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Information retrieval is everywhere
• A predominant interface between users and massive amount of information 

indexed in modern online systems

Listen to music and podcastsCheck media feeds Attend to emails Find a restaurant

Apply for jobs Take coursesSearch online

Online shopping
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Goal of information retrieval

• Satisfy users’ information need

Motivation 4



Result ranking is essential
• Probability ranking principle [Rob77] – a theoretical justification
• The overall utility of the system to its users is maximized when the results 

are ranked in a descending order of usefulness to the users

• Sequential examination
• Independent relevance evaluation
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How do we estimate utility?

• Classical IR methods
• Document retrieval
• BM25, language models, page rank

• Recommendation
• Content-based recommendation, collaborative filtering

• Unsupervised, and rely on empirical parameter tuning 
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How do we estimate utility?

• Learning-based methods
• Document retrieval
• Learning to rank

• Recommendation
• Latent factor models, neural network models

• Supervised, hungry for labeled training data!
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Learning from users’ implicit feedback

• User behavior oriented result feedback
• Low cost
• Large scale
• Natural usage context and utility
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Interactive information retrieval

• Learning by interacting with users
• Eliminates offline methods’ heavy dependency on manual 

relevance annotations
• NOT simply update an offline model online
• Various types of biases in users’ feedback

Motivation 9
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Limitations in users’ implicit feedback

• In a recommender system
• Presentation bias

Challenges 10

Horror Romance Drama

Matthew effect: we still don’t 
know what we don’t know!

Figure credit: Schnabel et al. 2016 [SSSCJ16]



Limitations in users’ implicit feedback

• In a retrieval system
• Presentation bias
• Position bias 
• Trust bias

Challenges 11Figure credit: Baeza-Yates 2018 [Bae18]



Interactive information retrieval

• Learning by interacting with users
• Eliminates offline methods’ heavy dependency on manual 

relevance annotations
• NOT simply update an offline model online
• Various types of biases in users’ feedback
• Learning while serving the users

Interactive IR System

Exploitation

Present the best results 
estimated so far to satisfy users

Exploration
Present currently underestimated 
results to best improve the ranker

Motivation 12



Efficient exploration is crucial

• Huge search space
• Exploration is costly

Challenges 13



Efficient exploration is crucial

• One only gets answers to the questions she asked
• Bandit feedback

Challenges 14

Horror Romance Drama



Efficient exploration is crucial

• The problem space can be structured
• The observations might not be independent

Challenges 15

Horror Romance Drama

Figure credit: Schnabel et al. 2016 [SSSCJ16]

Social influence?

Clustered, correlated responses? 



Efficient exploration is crucial

• The problem space is evolving over time
• Any real-world environment is non-stationary
• Recognize outdated model is important

Challenges 16
Figure credit: Leskovec et al. 2016 [LBK09]



Exploration also induces risks

• There are also privacy, fairness, and ethic concerns in exploration

Challenges 17



Outline of this tutorial

•Motivation
• Background: bandit algorithms
• Bandit learning for recommender systems
• Bandit learning for retrieval systems
• Ethical considerations in IR with bandit learning
• Conclusion & future directions
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Problem formulation

• (stochastic) Multi-arm bandit

Problem formulation 19

…

…

Goal: maximize the accumulated 
reward over T rounds

History

Agent/learner/
policy

Reward

Reward 
distribution

Actions

Map it to an IR problem (e.g., recommender systems):
• Environment: a user or users
• Agent: recommendation algorithm
• Actions/arms: recommendation candidates
• Reward: click, purchase



Problem formulation

• (stochastic) Multi-arm bandit

Problem formulation 20

…

…

Goal: maximize the accumulated 
reward over T rounds

History

Agent/learner/
policy

Reward

Time

Re
gr

et

Sub-linear regret is preferred!

Lower regret bound [LR85]:

Difficulty of the problem

Finite variance is required!

Reward 
distribution

(Pseudo) Regret: expected loss 
due to not playing the best arm 

Lower regret bound [Aue95]:

Actions



Problem formulation

• Contextual/structured bandit

Problem formulation 21

…

…

Goal: maximize the accumulated 
reward over T rounds

Actions

Reward 
distribution

History

Agent/learner/
policy

Reward

In linear contextual bandit [LCLS10], 

(Pseudo) Regret: expected loss 
due to not playing the best arm 

Lower regret bound in linear contextual bandit [CLRS11]:



Problem formulation

• Reinforcement learning [SB18]

Problem formulation 22

Out of scope of this tutorial

ActionRewardState



Problem formulation

• Key problems
• Reward estimation
• Arm selection

Problem formulation 23

ActionReward

Convergence matters! Exploration matters!
1. Multi-arm bandit:

2. Contextual bandit:

In linear contextual bandit [LCLS10], 

Ridge regression, closed form solution exists!

