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Information retrieval is everywhere

* A predominant interface between users and massive amount of information
indexed in modern online systems
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Goal of information retrieval

e Satisfy users’ information need
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Result ranking is essential

* Probability ranking principle [Rob771 — 3 theoretical justification
* The overall utility of the system to its users is maximized when the results
are ranked in a descending order of usefulness to the users
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ASSUMPTIONS

e Sequential examination
Independent relevance evaluation
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How do we estimate utility?

e Classical IR methods
e Document retrieval
* BM25, language models, page rank

* Recommendation
* Content-based recommendation, collaborative filtering

* Unsupervised, and rely on empirical parameter tuning

Motivation 6



How do we estimate utility?

* Learning-based methods
 Document retrieval
* Learning to rank

e Recommendation
* Latent factor models, neural network models

e Supervised, hungry for labeled training data!
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Learning from users’ implicit feedback

* User behavior oriented result feedback
* Low cost
* Large scale
* Natural usage context and utility

Motivation 8



Interactive information retrieval

* Learning by interacting with users

* Eliminates offline methods’ heavy dependency on manual
relevance annotations N
* NOT simply updatelan offline model -
+ Various typeBof qiases n usqfeedb. ZEm

algorithms for online learning of ranking functions. Instead of learning from
\ learning from streaming data.

d4 q \ Y Learning to Rank: Online Learning, Statistical Theory and ..

ambujtewari github.o/theses/Sougata_Chaudhuri_Thesis_2016.pdf

®d2 -

Lerot: An Onlune Learmng to Rank Framework - Microsoft ..
https

Online

ing-to-rank-framework «

om/.../publication/lerot-an-online-lea

arning to

1¥Y__e Out

th online le:
Cited by: 29 Author: Anne
Publish Year

Onllne Learning to Rank: Abso[ute VS, Relallve

https:/www.microsoft.co 5-poster-online-learning, pdf

Online learning to 1t rankings. First
learning; and relative feedt
t rankings

Author: Yiv

Pofl Learning to Rank: Online Learning, Statistical Theory and ...

https:/ambujtewari.github.io/theses/Sougata_Chaudhuri_Thesis_2016,pdf

Online learning to rank ¢ volve vel
Motivation ranking functions. Instead of earning f

y learn from streaming data. T




Limitations in users’ implicit feedback

* [n a recommender system

* Presentation bias iomance - Drama
LETFTIEE
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O
O

Figure credit: Schnabel et al. 2016 [55¢/1€]

Matthew effect: we still don’t

challenges know what we don’t know! .



Limitations in users’ implicit feedback

* In a retrieval system
* Presentation bias
* Position bias
* Trust bias

Challenges

Figure credit: Baeza-Yates 2018 [Ba¢18]
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Interactive information retrieval

* Learning by interacting with users

* Eliminates offline methods’ heavy dependency on manual
relevance annotations
* NOT simply update an offline model online

* Various types of biases in users’ feedback
* Learning while serving the users

Exploration
O Present currently underestimated

Exploitation

Present the best results

estimated so far to satisfy users results to best improve the ranker

Interactive IR System
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Efficient exploration is crucial

* Huge search space

* Exploration is costly

Challenges 13



Efficient exploration is crucial

* One only gets answers to the questions she asked
* Bandit feedback

Romance Drama
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Efficient exploration is crucial

* The problem space can be structured

* The observations might not be independent
Clustered, correlated responses?
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Efficient exploration is crucial

* The problem space is evolving over time
* Any real-world environment is non-stationary
* Recognize outdated model is important
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Exploration also induces risks

* There are also privacy, fairness, and ethic concerns in exploration

Equality

Challenges 17



Outline of this tutorial

* Background: bandit algorithms

* Bandit learning for recommender systems

* Bandit learning for retrieval systems

* Ethical considerations in IR with bandit learning
* Conclusion & future directions



Problem formulation

e (stochastic) Multi-arm bandit

Goal: maximize the accumulated

Reward reward over T rounds

distribution
E[Tagt] =,

&
=
=2
]
2
£
~

Probability
Probability

Reward

Actions YY)

A: {aflaa’27"°7a’K}

ONE ARMED

A

0
y

| BANDIT |

Agent/learner/ Map it to an IR problem (e.g., recommender systems):
policy ! * Environment: a user or users
s (a‘:,;_[t:)  Agent: recommendation algorithm
— ) -1 e Actions/arms: recommendation candidates
History H; = {(a:;7i)}io  Reward: click, purchase

Problem formulation 19



Problem formulation

e (stochastic) Multi-arm bandit

Reward z z

distribution gl H ; ' see
Elrq: =g

Actions cee
A= {al,ag,...

Agent/learner/ Reward 4.

policy Ta,t 5

- -
uy (a‘I,HtD

History #; = {(a\i,ri)}z;i

Problem formulation

Lower regret bound [BR&9P]:
R(T) = O (»y\/TK)%T )

Finite variangk is required!
Difficulty of the problem

Goal: maximize the accumulated
reward over T rounds

£
=
[
=
[
=
=

Reward

(Pseudo) Regret: expected loss
due to not playing the best arm

R(T) = Y,_,(E[ra:] — E[ra.s])

a

A 4

KL (prz. *sPa; )I

————— =

Sub-linear regret is preferred!

Time
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Problem formulation

e Contextual/structured bandit

Reward
distribution

E[Ta,,t] — f9 (Xa)

Probability

Probability

Actions

At = {Xai,t - Rd}fi

Agent/learner/
policy

779(01|~/4t7 Ht)
History 7{, = {(A-i,aiﬁi)}f;

Problem formulation

>~ In linear contextual bandit [LCLS10],
wiE s

\“'\'_*‘,‘.-7,

= res~N(x'0,0%), 6 c R?

Goal: maximize the accumulated

g
Y 3 ! reward over T rounds
= Reward
(Pseudo) Regret: expected loss
due to not playing the best arm
o000

R(T) = 3,_,(E[ra:] — E[ra.q])

Lower regret bound in linear contextual bandit [CLRS11]:

R(T) =9 (7\/JTd) ~when d < /T

21



Problem formulation

* Reinforcement learning [SB18]

State
St+1

Problem formulation

-2
>
Reward

]E[Ta,t] — f@(xaa St)

ﬁs’:\;
.. ,4

Out of scope of this tutorial

Action
ag ~ 7T9(a|~/4t7 St)-1)
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Problem formulation

* Key problems

e Reward estimation

e Arm selection

Reward

E[rat f@ Xa)l

Convergence matters!
1. Multi-arm bandit:

7 '%; In linear contextual bandit [LCLS10],

E\ﬁ.‘.‘/v

*"’ f; = argming g D (arrer, Xa, 0 —1i)> + 2010
Ridge regression, closed form solution exists!

Action

iat ~ To(a

Ata Ht—l)-lj

&

Z(az‘.-"i)é’Ht L{ai=k}ri

f'k,t — nk
2. Contextual bandit:

Problem formulation 9t = argMiyc@

Loss function Regularization

L(H:,0) +R(O)

\ 4

Exploration matters!

1. Adaptive v.s., non-adaptive
2. Independent v.s., collaborative
3. Unconstrained v.s., constrained

23



Problem formulation

* Map to IR problems

* Reward estimation
* Document retrieval: document relevance under a given query
« Recommendation: item utility for a given user
* Arm selection
 Document retrieval: ranked list of documents (i.e., top-k ranking)
« Recommendation: the item of choice (i.e., top-1 ranking)

Problem formulation 24



Classical bandit learning algorithms

* Random exploration
* Optimism in the face of uncertainty
* Posterior sampling



/' Bewardegrléhiab‘mnd o MMBB:

Random exploration fie = Sl lehir s

ny

Constant €+ leads to linear regret!

e e-greedy [Aue02]

By Setting €; = min (1 pr£< ) with ¢ > 0, we
have R(T) < Cz ( 2’_ log max {e, —Afm })
0
’ W = Bernoulli(e;)

Ct = 1/ \Ct =0 Arm selection

ar = argmax,c 4 Ta,t Randomly choose a; from A

Non-adaptive; often leads to sub-
optimal performance in practice.

