERIMENTAL RESULTS

In this section, we present numerical analysis of our
theoretical results to investigate the relationships among the
transmission power, probability of η-guaranteed delivery and
minimum delivery ratio η. Then, we present simulation re-
sults that evaluate the tightness of our upper bounds on the
critical transmission powers. Finally, we provide real-world
experimental results to validate our model’s ability of well
approximating real life performance.
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Fig. 4: Relationship between probability of η-guaranteed delivery and trans-
mission power with interference.
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Fig. 5: Relationship between probability of η-guaranteed delivery and the
minimum delivery ratio requirement η.

A. Numerical Analysis
In our numerical analysis, we assume that 500 sensor nodes

are distributed over a disk region D(Xbs, 1000m) following
a Poisson distribution. The base station is located at the
center of the disk region. All the sensor nodes have the
same transmission power. For SINR model, we set path-loss
exponent α = 3, the minimum signal to interference ratio
β = 4, and ambient noise power level Nn = 10 nw [38], [39].

The Formulas (23)-(26) in Section IV show the upper
bound on critical transmission power without considering
congestion and collision, and Formulas (48)-(51) in Section
V consider congestion and collision. Based on these results,
Fig. 4(a) and Fig. 4(b) show the relationship between the prob-
ability of η-guaranteed delivery and transmission power when
η=80%, 85%, 90%, 95%, and 100%, without and with the
existence of congestion and collision, respectively. Both figures
show that the probability of η-guaranteed delivery increases as
the radio transmission power increases. Comparing Fig. 4(b)
to 4(a), we see that with the consideration of congestion and
collision, greater transmission power is required to achieve the
same probability of η-guaranteed delivery. The probability of
η-guaranteed delivery in Fig. 4(a) eventually goes to 1 when
the transmission power is large enough. However, in Fig. 4(b)
it approaches 1 but cannot be 1 (though it is not obvious in
the figure) due to the existence of congestion and collision.
Both figures show that with a smaller η, the transmission
power required to achieve the same probability of η-guaranteed
delivery is smaller. An interesting observation is that the curve
of η = 100% is widely separated from the curves of other
η values. This result indicates that with tolerance to a small
percentage of delivery failure nodes, much less transmission
power is needed compared to that needed by 100%-guaranteed
delivery, thus obtaining significant energy saving.

Fig. 5 shows the relationship between the probability of η-
guaranteed delivery and η with different transmission powers.
We see that given a transmission power, the probability of
η-guaranteed delivery decreases with the increase of η, and
higher transmission power results in higher probability of η-
guaranteed delivery. This is because a higher transmission
power enables nodes to communicate with nodes further away,
decreasing the probability of delivery failure caused by void
nodes. Comparing Fig. 5(a) and 5(b), for the same transmission
power and the same η, the probability of η-guaranteed delivery
in Fig. 5(b) is lower than that in Fig. 5(a) because of the
congestion and collision effects.

Fig. 6 shows the relationship between the upper bound on
critical transmission power and the node density. We changed
the node density by varying the number of sensor nodes over
the disk region D(Xbs, 1000m). Fig. 6(a), 6(b), 6(c) and 6(d)
show the upper bounds on the critical transmission power for

η= 80%, 85%, 90%, and 95% guaranteed delivery, respectively.
Each figure shows upper bounds derived with congestion
and collision (denoted as “cong-col” in figures) as well as
without congestion and collision. The upper bounds for 100%-
guaranteed delivery are drawn in every figure for comparison.
From these figures, it can be seen that the upper bounds on
critical transmission power decrease as the number of nodes
in the network (hence node density) increases. This is because
a higher node density leads to a smaller average distance
between any pair of nodes, which enables each node to use
a smaller transmission radius for communication. We also see
that the upper bounds on critical transmission power decrease
slowly with the node density. This is because the increase
of node density introduces more interference, offsetting some
effect of decreasing average distance of any pairs. All of these
figures show that the upper bound derived with the considera-
tion of congestion and collision is larger than that without the
consideration. This indicates that higher transmission power
is required to counter the effect of congestion and collision.
We also find that a smaller η generates a smaller upper bound
on critical transmission power. The upper bound for 100%-
guaranteed delivery is considerably larger than that for smaller
η, which indicates that higher delivery ratio requires higher
transmission power regardless of the existence of congestion
and collision.