1. Adaptive v.s., non-adaptive
2. Independent v.s., collaborative
3. Unconstrained v.s., constrainedLoss function  Regularization



Problem formulation

•Map to IR problems
• Reward estimation
• Document retrieval: document relevance under a given query
• Recommendation: item utility for a given user

• Arm selection
• Document retrieval: ranked list of documents (i.e., top-k ranking)
• Recommendation: the item of choice (i.e., top-1 ranking)

Problem formulation 24



Classical bandit learning algorithms

• Random exploration
• Optimism in the face of uncertainty
• Posterior sampling

Classical strategies 25



Random exploration

• !-greedy [Aue02]

Classical strategies 26

Constant      leads to linear regret!

Arm selection

By setting                                                         , we 

have

Lower regret bound of MAB:

Non-adaptive; often leads to sub-
optimal performance in practice.

Reward estimation in MAB:



Optimism in the face of uncertainty

• UCB1 [Aue02]
• Upper confidence bound based

Classical strategies 27
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Chernoff-Hoeffding boundLower regret bound of MAB:



Optimism in the face of uncertainty

• LinUCB [LCLS10]
• Upper confidence bound based

Classical strategies 28
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Closed form estimator

In linear contextual bandit, 

Encourage underestimated arms

Lower regret bound in linear contextual bandit 
[CLRS11]:

Confidence ellipsoid



Optimism in the face of uncertainty

• GLM-UCB [FCGS10]
• A generalized linear model

Classical strategies 29

…
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In linear contextual bandit [LCLS10], 

Encourage underestimated arms

In generalized linear bandit, 

Link function, e.g., 

No closed form solution for 
Using gradient descent to solve

where

Confidence ellipsoid



Posterior sampling

• Thompson sampling [AG13]

Classical strategies 30

Re
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In linear contextual bandit [LCLS10], 

prior

A Bayesian perspective of 
reward estimation:

Analytic form of posterior
Prior:

Predictive distribution:

related to prior

…

Source of uncertainty



Posterior sampling

• Thompson sampling [RVKOW18]
• No analytic posterior?
• Approximate posterior inference!
• Gibbs sampling
• Particle sampling
• Laplace approximation
• Bootstrapping

Classical strategies 31

No formal regret known yet; and some 
analysis from Bayesian regret perspective
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Real-world challenges: recap
• Huge exploration space, but the problem space has structure
• User’s preference can be non-stationary

35

Horror Romance Drama

Figure credit: Schnabel et al. 2016 [SSSCJ16]

Social influence?

Clustered, correlated responses? 
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Bandit learning for recommender systems

• Contextual bandits for recommendation
• Collaborative bandit learning
• Learning in a non-stationary environment

36Outline



Contextual bandits for recommendation

• Linear bandit formulation:
• User has an unknown preference !
• Each item " is represented by vector x$
• Linear reward assumption:

• Classical method: LinUCB [LCLS10]
• Recap: optimism in the face of uncertainty

• Non-linear reward function
• Logistic reward [FCGS10]
• Neural network [ZLG20]

Classical algorithms



Bandit learning for recommender systems

• Contextual bandits for recommendation
• Collaborative bandit learning
• With user-dependency structure
• Online user / item clustering
• Matrix factorization for low-rank structure
• Warm-start exploration

• Learning in a non-stationary environment

38Outline



Collaborative bandit learning 

• Multi-agent linear bandits: ! users, each user has 
his/her own "
• Build independent LinUCB for each user?
• Cold start challenge
• Users are not independent

• Leverage user dependency for efficient exploration
• Use existing user dependency information
• Discover dependency online (via clustering)

39Collaborative learning



Collaborative bandit learning 

• GOBLin [CGZ13]
• Connected users are assumed to share 

similar model parameters
• Graph Laplacian based regularization upon 

ridge regression to model dependency

40

Graph ! is input. 
Regularization term:

Collaborative learning



Collaborative bandit learning 

• GOBLin [CGZ13]
• Graph Laplacian based regularization upon 

ridge regression to model dependency
• Encode graph Laplacian in context, 

formulate as a dN-dimensional LinUCB

41

Graph Laplacian

Closed form estimator

Collaborative learning

Regret for empty graph: 
Regret for complete graph:



Regret for empty graph (! = #): 
Regret for ! = $:

Collaborative bandit learning 

• CoLin [WWGW16]
• Social influence among users: content and opinion 

sharing in social network W
• Reward: weighted average of expected reward 

among friends
• A dN-dimensional LinUCB 

42

0.6 0.1 0.2 0.0
0.0 0.7 0.0 0.0
0.0 0.1 0.8 0.5
0.4 0.1 0.0 0.5

in which

When ! is uniform, i.e, all users are
uniformly connected to share:

Collaborative learning

Closed form estimator



Online Clustering

• Discover user dependency structure on 
the fly
• CLUB[GLZ14]
• Adaptively cluster users into groups by 

keep removing edges
• Threshold to remove edges is based on 

closeness of the users’ models
• Build LinUCB on each cluster

• Regret:                    . Reduce regret from 
n (users) to m (clusters)

43

Remove edge if

Closed form estimator

Collaborative learning



Online Clustering

• COFIBA [LKG16]: 
• Collaborative filtering via user clustering & 

item clustering
• Each item cluster is associated with its own 

user clustering
• To remove an edge in user cluster: same as 

CLUB
• To remove an edge in item cluster: for the 

two items, user ! forms different
neighboring user set {#} based on

44Collaborative learning



Online Clustering

• CAB [GLKKZE17]: 
• Context-dependent clustering
• For current user ! , find neighboring user 

set {#} for every candidate item %&
• Then aggregate the history rewards / 

predictions within the user cluster.

45Collaborative learning



Low rank structures

• Particle Thompson Sampling (PTS) [KBKTC15]

• Probabilistic Matrix Factorization framework

• Particle filtering for online Bayesian parameter 

estimation

• Thompson Sampling for exploration

46

0.6 ? 0.2 ?

0.5 0.7 ? 0.1

? 0.1 ? ?

? 0.1 ? 0.5

Generative Model

Collaborative learning



Low rank structures

• Hidden LinUCB [WWW16]

• Matrix Factorization 

framework: user & item factors

• Alternating Least Squares for 

optimization

• Exploration considers 

uncertainty from two factors

47

Hidden feature (of an item): known to the environment,

but unknown to the learner

Source of uncertainty in confidence bound estimation

Uncertainty of hidden feature !"
estimation 

Uncertainty of user preference #$ estimation

Collaborative learning



Low rank structures

• Projected Stochastic Linear Bandit [LAAH19]

• Assume item features {"# ∈ %&} is rank-( (( ≪ *)

• Idea: run PCA on all item features

• Construct projection matrix + with first k eigenvectors.

• Reward estimation: +"# , -.

Collaborative learning



Warm-start exploration

• Have some offline data {(#, %)} before the bandits start.
• E.g., from human annotations 

• Leverage historical data to warm start model, reduce the need of 
exploration
• Key challenge: historical data could come from different distribution
• Historical data generated by () while environment follows (∗

49Collaborative learning



Warm-start exploration

• Leverage historical data to warm start model, reduce the need of 
exploration

• Adaptive Reweighting (ARROW-CB) [ZADLN19]
• Based on !-greedy algorithm
• Reweight historical data based on bandits’ observation

• " on historical data, 1 − " on bandits’ observation

• Online model selection to pick the weight "
• Pre-defined Λ (hyperparameter, set to 8 in the paper) candidates

• Regret reduction when historical data and environment have similar
distribution

50Collaborative learning



Open questions

•What is the problem-related (structure-related) regret lower 
bound
• E.g., user dependency structure, low rank, offline data
• Did current algorithms fully utilize the information in problem 

structure?
• Efficient exploration for other structures in real-world 

problem
• E.g., sparse structure, ranking structure, etc.

51Complicated environments



Bandit learning for recommender systems

• Contextual bandits for recommendation
• Collaborative bandit learning
• Learning in a non-stationary environment
• Passively adaptive approaches
• Actively adaptive approaches
• Unifying clustering and non-stationarity detection

52Outline



Exploration in non-stationary environments
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Exploitation + Exploration

Reward

Action
• Stationary assumption is

commonly used

• The learner is usually facing a non-
stationary environmentL
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Non-stationary environments



Problem formulation

54

• (stochastic) Multi-arm bandit
…

…Actions

Reward 
distribution

Agent/learner/
policy

Reward

History is no longer helpful and may even be
misleading in the player’s decision-making

Time

Re
gr

et J
L

…Non-stationary

I need to be adaptive about
potential changes in the

environment

Real-time click-through-rate of 4 news articles 
collected from Yahoo user click log dataset 

Non-stationary environments



Problem formulation
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• Different types of non-stationary environments
• Piecewise stationary environments
• Gradually changing environments

Time
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Main focus of this tutorial More difficult and less studied.