Observe reward r; and update H; by (a;, ;)

Classical strategies 26



Optimism in the face of uncertainty
, QWBPW&E‘&Q‘CBBUE@@FMAB

(T) = Q (WK Jrgy /1)
» UCB1 [Aue02] wiete on = 5 1
Elxp|x1,...,¢en_1] = pn

e Upper confidence bound based

Ty

Bt(ak): /210§t

-(% P 4/-?-)// ™ Encourage underestimated arms
2 [ By(a2)
v | 7r B tA 2 L 2 <
< || Bila) L R(T) = O(VETTog T) 1+ ) YK A,
Tt * ’ T Bi(ax)
TQ 1T sse K__ A
A1 1 | TKt
al a9 aK

a; = argmax, . 4 Tat + Bi(a)

Classical strategies 27



Optimism in the face of uncertainty

whT liegratdoouaxkimlihaadidontextual bandit

* LinUCB [LCLS10]

* Upper confidence bound based
{fa,t = Xlet

==
/.l [CLRS11]- R(T) =Q (vm) .when d < VT

Confidence ellipsoid

a; = |16, — %4, = O(\/dlog(t/)\))

Br(ax) = a/Txos] | R(T) = O(VTdlog( + T/d))

'c% ‘ - ™ Encourage underestimated arms
= "=
g\ Bia)/
Tt K TBiak
’ 7“3 = TK_- f;( x) Closed form estimator
Kt A, = T
— e — > t — + Z((I.j.ri)EHt Xaixa'i
Xay Xas Xag b; = Z(ai,ri)th Ta;Xa;

a; = argmax,c 4 7ot + Bi(a)

Classical strategies

ét — At_lbt
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Optimism in the face of uncertainty

= In beveralzetbiine bamiitCLS10],
T Elred] =iu(x16)! 6 € R

* GLM-UCB [FCGS10]

* A generalized linear model Conf o
) TA onfidence ellipsoid
Fat = (X, 0t) a; = O(+/dlog(t))

Bi(ak) = ail[xa, |l R(T) = O(\/T log (2dT) log(T))

Link function, e.g., p(y) = 1/(1 + 6—7;)

'c% ‘ - g Encourage underestimated arms
= s =
Q T ~
o 1 | Bt (Aal) — No closed form solution for 6,
1,¢ 7“3 — TK_— Bi(af‘) Using gradient descent to solve
K.t
1 1 —te ’ > | AT8 nlinee@ H Z((,i',,l_)g% Xa; (‘T’i - H(XI,-O)) H 4-1
Xaq Xas Xay where A; = I + Z(a,».r,-)e?{, Xa, X,

a; = argmax,c 4 7ot + Bi(a)
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#= = |n linear contextual bandit [LCLS10],

Posterior sampling T rui~ Nxl6.0), 0 e R

Predictive distribution:
P(ros|xa, He, \) = N(xF A7 'y, 5+ xT A7 'x,)

* Thompson sampling [AG13]

Source of uncertamty\ A Bayesian perspective of

reward estimation: @, ~ P(O|Hq, N

Tat_X Htl —— prior

Bi(ar) = al|xq, | ’At—l related to prior

5 . b R(T) = o(d2 T+ 1og(Td))
g i Bia)/
B A S T Bt (ak)
) — fﬁK . Analytic form of posterior
L L —— . Prior: P(@|\) = N (0, \I)
Xay Xas Xay, Av =N+ 553 0 en, XaXa,
A b, = %>, To. X
— o (a;,ri)EH, " @i ra;
’ t ) ,
Classical strategies
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Posterior sampling

! No formal regret known yet; and some
analysis from Bayesian regret perspective

* Thompson sampling [RVKOW18]
* No analytic posterior?

* Approximate posterior inference!
* Gibbs sampling
* Particle sampling
* Laplace approximation
* Bootstrapping

Classical strategies 31
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Outline of this tutorial

* Bandit learning for recommender systems

* Bandit learning for retrieval systems

* Ethical considerations in IR with bandit learning
* Conclusion & future directions



Real-world challenges: recap

* Huge exploration space, but the problem space has structure

» User’s preference can be non-stationary

5¢ Y1 SRR NTE

Clustered, correlated responses?
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Figure credit: Schnabel et al. 2016 (55516l
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Bandit learning for recommender systems

* Contextual bandits for recommendation
* Collaborative bandit learning
* Learning in a non-stationary environment



Contextual bandits for recommendation

e Linear bandit formulation:

e User has an unknown preference 0
* Each item a is represented by vector x,
* Linear reward assumption:

ra: ~ N(x'0,0%), 6 c R?
* Classical method: LinUCB [LCLS10]

* Recap: optimism in the face of uncertainty

 Non-linear reward function
* Logistic reward [FCGS10]
* Neural network [ZLG20]



Bandit learning for recommender systems

* Collaborative bandit learning
* With user-dependency structure
* Online user / item clustering
* Matrix factorization for low-rank structure
* Warm-start exploration



Collaborative bandit learning

* Multi-agent linear bandits: N users, each user has
his/her own 6

* Build independent LinUCB for each user?

* Cold start challenge
e Users are not independent

* Leverage user dependency for efficient exploration
* Use existing user dependency information
» Discover dependency online (via clustering)

Collaborative learning

39



Collaborative bandit learning

* GOBLin [CGZ13] A

* Connected users are assumed to share

similar model parameters A
* Graph Laplacian based regularization upon ‘ /W

ridge regression to model dependency (& 6
= Hﬁ\ -

Graph £ is input. D lieillz 4 D7 16: - 65l o
i (i,j)€EE

Regularization term:

Collaborative learning




Collaborative bandit learning

* GOBLin [CGZ13]

* Graph Laplacian based regularization upon

ridge regression to model dependency o
* Encode graph Laplacian in context, d e vE
formulate as a dN-dimensional LinUCB “ ; 0,
Graph Laplacian = U9
Rapu, = ((L]+ In)@Ls) 7/ Vee(X,, 4, ) Y
Xpw={0.--. x4 .---.0 Closed form estimator ‘, 3
u-tl:(,)-lrmm Af I N+ Zf—l % )~(T 94
0" = (L +1Iy)®1,)"2(67, - .0%) b 22_1 S TR
t — , X(l, wer Dayr oy
Regret for empty graph:  O(N+/T'In =) 11_1
Regret for complete graph: O(N+/T In V)) 0. =A; b,

Collaborative learning 41



Collaborative bandit learning

e CoLin [WWGW16]

Social influence among users: content and opinion

Xa t Ut

sharing in social network W

Reward: weighted average of expected reward

among friends
A dN-dimensional LinUCB

= Ve(:(X(,_,, w ,_WT)

R(T) < 2ar \/ 2dN In(1 +

T
LD Doy Wh

)

T

N 2

)

AN
Closed form estimator Regret for empty graph (W = 1) O(N+/T In %)
A, = ALy + Zf_l % xT Regret for W = U: O(NVT In
o +1—1 t/ s Ug (If/.llt/
b, = Zf/_l X uyTay ) When W is uniform, i.e, all users are
A . uniformly connected to share:
Ht — At_lbt

Collaborative learning

N N
tJ
i=1 j=1

>
/* §
iy
’ )
\ = 0,
—_— N
04 ’)"3:;1033'7"J
U
W in which w;j =1
j=1
A & H» o
SRS I
@ 06 01 02 00
:, 00 07 00 00
2 00 0l 08 05
® 04 01 00 05
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Online Clustering

* Discover user dependency structure on
the fly

* CLUB[GLZ14]

* Adaptively cluster users into groups by
keep removing edges

* Threshold to remove edges is based on
closeness of the users’ models

e Build LinUCB on each cluster

* Regret: o(vmTlogT), Reduce regret from
n (users) to m (clusters)

Collaborative learning

Remove edge if
10t —0itll2 > Bit + Bji

- 1 +log(l+1T;4)
Bi+ = a
1+ T,’.f

l i T e /'
Closed form estimator

A-t — )\I + Z(a,i,‘ri)E”Ht Xai.XIi

43



Online Clustering

* COFIBA [LKG16]:

* Collaborative filtering via user clustering &
item clustering

* Each item cluster is associated with its own
user clustering

* To remove an edge in user cluster: same as
CLUB

* To remove an edge in item cluster: for the
two items, user [ forms different
neighboring user set {j} based on

HXTéi’t — XTéj’tHQ S CBZ"t + CBj,t

Collaborative learning

m 7 ‘
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Online Clustering

* CAB [GLKKZE17]:

* Context-dependent clustering

e For current user i, find neighboring user
set {j} for every candidate item x,

* Then aggregate the history rewards /
predictions within the user cluster.