B. Simulation Results
We used network simulator NS2 [40] to conduct simulation

experiments. Constant Bit Rate (CBR) Traffic generator [40] is
used for each sensor to create a fixed size packet for every fixed
interval. To validate the correctness and tightness of our upper
bound, we compare our theoretical results with simulation
results in various scenarios. By default, the number of nodes
in the network was set to 200 in the simulation. The nodes
are distributed over a disk region D(Xbs, 300m) following a
Poisson distribution. The threshold for decoding a signal was
set to Pth = −64dBm. For each setting of transmission power,
we generated 200 random network topologies and for each
topology we computed the ratio of delivery success nodes.
The probability of η-guaranteed delivery is estimated with the
200 delivery ratio samples.

Fig. 7(a)-7(b) show the theoretical upper bounds on critical
transmission power and the simulation results for 85% and
95% guaranteed delivery. We see that our theoretical upper
bounds are very close to the simulation results. By examining
Fig. 7(a)-7(b), we see the upper bound on critical transmission
power increases as η increases, which is consistent with our
numerical results.

To further validate our model, we varied the network den-
sity and traffic load of the network. In Fig. 8, we decreased the
number of nodes in the network to 100 to decrease the network
density. Fig. 8(a)-8(b) show the theoretical upper bounds on
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Fig. 6: Relationship between upper bound on critical transmission power and node density with interference.
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(b) η = 95%
Fig. 7: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 200, interval=2).
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Fig. 8: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 100, interval=2).

critical transmission power and the simulation results for 85%
and 95% guaranteed delivery. We see that our theoretical
upper bounds are still very close to the simulation results. We
also find that the upper bound on critical transmission power
increases as η increases. Comparing Fig. 8 with Fig. 7, we
find that the upper bounds on critical transmission power in
Fig. 8 are larger than those in Fig. 7, which indicates that the
upper bound on critical transmission power increases as node
density decreases. This is because larger node density shortens
the average distance between nodes and thereby reduces the
probability of delivery failure caused by void nodes.
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Fig. 9: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 100, interval=1).
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Fig. 10: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 100, interval=0.5).

We then varied traffic load by different intervals for CBR
traffic generator. Fig. 8, 9 and 10 show the relationship between
the probability of η-guaranteed delivery and the transmission

power with 100 nodes in the network, under different intervals
2, 1 and 0.5. Smaller interval means higher traffic load. It is
obvious to see that our theoretical upper bounds are very close
to the simulation results. Comparing Fig. 8, 9 and 10, we find
the upper bounds on critical transmission power follows Fig.
10>Fig. 9>Fig. 8, which indicates the upper bound on critical
transmission power increases as traffic load increases. This is
because heavier traffic load increases congestion and collision
and thereby increases the probability of delivery failure.

C. Real-world Experimental Results
Our testbed [41] consists of 16 Tmote Sky motes [42]

running TinyOS 2.1.2. A computer running Ubuntu 12.04
was used to configure all sensor nodes. Each sensor node
was configured to periodically sample and transmit data. The
network delivery ratio was measured under different traffic
loads, network densities, and radio transmission power levels.

Fig. 11 shows the relationship between the probability of
η-guaranteed delivery and radio power level for 85% and
95% guaranteed delivery. In the test, the interval between
two consecutive packet transmissions was set as 1 second. In
Fig. 12, we increased the interval between two consecutive
packet transmissions to 2 seconds to decrease traffic load. Both
Fig. 11 and Fig. 12 indicate that the experimental results are
close to the theoretical results. By comparing Fig. 11(a) and
Fig. 11(b), Fig. 12(a) and Fig. 12(b), similarly, we see that
the upper bound on critical transmission power increases as
η increases, which is consistent with numerical results and
simulation results. Comparing Fig. 12 and Fig. 11, we find
that the upper bounds on critical transmission power in Fig.
11 are larger than those in Fig. 12. This result indicates that
the upper bound on critical transmission power increases as
traffic load increases, which is consistent with our simulation
results.
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Fig. 11: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 16, interval=1 second).
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Fig. 12: Probability of η-guaranteed delivery vs. transmission power (path-loss
exponent α = 3, N = 16, interval=2 seconds).



Our theoretical and real-world experimental results show
that by tolerancing to a small percentage of delivery failure
nodes, much energy can be saved.