Non-stationary environments



Problem to solve
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• Changes (when and how) are unknown to the learner
(otherwise we can just restart the learner)

• Online learning setting and bandit feedback: incomplete knowledge
(change detection in the offline batch setting has been extensively
studied in statistics and control theory [BN93] )

Non-stationary environments



Approaches

57

• Passively adaptive approaches

• Actively adaptive approaches

• Key idea: design a proper mechanism to forget old observations
• Assumption: old observations are less relevant

• Key idea: actively detect potential changes in the environment
during online decision making

• Assumption: abrupt changes, i.e., piece-wise stationary environment

Non-stationary environments



Passively adaptive approaches
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• Discounted UCB and Sliding window UCB [GM08]

• Weighted linear bandit [RVC19]
• Discounted-UCB in the linear contextual bandit setting

Discount the old observations

Only utilize the most
recent ! observations

Non-stationary environments



Passively adaptive approaches
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• Pros
• Simple: easy to implement and have almost no computation overhead
• Have provable theoretical guarantee in piece-wise non-stationary

environment and environments with slow changes

• Cons
• Passive: always assuming old observations are less relevant
• Not practical: very sensitive to hyper-parameters discount factor, 

sliding-window size

Non-stationary environments



Actively adaptive approaches
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• General framework

Statistics about the stationarity of the environment

Non-stationary environments



Non-stationarity detection with bandit
feedback

61

• Cumulative sum control chart (CUSUM) based detection
• AdTS [HMB15], CD-UCB [LLS18]

• Confidence bound based detection
• dLinUCB [WIW18], DenBand [WWLW19]

• Generalized likelihood ratio test
• GLR-kl-UCB [BK19]

• Other
• Ada-ILTCB, Ada-greedy [LWAL18], Ada-ILTCB[+] [CLLW19]

Non-stationary environments

• Online reward mean-shift detection
• WMD-UCB1 [YM09], M-UCB [CWKX19]

…



CUSUM-based online change detection

• CUSUM in the offline setting

62

Cumulative sum of log-likelihood ratio 
before and after change points: 

0

Observed reward

Non-stationary environments



CUSUM-based online change detection

• Tailored CUSUM in the Bernoulli bandit setting

63

• Intuition:                                
• CUSUM in CD-UCB [LLS18]

has negative mean drift before the change point and 
positive after the change point     

Requirement on the 
minimum magnitude of 
changes on the reward  

• Assumptions:
• Piecewise stationary with detectability 

assumption
• Bernoulli bandit

Each arm needs to have 
at least M observations

Detection threshold

• Local restart: restart the related 
statistics for the changed arms

Non-stationary environments



Generalized likelihood ratio test based 
online change detection

64

• CUSUM requires the pre-change and post-change environment 
parameters to be known to get the log-likelihood.

• Unknown pre-change and/or post-change parameters -> 
Generalized Likelihood Ratio Test (GLRT)
• GLRT with Bernoulli reward -> GLR-klUCB [BK19]
• GLRT can achieve asymptotically optimal detection delay 

with sub-Gaussian reward assumption [Mai19]

Non-stationary environments



Online mean-shift detection

•Monitored-UCB [CWKX19]

65

• Compare running sample means over a sliding window

>b

• Need to periodically perform uniform arm 
selection (uniform exploration)

to ensure sufficient data can be gathered for all arms to perform CD

• Arm selection between detected change points (except 
for the uniform exploration iterations): UCB1

• Global restart: once a change is detected, restart 
the related statistics for all the arms

Non-stationary environments
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• Utilizing the reward estimation confidence bound [WNW18, WWLW19]
• If the environment is stationary, the reward prediction residual should be

within a confidence bound with high probability,

Unexpected outcome is caused by, 
1) Something wrong in the observed

reward: large noise
2) Something wrong in the predicted

reward: the model is incorrect

We can bound this to further 
exclude this possibility!

Predicted reward of bandit model m

CB based online change detection

Observed reward Confidence bound of reward estimation 

Non-stationary environments
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• Prediction badness at interaction !:

• Badness of model m over a sliding time window:

Similar to the goodness of fit concept in chi-squared test

a sliding time window to collect
badness observations

CB based online change detection

• Good enough:• Bad enough:

Change detected.
(abandon learner m)

When no learner is good enough, 
will also report a change. 