Collaborative learning

45



Low rank structures

* Particle Thompson Sampling (PTS) [KBKTC15] * 06 ? 02 2
* Probabilistic Matrix Factorization framework 1‘_, 05 07 ? 0.1
 Particle filtering for online Bayesian parameter 2 2 01 ? 2

—

estimation ? 01 ? 05

* Thompson Sampling for exploration

Upiid. ~  N(0,021k)
Viiid. ~  N(0,021k)
ri;|U, V iid. ~  N(U,' Vj,0?)

I

Generative Model

Collaborative learning 46



Low rank structures

e Hidden LinUCB [WWW16] Source of uncertainty in confidence bound estimation
 Matrix Factorization : : =
framework: user & item factors Tayu = (Xat ; Va,t)T(Hu, Hu) + €t
* Alternating Least Squares for -

AR Hidden feature (of an item): known to the environment,
optimization but unknown to the learner

* Exploration considers
uncertainty from two factors

A T A
a; = arg max ((xa, Vat) Out
aeA

+ ol (% V) AL (%0 V)T [Ha/0Y,C10YT)

Uncertainty of user preference 8, estimation Uncertainty of hidden feature v,
Collaborative learning estimation 47



Low rank structures

* Projected Stochastic Linear Bandit [LAAH19]

* Assume item features {x, € R%} is rank-k (k < d)

* |[dea: run PCA on all item features
e Construct projection matrix P with first k eigenvectors.

* Reward estimation: (Px,)T8



Warm-start exploration

* Have some offline data {(x, )} before the bandits start.
* E.g., from human annotations

* Leverage historical data to warm start model, reduce the need of
exploration

» Key challenge: historical data could come from different distribution
* Historical data generated by 8’ while environment follows 8*



Warm-start exploration

* Leverage historical data to warm start model, reduce the need of
exploration

» Adaptive Reweighting (ARROW-CB) [ZADLN19]

* Based on e-greedy algorithm
* Reweight historical data based on bandits’ observation
* A on historical data, 1 — A on bandits’ observation

* Online model selection to pick the weight 1
* Pre-defined |A| (hyperparameter, set to 8 in the paper) candidates

* Regret reduction when historical data and environment have similar
distribution



Open guestions

* What is the problem-related (structure-related) regret lower
bound
* E.g., user dependency structure, low rank, offline data

* Did current algorithms fully utilize the information in problem
structure?

* Efficient exploration for other structures in real-world
problem
* E.g., sparse structure, ranking structure, etc.

Complicated environments 51



Bandit learning for recommender systems

* Learning in a non-stationary environment
* Passively adaptive approaches
* Actively adaptive approaches
* Unifying clustering and non-stationarity detection



Exploration in non-stationary environments

Action

‘ Exploitation + Exploration

e Stationary assumption is
commonly used

.+ The learner is usually facing a non-
stationary environment ®

RN
M@,ﬂ & mﬁﬁ@aﬂ \\

¢ G, - \ 9
/7 ! ’ ”~ " ‘: h ’,l‘-

‘ Reward

Expected Reward

Time
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Problem formulation

0.06, - -
Article 1

* (stochastic) Multi-arm bandit L R
e meemmme——m-omoo-- R R EE DL LR T 0.04} H 'P )L'f'a H :
; Non-stationary L B ran w‘ "l \.:‘V "’L 1l
Reward - p G Ml Ty T
. . . : o000 X 00z L)W 1‘, ‘ N W\H
dlstrlbutlon ! LT ﬁu o “'4 e , r
T.a’ t N r -------------------------------------------------------------------- D}agyol M\;V03l Ma )'05I My(ll} I-:yOQ May06 May07 May08
Real-time click-through-rate of 4 news articles
collected from Yahoo user click log dataset
Actions : ) ( ‘_ Ll ~Enras
A={ai,as,... a5} Béj\i“i‘i"x'l‘ Baﬁ“m B"WT
I need to t;e adaptlv;about - = o
ntial changes in th
o eionment N ®
Agent/learner/ Reward o ©
. S
policy Ta,t )
o

- -
T (a\ﬂ-lt,')
- History is no longer helpful and may even be
misleading in the player’s decision-making
Non-stationary environments
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Problem formulation

* Different types of non-stationary environments
* Piecewise stationary environments

* Gradually changing environments

. Q Main focus of this tutorial ! More difficult and less studied.

Tt/ A, ‘ g °1 X
2 2

(O] ' 3"\5 JK—:"\ m ‘\

Sl ll® | M@ m .l ° &

O ©

2 2

O o G, P ) o O

g A~k kg X 2

x X

Ll ()

Time Time
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Problem to solve

* Changes (when and how) are unknown to the learner
(otherwise we can just restart the learner)

* Online learning setting and bandit feedback: incomplete knowledge
(change detection in the offline batch setting has been extensively
studied in statistics and control theory [BN33])

Non-stationary environments
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Approaches

* Passively adaptive approaches
 Key idea: design a proper mechanism to forget old observations
 Assumption: old observations are less relevant

* Actively adaptive approaches

 Key idea: actively detect potential changes in the environment
during online decision making

 Assumption: abrupt changes, i.e., piece-wise stationary environment



Passively adaptive approaches

Discounted UCB and Sliding window UCB [GMO®& < (0, 1]

Discount the old observations

Fat(y) = ot RS 1, Ny y(7) = S il _
a,t Y) = Na t(7) S:l'fy ,fra,t {atzz} a,t s=1"1___r{ar=a}

. ., L e log n ()
ay = argmax, e 4|7a,t(7)|+ Ba.t(7) Bi(a,7) = /"R

)

elogn(7)

ar = argmax, ¢ 4 Tq.t(7)|+ Bat(T) F— Bi(a,7) = o/

A _ 1 t :
Ta,t(T) " Na.t(7) Z,E':'t'_'}lr'l'?a,t]l(at:i) Na’t(T) = Zfﬁ‘-:-t-—-;—-l—-l:]l{at:a}

______ ~ Only utilize the most T
recent T observations

Weighted linear bandit [RVC19] 7 > 1

* Discounted-UCB in the linear contextual bandit setting
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Passively adaptive approaches

* Pros
* Simple: easy to implement and have almost ho computation overhead
 Have provable theoretical guarantee in piece-wise non-stationary
environment and environments with slow changes

* Cons
e Passive: always assuming old observations are less relevant
* Not practical: very sensitive to hyper-parameters discount factor,

sliding-window size



Actively adaptive approaches

e General framework

Inputs: Hyper-parameters.
Initialization: Set initial values for statistics about arm selection 7
and change detection (Il |of the bandit model

1: fort =1, .., Tdo

2: Observe arm set A; (and potentially also context features)
3: Select arm a; = (A
' () Statistics about the stationarity of the environment
_4: _ _Observe reward_/_‘u_z ___________

I'5. Update| IT;4 4 |

8 [ Restart or partially reset myy and My
9: else

10: Update 741

11: end if

12: end for
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Non-stationarity detection with bandit
feedback

Cumulative sum control chart (CUSUM) based detection
e AdTS [HMB15], CD-UCB [LLS18]

e Generalized likelihood ratio test
e GLR-kl-UCB [BK19]

e Online reward mean-shift detection
« WMD-UCB1 [YMO09], M-UCB [CWKX19]

e Confidence bound based detection
 dLinUCB [WIW18], DenBand [WWLW19]

e QOther
 Ada-ILTCB, Ada-greedy [LWAL18], Ada-ILTCBI*] [CLLW19] -
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CUSUM-based online change detection

* CUSUM in the offline setting

Cumulative sum of log-likelihood ratio
before and after change points: Observed reward

0.60

Eg,[s(ri)] = =K L(pe,,po,) <0 Eg,[s(ri)] = KL(pg,,pe,) >0

I 0.55

F 0.50

r0.45

r0.40

r0.35

r0.30
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CUSUM-based online change detection

* Tailored CUSUM in the Bernoulli bandit setting

* CUSUM in CD-UCB [LLS18]

Requirement on the
5 [T’i a] ‘ — |e| minimum magnitude of
) changes on the reward

* Intuition: 7, (M)
'

‘ri,a _

has negative mean drift before the change point and
positive after the change point

* Assumptions:

 Piecewise stationary with detectability
assumption
 Bernoulli bandit

Non-stationary environments

Each arm needs to have
at least M observations

Inputs: Hyperparameters M, h
Sia = (Tia = Fa(M) — ) 107y
Sia = (Fa(M) —71ia — €)1y
g:,_a — max{O, gi+—1,a + S?Za

i = max{0,9,_; , +5; .}
ifg;ta>horgi_,a>hthen

Return True
end if Detection threshold

Local restart: restart the related
statistics for the changed arms



Generalized likelihood ratio test based
online change detection

 CUSUM requires the pre-change and post-change environment
parameters to be known to get the log-likelihood.
* Unknown pre-change and/or post-change parameters ->
Generalized Likelihood Ratio Test (GLRT)
 GLRT with Bernoulli reward -> GLR-kIUCB [BK19]
* GLRT can achieve asymptotically optimal detection delay
with sub-Gaussian reward assumption [Mail9]




Online mean-shift detection

* Monitored-UCB [CWKX19]

* Compare running sample means over a sliding window

0.60

Inputs: Hyperparameter w (an even number)

. w w/2
0% 2: Return True
045 3: end if

=

\/ .
O

r0.40

* Global restart: once a change is detected, restart
ahiay the related statistics for all the arms

Need to periodically perform uniform arm
selection (uniform exploration)

r0.25

I;_'

>0 = | to ensure sufficient data can be gathered for all arms to perform CD

* Arm selection between detected change points (except
for the uniform exploration iterations): UCB1
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CB based online change detection
e Utilizing the reward estimation confidence bound [WNW18, WWLW19]

* If the environment is stationary, the reward prediction residual should be
within a confidence bound with high probability,

Predicted reward of bandit model m Observed reward Co'nfidence bound of reward estimation

e _: We can bound this to further
et v(m) —H_ é_' exclude this possibility!

[ Unexpected outcomeJis caused by,

e i i e e e e e e e e e e e
|
1

1) Something wrong in the observed |
. reward: large noise :

upper

lower PP
Non-stationary environments limit limit 66
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CB based online change detection

 Prediction badness at interaction i:

ei(m) = H{|fat(m) —ra| < Bai(m) + 0} ei(m) =0

i(m) =1 ]
Similar to the goodness of fit concept in chi-squared test _ 03
* Badness of model m over a sliding time window: B
S e;(m) . .
ér(m) = Zzi_T a sliding time window to collect
7(m) |— badness observations
* Detection threshold:
* Bad enough: * Good enough:
. - In(1/62) Change detected. . ~ |/In(1/62) When no learner is good enough,
é(m) > o1 + 27(m) (abandon learner m) elm) < o1+ 27(m) will also report a change.

(but do not abandon learner m)

5~1 <51
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CB based online change detection

* dLinUCB [WNW18]

e Adaptively creates new learners

* Monitors the prediction quality of ”i @ o
each learner — A
. < -

* Selects a learner according to each »

learner’s ‘badness’
// \\\ _____ ; ﬂ \\ ——————— | Badness estimation update
C AT Am2 e e ® “AmK

Arm 1 Arm 2 ® ¢ & ArmkK | Estimated Reward Estimated Reward Estimated Reward

I
I
Estimated Reward  Estimated Reward Estimated Reward . N N ! . .
R . E ‘ aL’\ | Reward estimation update
{ n ! A S |
E ‘/k s‘_/.L Ek :L Reward Reward Reward !
Reward Reward Reward v foo () __ e (w2)_ _ _ __ ______ o (Tr)_ _ _ __ !

Jo., (z1) Jo., (x2) fo., (zK)

Non-stationary environments
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Detection of context-dependent changes

ﬁb — — —» Change-sensitive arms
/% !

D

()

3 @ m At \ — —» Change-invariant arms

3 M [W M > g

g X

3 s fes | =

2 A A KA ' E[A] =0

> *

L Ot t 1

c ett Time 0;
Learner 1 Tf% ‘ Learner 2
DenBand [WWLW19]
/ \\ // \\ Reuse the experiences learnt in old
Reward estimation on | Mg Lami ee s ::""‘ ml =z"..:::.:m,,:."',:1:3“ e "'"“ - models for change-invariant arms
change-invariant arms | /} |z i ! i i, Q ‘
S N R e P . ,
| R A P ) | Save unnecessarily exploration
I l :
! @_. T L4 B A L 4
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Unifying clustering and change detection

* A clustered and non-stationary environment

shared parameters

{Dri=1

Non-stationary environments

| | | >
01,. | 1 ‘11 b2 ‘12| ¢4
| "\ select x;
Ou,, - b2 ; observe 1y ~ N(x{@ut’t, c?)
l | >

Oy . | D2 ‘N1 b3
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Unifying clustering and change detection

* Connection: both are testing homogeneity between data sequences

* More formally, given two data sequences:
t
* Hq = {(xi;ri)}fil and H; = {(xj;rj)}jzzl
* V(x;, 1) € Hy,1i ~ N (%] 61,0%) and V(xj,17) € Ha, 17 ~ N (x] 05,02)
* Decide whether 8, = 0,

 When data are from two user: clustering
* When data are from different periods of same user: change detection

71
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Lower level:
maintain local user models

observation history Hy 4
sufficient statistics Ay t—1, by ¢—1

Non-stationary environments

Dynamic Clustering (DyClu) [LWW?213]

Upper level:

aggregate observations in Vut,t—l

* select x; using aggregated model

replace outdated user models
* outdated model set 0;_4
* up-to-date model set U;_4

{(xe, ye)}
A

cluster identification:
S(}[ut,t—lr Hji-1)

—————

change detection:
S(}[ut,t—l: {6 ¥0)})

s() is the test statics
of homogeneity

DyClu: one model per stationary period

Detect change; cluster individual bandit models; select arm
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CoDBand [LWW21Db]

@ e o

N | | s ey

* Dirichlet Process (DP) mixture of regression models
« s are samples from infinite mixture model G with prior DP(«,, G,) ?

* The set of unique bandit parameters: {cpk}l,ft:‘ll

b

. . 9
* Indicator variable z,, .: 0, = ¢,
(o) |

-

user 1 ' | | >
. 01,. | 1 ‘11 0F ‘12| ¢,
shared parameters @° , I
_ € [Ki_1]
K user u; A p — kla. z o 4 Hht=1 t—1
{¢k}k=1 . Hut,- ¢2 % (Zut:t | 0 t—1) Qg k € [Kt—l]
9 . “Chinese Restaurant Process”
aa
user N ' ' >

On. | b2 tNa b3
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CoDBand [LWW?21Db]

* CoDBand: two-level Thompson sampling

* Arm selection: posterior sampling [ 4 D1 ,
R ” = Tt Globally-shared bandit models
* Sample Z,, ; ~ P(zy, |20, Zt-1,D; 4 —
* Sample 0, ¢ ~ N(qut,t,t—pzzubt,t—ﬂ ‘ :
* Selectarm x; = argmaxx’ 6, ., observe 1; Cd Pt I
XEA¢ - I

* Model update
* Update global model N(”Zut,t,t—l'zfut,t,t—l) with (x¢, 1)

ﬂ
|
=

» Update dataset D, = D, *, U {(x;, 1)}

* If change is detected: Reset Dé =0 —_—
Dy create a new

global model

CoDBand: one model per unique parameter
Non-stationary environments Detect change; select global bandit model; select arm 74




Open guestions

 (Can we re-use related historical observations (e.g., recurring

environment, or context-dependent changes) and what’s the
benefit of it?

* How to handle gradually changing environment?
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Outline of this tutorial

* Bandit learning for retrieval systems
* Ethical considerations in IR with bandit learning

e Conclusion & future directions



Bandit learning for retrieval systems

Why the bandit algorithms for recommendation systems do not apply?

Top-1 ranking " Top-K ranking
= Treat each item as an arm " Treat each ranking as an arm?
= Linear exploration space " Exponential exploration space
Presentation bias " Presentation bias

No position bias, as the recommended = Position bias due to users’
item will always be examined examination behavior on a ranked list



Online learning to rank

* OL2R under specific click models

* Dueling bandit gradient descent

* Online pairwise methods

* OL2R vs. offline unbiased learning to rank



OL2R under specific click models

* Assume users’ behavior follows some specific click models, e.g.,
cascade model, position-based model

* Deal with the exponential ranking space — document space



Cascading bandits [KSWA15]

e Cascade model is a popular model of user behavior in web search
* Aset of Ldocuments S ={1,...,L}
e Attraction probabilities @ € [0,1]°
* User sequentially scan a list of K documents © = (d1, ...,dx) € IIx(S)

Document is not attractive

| ) with prob 1 — (7 (k)) S [ o)
- -
User examine item ., (k) User examine document @r,(k+1) There is at most one click
Attracted with
prob w(m;(k))

> ¥ Click on document dr, ) —> |E)§IT| User exits the system

OL2R under specific click models 83



Cascading bandits

 Compute UCB on the attraction probability of
each document.
* Rank the documents according to UCB and

* One model for each query return the top-K documents.