VII. CONCLUSION

In this paper, we study the deliverability of greedy routing
in 2-D WSNs. As opposed to previous works that only ana-
lyze the probability of guaranteeing all deliveries and neglect
network congestion and collision, we introduce η-guaranteed
delivery, where η can be varied and study its probability with
the consideration of network congestion and collision. We
adopt a more realistic model to analyze upper bounds on
critical transmission power. Through theoretical analysis, we
derive the upper bounds on the critical transmission power
for achieving η-guaranteed delivery with a given probability.
The extensive numerical analysis, simulation and real-world
experimental results show that our characterization is clos-
er to the practical scenarios and our derived upper bounds
are correct and tight. Our future work is to evaluate the
deliverability of greedy routing with various improvements
proposed recently for handling void nodes not only caused by
short transmission range, but also caused by non-homogeneous
density or physical obstacles (e.g., lake), localization errors.
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VIII. APPENDIX

Lemma 1: P (ρ, r) is strictly increasing for r ∈ (0, R] when ρ
keeps unchanged.

Proof: ∀ r1, r2 ∈ (0, R], let r1 < r2, we have:
P (ρ, r1)

P (ρ, r2)
=

exp(− ∫ r1
1

p(t, r1)dt+
∫ ρ

1
p(t, r1)dt)

exp(− ∫ r2
1

p(t, r2)dt+
∫ ρ

1
p(t, r2)dt)

< exp(

∫ ρ

1

(p(t, r1)− p(t, r2))dt− (

∫ r2

1

(p(t, r1)− p(t, r2))dt))

(52)

where
p(t, r) =− 2 exp(−λ(r2 arccos(

r

2t
) + arccos(

−r2 + 2t2

2t2
)

t2 − 1

2
t2
√

r2(−r2 + 4t2)

t4
))λ arccos(

−r2 + 2t2

2t2
)t

(53)

From Formula (53), we can find p(t, r) < 0.
dp

dr
= 2λt exp(−λ(r2 arccos(

r

2t
) + arccos(

−r2 + 2t2

2t2
)t2

− 1

2

√
r2(−r2 + 4t2)))[2λr arccos

r

2t
arccos

2t2 − r2

2t2

− 2√
4t2 − r2

] > 0

(54)

Hence, p(t, r) is strictly increasing for r ∈ (0, R], and r1 < r2,
ρ > r2. Hence,

exp(

∫ ρ

1

(p(t, r1)− p(t, r2))dt− (

∫ r2

1

(p(t, r1)− p(t, r2))dt)) < 1

(55)
But the exponential function is greater than 0.
Hence, Lemma 1 holds.

Lemma 2: g(r) is strictly decreasing for r ∈ (0, R].

Proof: ∀ r1, r2 ∈ (0, R], let r1 < r2, we have:

g(r1)− g(r2) >

∫ R

r2

ρ[(1− P (ρ, r1))− (1− P (ρ, r2))]dρ

>

∫ R

r2

ρ[P (ρ, r2)− P (ρ, r2)]dρ (By Lemma 1)

=0

(56)

Therefore, g(r1) > g(r2). But r1 < r2.
Hence, Lemma 2 holds.

Lemma 3: h(r) is strictly decreasing for r ∈ (0, R].

Proof: ∀ r1, r2 ∈ (0, R], let r1 < r2, we have:
h(r1)− h(r2)

=(
R2 − 2g(r2)

R2
)E(H2)−1 ·Πi+E(H2)−2

j=i (1− Pm(ρj+1))

(1− τ)l − (
R2 − 2g(r1)

R2
)E(H1)−1 ·Πi+E(H1)−2

j=i

(1− Pm(ρj+1))(1− τ)l

>(
R2 − 2g(r2)

R2
)E(H1)−1 ·Πi+E(H2)−2

j=i (1− Pm(ρj+1))

(1− τ)l − (
R2 − 2g(r1)

R2
)E(H1)−1 ·Πi+E(H1)−2

j=i

(1− Pm(ρj+1))(1− τ)l

>(
R2 − 2g(r1)

R2
)E(H1)−1 ·Πi+E(H2)−2

j=i (1− Pm(ρj+1))

(1− τ)l − (
R2 − 2g(r1)

R2
)E(H1)−1 ·Πi+E(H2)−2

j=i

(1− Pm(ρj+1))(1− τ)l (By Lemma 2)

=0

(57)

Therefore, h(r1) > h(r2). But r1 < r2.
Hence, Lemma 3 holds.