(but do not abandon learner m)

• Detection threshold:

Non-stationary environments
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CB based online change detection

…

badness. badness. …

Reward estimation update

Badness estimation update

…

• Adaptively creates new learners
• Monitors the prediction quality of

each learner
• Selects a learner according to each 

learner’s ‘badness’

• dLinUCB [WNW18]

Non-stationary environments
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Detection of context-dependent changes

Change-sensitive arms

Change-invariant arms

Reuse the experiences learnt in old
models for change-invariant arms

Save unnecessarily exploration

Learner 1 Learner 2

… …

Reward estimation on
change-invariant arms

DenBand [WWLW19]

Time

Ex
pe

ct
ed

Re
w
ar
d

Non-stationary environments



Unifying clustering and change detection

• A clustered and non-stationary environment

!" !# !"$"," $",#

!#

!# !&$',"

user 1

user ()

user *

+", ,

+-., ,

+', ,

select /)
observe 0) ∼ *(/)3+-.,), 4#)

shared parameters 
!6 67"

8
9

Non-stationary environments 70



Unifying clustering and change detection

• Connection: both are testing homogeneity between data sequences
• More formally, given two data sequences:
• ℋ" = $%, '% %("

)* and ℋ+ = $,, ', ,("
)-

• ∀ $%, '% ∈ ℋ", '% ∼ 1($%34", 5+) and ∀ $,, ', ∈ ℋ+, ', ∼ 1($,34+, 5+)
• Decide whether 4" = 4+

• When data are from two user: clustering
• When data are from different periods of same user: change detection

Non-stationary environments 71



Dynamic Clustering (DyClu) [LWW21a]

!",$%"

!&',$%"

!(,$%"

Lower level:
maintain local user models

• observation history ℋ(,$%"
• sufficient statistics *(,$%", +(,$%"

Upper level:
aggregate observations in ,-&',$%"
• select .$ using aggregated model
replace outdated user models
• outdated model set /$%"
• up-to-date model set 0$%"
{(.$, 3$)}

/$%" 0$%"

,-&',$%"
cluster identification:
6(ℋ&',$%",ℋ7,$%")

change detection:
6(ℋ&',$%", {(8$, 3$)})

DyClu: one model per stationary period
Detect change; cluster individual bandit models; select arm

6() is the test statics 
of homogeneity

Non-stationary environments 72



CoDBand [LWW21b]

• Dirichlet Process (DP) mixture of regression models
• !s are samples from infinite mixture model " with prior DP(&', "')
• The set of unique bandit parameters: *+ +,-

./01

• Indicator variable 23,4: !3,4 = *67,8

*- *9 *-:-,- :-,9

*9

*9 *;:<,-

user 1

user =>

user ?

!-, @

!3/, @

!<, @

shared parameters 
*+ +,-

.
A

“Chinese Restaurant Process”

*- *9

*; *B
!

Non-stationary environments

C 23/,> = D &', E>F- ∝ H
I+,>F- D ∈ [L>F-]
&' D ∉ [L>F-]

73



CoDBand [LWW21b]

• CoDBand: two-level Thompson sampling
• Arm selection: posterior sampling

• Sample "̃#$,& ∼ (("#$,&|+,, -&./, 0&./
#$ )

• Sample 23#$,& ∼ 4(5678$,$,&./, Σ678$,$,&./)
• Select arm :& = argmax

A∈C$
:D 23#$,&, observe E&

• Model update
• Update global model 4(5678$,$,&./, Σ678$,$,&./) with (:&, E&)

• Update dataset 0&
#$ = 0&./

#$ ∪ {(:&, E&)}

• If change is detected: Reset 0&I = ∅

Non-stationary environments

4(5/,&./, Σ/,&./) 4(5K,&./, ΣK,&./)

4(5L,&./, ΣL,&./) 4(0, N./O)

Globally-shared bandit models0&.//

0&./K

0&./L

0&./P
create a new 
global model

CoDBand: one model per unique parameter
Detect change; select global bandit model; select arm 74



Open questions

75

• Can we re-use related historical observations (e.g., recurring 
environment, or context-dependent changes) and what’s the 
benefit of it?

• How to handle gradually changing environment?