* Interaction at time t:
* Environment draws attraction weights w; for L candidates
The model chooses an ordered list of K documents, 7 = (d},...,d% ) € Ik (S)
User clicks first attractive item in 1y, C;
Update the weights of all observed items according to the feedback
w(me(k)) = 1{Cy =k}, k= 1,...,min(C, K)
Learning agent receives reward f (1, wy)
f(ﬂ't, Wt) — |1 — Hk 1( (wt(k))] —> At least one document is attractive.

* Goal: minimize the expected\umglative regret over T steps
T ne probability that none of the K
Rr = E[thl f(ﬂ'*a Wt) — f(ﬂ'ta Wt)] ocuments is attractive.

OL2R under specific click models 84




DCM bandits [KKSW16]

* Dependent click model (DCM)

* Extend from cascade model where user may click on multiple documents
e Attraction probability: @ € [0, 1]°
» termination probability: © € [0,1]° Position-dependent

Document is not attractive

| ) with prob 1 — w(7m(k)) S [ o)
- -
User examine item dm(k) User examine document dm(k+1)
Attrac_ted with T unsatisfied with prob 1 — 7,
prob w(7 (k))

> ¥ Click on document dr, ) —> |E)§|T| User exits the system

satisfied with prob Vg 35

OL2R under specific click models



DCM bandits [KKSW16]

* Dependent click model (DCM)

* Extend from cascade model where user may click on multiple documents
e Attraction probability: @ € [0, 1]°
* termination probability: v € |0, 1]5 Position-dependent

* The probability that at least one document in 7 is satisfactory:

f(me,we,v) =1 =TT, (1 — v(k)w(me(k)))

* At each step, select the list that maximizes f (7, w;, v)

OL2R under specific click models 86



TopRank: OL2R by topological sort [LKLS18]

e Observation: no single existing click model captures the behaviors of
an entire population of users

* Motivation: to eliminate the dependency on click models, TopRank
assumes,

P(Ct,'rrt(k:) |7Tt) — V(?Tt, k) an unknown function

* The click probability does not factor into the examination probability of the
position and the attractiveness of the documents at that position




TopRank: OL2R by topological sort

The difference of the feedback received
by document i andj atround t

The cumulative difference of the feedback
received by document i and j until ¢

Document pair (j, 1) is added to G; when
item i receives sufficiently more clicks than j

OL2R under specific click models

Algorithm 1 TopRank

1: G+ Dandc+ 4y/2/m

erf(1/2)

2: fort=1,...,ndo

3:

4
5:
6
7

d+0

while [L] \ J’_, Pi. # 0 do
d<—d+1

Piq < ming, ([L] \ Uj;ll 'Ptc>

Choose A; uniformly at random from A(Py1, . . ., Piq)
Observe click indicators Cy; € {0,1} forall i € [L]

for all (¢, 7)

€ [L]? do

Cii — Cyj

if 7,7 € P;q for some d
otherwise

Utij — {

88




TopRank: OL2R by topological sort

Ranking example

Gy = {(’?’a 1)7 (57 2)9 (57 3)}

4:
i.e., Sufficient observations are received that s.

document 1 is better than document 3

Iy = {1a 2, 3}
Tio = {4}
Zi3 = {5}

One possible ranking: 2,1, 3,4, 5

OL2R under specific click models

Algorithm 1 TopRank

I: Gy < Qand ¢ « VT

erf(1/2)
2: fort=1,...,ndo
3: _d<0
while [L] \ U°_, P # 0 do

d<—d+1
Pua = ming, (L] \UZZ] Pee)

A

Choose A; uniformly at random from A(P;1, .

. Pra)

0 %A

for all (4,5) € [L]? do

, Cii — Cyj
1o Urij + {0 otherwise

11: St'ij — ZZ:I Usij and Ntij «— Zi:l |U3'LJ|

Observe click indicators Cy; € {0,1} forall¢ € [L]

if 7,7 € P;q for some d

12: Gt+1 +— Gy U {(], ’L) : Stz'j > \/2Ntij log (%\/Ntij) and Ntij > 0}




Mini summary

e Cascading bandits
* Assume user behavior follows cascade model: only one click
* Maximize the probability that at least one document is attractive

e DCM bandits

* Assume user behavior follows DCM model to allow multiple clicks
* Maximize the probability that at least one document is attractive

* TopRank
* No specific click model assumption

* Rank documents with topological sort with respect to the confidence of the
preference between documents



Dueling bandit gradient descent [YJO9]

* DBGD is built on interleaving, an online evaluation method for rankings
* Infer preference between two ranking lists based on clicks on the interleaved
ranking

* DBGD: online gradient descent based on the inferred preference between
models —> explore the model space

Ranking A Interleaved ranking

\ - M Ranking A receives one click.

d3 RS

’ d2 % Ranking B receives two clicks.

91

Winner! Ranking B

DBGD family




Dueling bandit gradient descent [YJO9]

* Interleaving method offers a reliable mechanism for deriving relative
preferences between retrieval functions

dl
d3 o

N Dueling Bandi

®d2 I9t+1 =

S

~

9t+ut€Rd

DBGD family

nt Descent

online learning to rank o Q
ALL IMAGES VIDECS MAPS NEWS SHOPPING MY SAVES
5,880,000,000 Results Any time ~

Online learning to rank : One direction of research involves developing
algorithms for online learning of ranking functions. Instead of learning from
labeled training data in a batch setting, online learning strategies
continuously learn from streaming data. There are multiple advantages of
learning from streaming data.

Learning to Rank: Online Learning, Statistical Theory and ...
ambujtewari.github.io/theses/Sougata_Chaudhuri_Thesis_2016.pdf

Lerot: An Online Learning to Rank Framework - Microsoft ...
https://www.microsoft.com/.../publication/lerot-an-online-learning-to-rank-framework ~
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Cited by: 4 Author: Yiwei Chen, Katja Hofmann

Publish Year: 2015

iPorl Learning to Rank: Online Learning, Statistical Theory and ...
https://ambujtewari.github.io/theses/Sougata_Chaudhuri_Thesis_2016.pdf

Online learning to rank : One direction of research inv developing algorithms for online learning of

ranking function learning from la

ed trainin

3, online learning

strategles continuously learn from streaming data. There a

92



Dueling bandit gradient descent [YJO9]

* Unform exploration by random sampling: unbiased gradient estimation
* Perform online gradient descent in expectation

* DBGD has a sublinear regret upper bound:
* Regret: R = Zle (0%, 0,) + €(0*,0)) < O(/dT3/*)
* d is the number of feature dimensions, T is the number of interaction rounds
* € quantify the difference between two models

V\\\‘Iﬁt E ]Rd ‘
d1 = * Problems:

~

d3\.\o ’ * One ssingle direction is explored at a time
A- * ¢ is uniformly sampled in the d-dimension feature space:
d4 Te 4y high variance and slow convergence



Multileave gradient descent [SOWR16]

* Compared to DBGD, MGD explores multiple directions uniformly from
parameter space simultaneously

* Reduce the updates

* Multileaved comparison among candidate rankers

h
, ul

63 -

3 t
® My ,
o My

o

67

0,

0; o7

3
Ht

NV

‘

Winners are 07 6}
* Winner takes all: randomly choose
one winner

Or11 = 0, + ap?

 Mean winner: compute the mean of
the winner

Ori1 =0 + a(pi + pi)/2.



Dual-Point DBGD [ZK16]

* Dual-Point DBGD: explore two opposite directions simultaneously

* Explore more efficiently than DBGD

* Reduce uncertainty in the exploration with MGD

DBGD family

0, 0, 0,

dl

d3

d2

N b S

Update the model
Orr1 =0 — opy
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Null space gradient descent [WLKMW18]

* Intuition: avoid making similar mistakes again

* Null space exploration:
* Maintain a collection of recently explored gradients that performed poorly
* Sample new directions from the null space of these gradients
* Avoid repeatedly exploring poorly performing directions

Ht—2
§>_>£—>o-—af - o ¥
/// Bt_g Gt—l 91‘
s
/s
/
/9
1
dC; * Top K worst performing historical directions: G = [u!, 12, ..., u*]
0

« Attime t, sample u, from G-+ = NullSpace(Q)



Null space gradient descent [WLKMW18]

* Intuition: avoid making similar mistakes again

* Context-dependent ranker preselection

* Construct the candidate ranker to maximize the chance that thy can be
differentiated from the current ranker

* Attime t, sample {,ué}?zl from G+ = NullSpace(Q)

* Select top m directions that maximize | ut| from {“{“}?:1

02 0, 1
H? , 9, 9751 9;52 * 0, and 0; rank the candidate documents in the
d1 [ U same order
d3 o 0, * No interleaved test can differentiate the ranking
o A quality for current query
da / & N  NSGD favors 87 as it ranks the documents in a
E: different order than 6,




DBGD-document space projection [WKMWW ¢

* Observation: users only examine m documents (m <« d)
* Intuition: only consider the gradient belongs to the document space

DBGD family Figure credit: Baeza-Yates, 2018 I3/ 08



DBGD-document space projection [WKMW

* Observation: users only examine m documents (m <« d)
* Intuition: only consider the gradient belongs to the document space

b online learning to rank KN

Considerable regret reduction:

5,880,000,000 Resul: Any time =

O(VdT3/*) w O(/mT3/%)

algorithms for online learning of ranking functions. Instead of learning from
labeled training data in a batch setting, online learning strategies
continuously learn from streaming data. There are multiple advantages of

U n iform Iy Sa m pled ! learning from streaming data.
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Mini summary

* Explore in the entire model space
* DBGD: randomly sample one single direction
* MGD: randomly sample multiple directions
* DP-BGD: randomly sample two opposite directions
* NSGD: maintain a set of “bad” directions, and sample from the null space of them
 DBGD-DSP: project the gradient into document space and use it to update model

* DBGD and its extensions
* Explore in the entire model space
* High variance and slow convergence

* The assumption for theoretical analysis does not hold for all models
* There is a single optimal model
* The utility space is smooth



PDGD [OR18]

* Pairwise differentiable gradient descent

* Optimize a Plackett Luce ranking model, which models a probabilistic
distribution over documents

* Infer the preference between document pairs
* Intuition: provide an unbiased pairwise gradient to update the ranking model



PDGD [OR18]

e At eachtime t

* Observe user query
 Sample a ranking from the document distribution:

fo, (d)
_ et
P(d|D79) o Zd/eDefet(d’) v —> d3 > dy,d3 > do,d3 > dy
* Present the ranking to the user Vi () = 3 VP(d; = d;|D.0,)
. . . 0. \") — d.> .d. 1 ' 9
* Infer pairwise preference from user clicks Li>ed) " 4, receives click and d,

does not receive click.

Biased!!
Some preferences are more likely to be
observed due to position/selection bias.

Pairwise OL2R 102



PDGD [OR18]

e At eachtime t

* Observe user query
 Sample a ranking from the document distribution:

fo, (d)
P(dlD 9) — i 7
’ .Zd’eDefet(d ) v - |3 > dy,d3 > do,d3z > dy
* Present the ranking to the user

* Infer pairwise preference from user clicks

* Update model according to the estimated unbiased pairwise gradient:
Weighting function to deal

with bias: the ratio between Vfgt () — Zdi>cd«j p(dz, d]‘, Wt)VP(d@ ~ dj |D, Ht)

the probability of the ranking

and the reversed pair ranking _ . _ P(rn”(di,dj,m)|f,D)
p(di, dj, ) = P(m¢| £, D)+ P(r*(di,dyj,m¢) |, D

The presented ranking

Compared to 7, d; and d;
) are swapped.

Pairwise OL2R 103



PairRank [JWGW?21]

* Online learning to rank by divide-and-conquer
* Key insights:

* A complete ranking can be decomposed into a series of pairwise comparisons
* Only explore the pairs the ranker is currently still uncertain about the order

* Divide-and-Conquer
* Reduce exponentially sized action space to quadratic

Pairwise OL2R 104
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Pairwise learning to rank

* Learn a pairwise ranking model online

* Ranking model: a single layer RankNet[10] model with sigmoid
activation function

e Loss function at time t:
Training data

observed so far \
Le =21 X yen —vi log(o (x5, ' 0)) — (1 —yg)log(1 — o(x3; " 0)) + 310117

N xj; = x{ — x7: feature difference between

ij
document i and document j

Regularization term

yisj: whether the document i is preferred over

document j in the click feedback Sigmoid function to model the pairwise preference

1
1+exp(—s) 105

probability:o(s) =

Pairwise OL2R



Pairwise estimation uncertainty

* Pairwise feedback is noisy:

* Given the documents are examined, the click feedback is independent from
each other

v = oz 0%) + €
* Confidence interval of pairwise preference estimation
* At round t, with probability at least 1 — 64,

‘a(a:t.Tet) — o(at, 6%)

<0‘t”=’13 HM 1

v]
Estimated pairwise Ground truth pairwise M, — Z Z 2525 T 4
preference between i and preference between i and | (1,7)€Qs i 7ij

Pairwise OL2R 106



Certain rank order & uncertain rank order

* With high probability, the optimal value belongs to

T T S :
Pairwise preference estimation 0'(3323. Ht) — Cij’ o'(gpgj Qt) S CB?Z] Estimation uncertainty
A . o Uncertain rank order:
Estimated pairwise preference true preference may present
L an opposite order from the
1.0 - - :_ :’ estimated order.
1> CBE. |
. ! ij ' -CB .
. t T I Il
Certain rank ord_er. _ <« 0(xj; Qt): | t T : | H estimated preference:
true preference is consistent i CB; a(xt 6,) P, y .
. : | — — J i'j" Yt | i >
with the estimated I |
preference: i > j. 0.5 / I I~ CBY . .
/' I | i'j true preference might
(0) Lower confidence bound - > be:j" >1i’
>

Pairwise OL2R

document pair (i, j)

document pair (i’, j)
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PairRank: explore via divide and conquer

1 Block 1 Block 1 2

! 1 2

2 1

3 - —_ Block 2 —_— Block 2 ‘L —_— 4

} 3

4 3

| 4 5

: 5

5

Document graph Uncertain order graph Block graph Ranked list
(possible one)

Constructed with the certain  Explore the uncertain rank Topological sort between Randomly shuffle the order
and uncertain rank orders orders: construct blocks with blocks: exploit the certain  of documents within each
between document pairs. the connected components. rank orders. block: explore the uncertain

rank orders.

Pairwise OL2R 108



Pairwise regret

* Pairwise regret for OL2R

* The cumulative number of mis-ordered pairs from the presented ranking to
the ideal one, i.e., the Kendall tau rank distance

Rr =E[Y,_, r] =E>,_, K(m,7})]

* Most ranking metrics deployed in real-world retrieval systems, such as ARP
and NDCG, can be decomposed into pairwise comparisons

* Sublinear upper regret bound of PairRank: Ry < O(dlog*(T))



OL2R vs. offline unbiased L2R

* Goal: to find the best models that rank documents based on their utility
* Learn from user interactions, implicit feedback, e.g., clicks



OL2R vs. offline unbiased L2R

* Interactively optimize and update * Learn a ranking model from a
a ranking model after every historical interaction log
interaction  Remove data bias by re-weighting
 Combat bias by interventions, i.e., strategies
exploration e There is no presentation bias
* User experience might be hurt due * Do not affect user experience but
to exploration cannot explore and limited to

rankings in the historical log



OL2R vs. offline unbiased L2R

* To model or to intervene [JOR19]

* Compare the counterfactual L2R and OL2R methods under different experimental
conditions

* Performance of OL2R and counterfactual L2R depend on the presence of selection
bias, the degree of position bias and interaction noise

* Counterfactual method performs best when there is litter bias or noise in the feedback
* OL2R methods are more robust to bias and noise, but they may hurt user experience

e Unbiased learning to rank: online or offline [AYWM?21]
 Are counterfactual L2R and OL2R are two sides of the same coin for unbiased L2R?

* Almost all unbiased L2R algorithms in offline learning can be directly applied to
online learning



Unifying online and counterfactual learning lfm
rank [OR21

* Intervention-aware estimator
* Bridge the online and counterfactual L2R divisions

* Key insights
* Use the offline policy-aware estimator to correct position bias, presentation

bias and user trust bias
* Online intervention: take the entire collection of logging policies into

consideration



Unifying online and counterfactual learning tdi}
rank [OR21

* Intervention-oblivious estimator
* Clicks follow an affine model, for item d displayed at rank k:

P(C =1|d, k) = a,P(R = 1|d) + B4
* Conditioned on logging policy i, the click probability is:
P(C =1|d,7) = 3, m(k|d)(arP(R = 1|d) + )

e The estimator is based on the inverse:

P(C=1|d,m)—E d,m
P(R = 1|d) = HE e

OL2R vs. Offline Unbiased L2R 114



Unifying online and counterfactual learning tda
rank [OR21

* Intervention-aware estimator
* Clicks follow an affine model, for item d displayed at rank k:

P(C = 1‘d, k) = O{kP(R = 1‘d) + B
* Conditioned on the set of logging policies II, the click probability is:

K
P(C =1ld,7) = 1 Yroen by me(kld) (i P(R = 1]d) + )
 The estimator is based on the inverse:

_ _ P(C=1]d,]1)—Ey[Bx|d 1]
PR =1}d) = === faman]

OL2R vs. Offline Unbiased L2R 115



Open guestions

* How to balance the efficiency and effectiveness of OL2R?
* Online stochastic gradient descent
* Perturbation-based/randomization-based exploration

Open questions 116
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Outline of this tutorial

* Ethical considerations in IR with bandit learning
* Conclusion & future directions



Ethical considerations

* Privacy concerns
* Background: differential privacy (for continual release)
* Global and local differentially private bandit learning

* Fairness concerns
 Meritocratic fairness
* Merit-based fair exposure



Ethical considerations

 Safety and security concerns: exploration with constraints

* Regret constraint: conservative exploration [WSLS16, KGYR17]
» Side constraint: [AAT19, KB20]
* Will not cover the details due to time limit



Privacy concerns

* “A Face Is Exposed for AOL Searcher No. 4417749” [BZH06]

* “Robust De-anonymization of Large Datasets (How to Break Anonymity

of the Netflix Prize Dataset)” [NS08]

attacks

Tutorial “Differential Privacy for Information Retrieval” @ WSDM 2018

* In bandit learning: privacy for reward (and context) under extraction

[CKNFS11, Kor10]

* |ldea: exploration reconciles the need for learning and the need for

privacy protection L%—I

3 o e f - GOOD WILL BUNTING
¥ p N [
ﬁa,!i i N
=

Ti% Privacy-preserving action
Privacy <

Feedback 0

(o

-t

? =
ey

Adversary tries to extract
user’s reward from
recommendation sequence
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Differential privacy [Dwo0O6]

* A randomized mechanism A: X — Y is (¢, 0)-differentially private if
for all neighboring inputs X' and for all sets of outputs O € Y,

P(A(X) e O) <eP(AX")eO)+9
e 0 =0:€e-DP
* Intuition: cannot differentiate whether a data point is presented

real- vvorld analysis / output
computation computation \

“difference” at most €

. / Figure from [Ngul9]
X’s opt-out :
. analysis/
scenario computation
Privacy 123




P N
/QY‘LRSI)\
AN
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;_\ )
Wats \(/
RGN

Differential privacy for continual observations

* Data stream has T examples, ; € [0, 1]
* Goal: Privately output the sum of first k data ay, k € [1..T]
» Aggregate k data by tree representation a;.. b;

 Output private statistics of ), Xa;.b;

2

Reward 7, Private output



Tree-based aggregation [CSS10, DNPR10]

* Represent sumof ytor, asaqy 4 + as ¢ + a5
* Separate into log(T) partial sums

Sumofr; tor,
with Lap (lofT)

[5.8]

[3.4] [5.6]

— : " . . Alog T
* Every node is a private partial sum with noise Lap( Zg ) ; lOEgT-DP

* By composition theorem the total sum is e-DP

I(Dggl.Eiczv:)

* Noise (error) in private sum is bounded by O ( -
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Differentially private UCB1 [MT15]

N,
 |dea: keep the averaged reward 7. = — Zra - private

* Post-processing invariant T \1
* Use tree-based aggregation, add noise to » r..- for private 7
* Arm selection strategy: . 11.5 i

arg max 7o+ CB(a,t) + O(1 e 61\0'/ )

e Additional confldence term for exploration in private setting

klog® T W%

EA)

* Regret: O(

recommendation

Privacy @ 126



Differentially private LinUCB

* Privacy for reward [NR18]
* Use tree-based aggregation, add noise to b;

. Closed form estimator of LinUCB
. L]
Arm selection strategy: A=A+ Y0 o o, XX

a;“*a;
lOg ]\(1.[ lOg 5 by = Z(ai,ri)E’Ht Ta; Xa;

0 ) A
€ 0, = At_lbt

argmax 7y, , + CB(a,t) + O(

* Regret: o (K\/TlogT+ VT log T)

€

Red terms are due to privacy mechanism
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Differentially private LinUCB

e Privacy for both context and reward [SS18]

* Use tree-based aggregation, add noise
to At and bt Closed form estimator of LinUCB

At — )\I + Z(ai,ri)EHt XG’IXZLI_Z
by = Z(ai,m)é’ﬂt Fa;Xa;
0, = A, 'b,

* Arm selection strategy: arg max ’fa,t =+ CBP(G« f)

a
logT/dlog + /e
* Regret: 0(1OiT+ \/A SR

* Also showed a matched gap-dependent lower

bound

e Constructing the lower bound based on definition of
privacy for context

Privacy 128



Local differential privacy

 DP: user sent data to central server, and server adds noise to the
aggregated result

* Concerns: Data communication or even the center can be compromised
e LDP: Data is randomized on the user side before sent to aggregator

* LDP is a stronger privacy definition
* Larger cost / regret is expected

— 12

Private Private
reward rip recommendation
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UCB with local differential privacy

e LDP-UCB-Laplace [RZLS20] 1
* User sends noisy feedback r,; + Lap <> to the server

€
* Arm selection strategy:

‘a.t

32log T
argmax 7, , + CB(a,t) + O <\/ i ;),b >
a ' €= 1V

* Added confidence term for exploration in private setting

* Regret: O <klogT>

AN
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Private Collaborative Bandits [WZWCKW20]

* Main idea: add Laplace noise Lap AIZgT> to the
reward during model estimation;

* Scale the noise based on sensitivity A and privacy
budget €

* Collaborative learning: calibrate sensitivity with
respect to the user dependency structure W

* A = max2||Will
1

* Vanilla (independent users) setting assumes rewards in
[-1, 1], s0 A = 2

Privacy
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Fairness concerns

* Algorithmic bias —an important topic

* Research of bias in data, model, algorithm etc. —
* E.g., discriminatory treatment of subpopulations

* The need to explore

* Fairness guarantee during online decision making
* Fair recommendation / fair LTR

* Many literatures in offline learning setting

 Check “Tutorial on Fairness of Machine Learning in
Recommender Systems” @ SIGIR 2021

Fairness 132


https://fairness-tutorial.github.io/

Weakly meritocratic fairness [JKMNR16]

* Fairness definition: if reward 7, > r; then P(a) > P(b)
* A fair bandits should never favor a worse arm at any round

* Prefect strategy is fair: P(a*) =1 -- but we don’t which armis

perfect at the beginning

1

* Uniformly random is fair: P(a) = E’Va -- linear regret

e Somewhere in between?

Reward
*
|

Fairness afl a/2 CLK
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FairUCB [JKMR16]

* |dea: uniformly pull arm within the first confidence interval chain
 Start from the largest UCB, find overlapped confidence intervals

e Guaranteed fairness at every step with high probability
* Regret: r(1)=0 (\/k:3T1n %)

Reward
I

l

I

Fairness azl a/K 134



Merit-based fair exposure

* Fairness definition: given merit function f

P(a) _ f(r})
P(b) ~ f(r})

* Intuition: exposure should be proportional to the merit

* Compare with previous fairness definition: prefect strategy with P(a™) =1
is no longer fair

Fairness 135



FairX-UCB [WBSJ21]

* |dea: pull arm proportional to the merit f(#,)

* 7 is an optimism reward prediction satisfying fairness constraint

r = ar mxzaf(ra)ra =4r:r T — a),r a
P = argmax ST € = {1 € [f — CB(a),fu + CB(a)])

Reward
|
|

Fairness azl a/K 136



FairCo [MSHJ20]

* Controlling Fairness and Bias in Dynamic Learning-to-Rank

* Divide documents into groups {G;}
* Group fairness / individual fairness

* Exposure: > aec, pe(d)
E(G;) = :
* Averaged examination probability
* Merit function: G > e (d)
Z G|

* Averaged relevance

* Fairness: exposure should be proportional to the merit — L —
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FairCo [MSHJ20]

* Fairness: exposure should be proportional to the merit

* |dea: fairness constraints as an added error term
* Ranking list o = argsort(7(d|query) + Aerrp(d))
d
* Error term is the exposure-based fairness disparity between
two groups

% Zt Et(Gi) % Zt Et(Gj)

f(G;) f(Gy)

Fairness 138



Marginal fairness [YA21]

* Fairness in top-k settings
* Proportional is not enough

* FairExposure@k

» pe(d
. BJ(G;) = ZdeGiT(d;r pt(d)

1 k(L 1 k(Y.
* UnfairnessQk = ZZ I %t(gt')(GZ) _ T %t(gt')(Gﬂ)
— = ; ;

v J

* |[dea: minimize the marginal unfairness between
Unfairness@(k — 1) — Unfairness@¥k

Fairness 139



Open guestions

* Regret Lower Bound for bandits with privacy guarantee
e What is the minimum noise and regret to achieve e-DP/LDP?

 Calibrate privacy and fairness with problem-dependent structure

e Collaborative Bandits
e Low-rank structure
* Non-stationary environment

e Other fairness definition



References VIII

[BZHO6] Barbaro, M., Zeller, T., & Hansell, S. (2006). A face is exposed for AOL searcher no. 4417749. New York Times, 9(2008), 8.

[NSO8] Narayanan, A., & Shmatikov, V. (2008, May). Robust de-anonymization of large sparse datasets. In 2008 IEEE Symposium on Security and
Privacy (sp 2008) (pp. 111-125). IEEE.

[Kor’10] Korolova, A. (2010, December). Privacy violations using microtargeted ads: A case study. In 2010 IEEE International Conference on
Data Mining Workshops (pp. 474-482). IEEE.

[CKNFS’11] Calandrino, J. A,, Kilzer, A., Narayanan, A., Felten, E. W., & Shmatikov, V. (2011, May). " You might also like:" Privacy risks of
collaborative filtering. In 2011 IEEE symposium on security and privacy (pp. 231-246). |IEEE.

[Dwo06] Dwork, C. (2006, July). Differential privacy. In Proceedings of the 33rd international conference on Automata, Languages and
Programming-Volume Part Il (pp. 1-12). Springer-Verlag.

[Ngu19] Nguyen, A (2019). Understanding Differential Privacy.Towards Data Science. towardsdatascience.com/understanding-differential-
privacy-85cel191e198a.

[CSS10] Chan, T. H., Shi, E., & Song, D. (2010, July). Private and continual release of statistics. In International Colloquium on Automata,
Languages, and Programming (pp. 405-417). Springer, Berlin, Heidelberg.

[DNPR10] Dwork, C., Naor, M., Pitassi, T., & Rothblum, G. N. (2010, June). Differential privacy under continual observation. In Proceedings of
the forty-second ACM symposium on Theory of computing (pp. 715-724).

[MT15] Mishra, N., & Thakurta, A. (2015, July). (Nearly) optimal differentially private stochastic multi-arm bandits. In Proceedings of the Thirty-
First Conference on Uncertainty in Artificial Intelligence (pp. 592-601).

[TD16] Tossou, A. C., & Dimitrakakis, C. (2016, March). Algorithms for differentially private multi-armed bandits. In Thirtieth AAAI Conference
on Artificial Intelligence.

[SS18] Shariff, R., & Sheffet, O. (2018). Differentially private contextual linear bandits. In Advances in Neural Information Processing Systems
(pp. 4296-4306).

[NR18] Neel, S., & Roth, A. (2018, July). Mitigating Bias in Adaptive Data Gathering via Differential Privacy. In International Conference on
Machine Learning (pp. 3720-3729).



References IX

[RZLS20] Ren, W., Zhou, X., Liu, J., & Shroff, N. B. (2020). Multi-Armed Bandits with Local Differential Privacy. arXiv preprint arXiv:2007.03121.

[WZWCKW?20] Wang, H., Zhao, Q., Wu, Q., Chopra, S., Khaitan, A., & Wang, H. (2020, September). Global and Local Differential Privacy for
Collaborative Bandits. In Fourteenth ACM Conference on Recommender Systems (pp. 150-159).

[JKMR16] Joseph, M., Kearns, M., Morgenstern, J. H., & Roth, A. (2016). Fairness in learning: Classic and contextual bandits. In Advances in
Neural Information Processing Systems (pp. 325-333).

[JKMNR16] Joseph, M., Kearns, M., Morgenstern, J., Neel, S., & Roth, A. (2016). Fair algorithms for infinite and contextual bandits. arXiv
preprint arXiv:1610.09559.

[WSLS16] Wu, Y., Shariff, R., Lattimore, T., & Szepesvari, C. (2016, June). Conservative bandits. In International Conference on Machine Learning
(pp. 1254-1262).

[KGYR17] Kazerouni, A., Ghavamzadeh, M., Yadkori, Y. A., & Van Roy, B. (2017). Conservative contextual linear bandits. In Advances in Neural
Information Processing Systems (pp. 3910-3919).

[AAT19] Amani, S., Alizadeh, M., & Thrampoulidis, C. (2019). Linear stochastic bandits under safety constraints. In Advances in Neural
Information Processing Systems (pp. 9256-9266).

[KB20] Khezeli, K., & Bitar, E. (2020). Safe Linear Stochastic Bandits. In AAAI (pp. 10202-10209).

[MSHJ20] Morik, M., Singh, A., Hong, J., & Joachims, T. (2020, July). Controlling fairness and bias in dynamic learning-to-rank.In SIGIR 2020 (pp.
429-438).

[WBSJ21] Wang, L., Bai, Y., Sun, W., & Joachims, T. (2021). Fairness of Exposure in Stochastic Bandits. arXiv preprint arXiv:2103.02735.

[YA21] Yang, T., & Ai, Q. (2021, April). Maximizing Marginal Fairness for Dynamic Learning to Rank. In Proceedings of the Web Conference 2021
(pp. 137-145).



Outline of this tutorial

e Conclusion & future directions

143



Conclusions

* Interactive information retrieval with bandit fee
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Conclusions

* Interactive information retrieval with bandit feedback

Exploitation Exploration
Present the best results - t » Present currently underestimated
estimated so far to satisfy users o" results to best improve the ranker

Interactive IR System
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Conclusions

* Key problems
e Reward estimation
e Arm selection

Reward

:_E['ra,t] = fo (Xal!

e

Convergence matters!

Conclusions
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Future research directions

* Going beyond linear models
* How about deep models?

Reward

I = fol Xa)l

__T__

Convergence matters!

Some preliminary studies exist:
[ZLG19, AFB14]

Complex models
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Future research directions

* Online deployment
* Policy update driven by every interaction in real-time

Action

iat ~ mg(a At,Ht—ﬂ]

Reward

I = fol Xa)l

__T__

Convergence matters!

\ 4

Exploration matters!

Some recent work: [WHCW19,
KSL16, MWLS20]
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Future research directions

* Learning under adversarial contexts
* Privacy breach under extraction attacks
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Exploration reconciles the need for learning
and the need for privacy protection
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Future research directions

* Learning under adversarial contexts
* Robustness under poisoning attacks

[ ‘ Action Action d J
4

o ——) m—— ‘.
a Feedback Feedback

Randomness in exploration hardens the model
against adversary; dependence structure among
users improves privacy utility trade-off.
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Future research directions

* Incentivize the exploration
* No regret under information gap

Latent factors Semantic features
7 ’l'
‘ [ ] % {Romance, Wmeron}
1:% oo w : Explanations?
| | ﬁ {Drama, Damon} w \
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Future research directions

e System learning in accordance with user learning

e User is not omniscient, but also learns from interactions with the
system

Incentivized Learning 152
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Back-up slides

* Simulation-based evaluation
e Simulate the non-stationary environment
* Semi-simulation-based evaluation
* Real-world datasets (that do not have non-stationarity)
+ simulated changes
e Evaluation on real-world datasets
* On real-world datasets that have non-stationarity
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Empirical evaluations

* Yahoo! Today Module
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Empirical evaluations

e LastFM dataset

e Simulate a non-stationary environment by attaching
different users’ observations|]
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Change Points

Non-stationary environments
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Empirical evaluations
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Empirical evaluations
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