Non-stationary environments



References III
[FCGS10] Filippi, S., Cappe, O., Garivier, A., & Szepesvári, C. (2010, December). Parametric Bandits: The Generalized Linear Case. In 
NIPS (Vol. 23, pp. 586-594).

[ZLG20] Zhou, D., Li, L., & Gu, Q. (2020, November). Neural contextual bandits with UCB-based exploration. In International 
Conference on Machine Learning (pp. 11492-11502). PMLR.

[CGZ13] Cesa-Bianchi, N., Gentile, C., & Zappella, G. (2013). A gang of bandits. In Advances in Neural Information Processing Systems 
(pp. 737-745).

[WWGW16] Wu, Q., Wang, H., Gu, Q., & Wang, H. (2016, July). Contextual bandits in a collaborative environment. In Proceedings of
the 39th International ACM SIGIR conference on Research and Development in Information Retrieval (pp. 529-538).

[GLZ14] Gentile, C., Li, S., & Zappella, G. (2014, January). Online clustering of bandits. In International Conference on Machine 
Learning (pp. 757-765).

[GLKKZE17] Gentile, C., Li, S., Kar, P., Karatzoglou, A., Zappella, G., & Etrue, E. (2017, July). On context-dependent clustering of bandits. 
In International Conference on Machine Learning (pp. 1253-1262).

[LKG16] Li, S., Karatzoglou, A., & Gentile, C. (2016, July). Collaborative filtering bandits. In Proceedings of the 39th International ACM 
SIGIR conference on Research and Development in Information Retrieval (pp. 539-548).

[KBKTC15] Kawale, J., Bui, H. H., Kveton, B., Tran-Thanh, L., & Chawla, S. (2015). Efficient Thompson Sampling for Online Matrix-
Factorization Recommendation. In Advances in neural information processing systems (pp. 1297-1305).

[KKSVW17] Katariya, S., Kveton, B., Szepesvari, C., Vernade, C., & Wen, Z. (2017, April). Stochastic rank-1 bandits. In Artificial 
Intelligence and Statistics (pp. 392-401).

[WWW16] Wang, H., Wu, Q., & Wang, H. (2016, October). Learning hidden features for contextual bandits. In Proceedings of the 25th 
ACM International on Conference on Information and Knowledge Management (pp. 1633-1642).

76References



References IV
[ZADLN19] Zhang, C., Agarwal, A., Daumé III, H., Langford, J., & Negahban, S. N. (2019). Warm-starting 
contextual bandits: Robustly combining supervised and bandit feedback. arXiv preprint arXiv:1901.00301.

[LAAH19] Lale, S., Azizzadenesheli, K., Anandkumar, A., & Hassibi, B. (2019). Stochastic linear bandits with 
hidden low rank structure. arXiv preprint arXiv:1901.09490.

[BN93] Basseville, M., & Nikiforov, I. V. (1993). Detection of abrupt changes: theory and application (Vol. 104). 
Englewood Cliffs: prentice Hall.

[GM08] Garivier, A., & Moulines, E. (2008). On upper-confidence bound policies for non-stationary bandit 
problems. arXiv preprint arXiv:0805.3415.

[RVC19] Russac, Y., Vernade, C., & Cappé, O. (2019). Weighted linear bandits for non-stationary environments. 
In Advances in Neural Information Processing Systems (pp. 12040-12049).

[YM09] Yu, J. Y., & Mannor, S. (2009, June). Piecewise-stationary bandit problems with side observations. 
In Proceedings of the 26th annual international conference on machine learning (pp. 1177-1184).

[HMB15] Hariri, N., Mobasher, B., & Burke, R. (2015, June). Adapting to user preference changes in interactive 
recommendation. In Twenty-Fourth International Joint Conference on Artificial Intelligence.

[WNW18] Wu, Q., Iyer, N., & Wang, H. (2018, June). Learning contextual bandits in a non-stationary environment. 
In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (pp. 495-
504).
References 77



References V
[LWAL18] Luo, H., Wei, C. Y., Agarwal, A., & Langford, J. (2018, July). Efficient contextual bandits in non-stationary 
worlds. In Conference On Learning Theory (pp. 1739-1776).
[CWKX19] Cao, Y., Wen, Z., Kveton, B., & Xie, Y. (2019, April). Nearly optimal adaptive procedure with change 
detection for piecewise-stationary bandit. In The 22nd International Conference on Artificial Intelligence and 
Statistics (pp. 418-427).
[LLS18] Liu, Fang, Joohyun Lee, and Ness Shroff. “A change-detection based framework for piecewise-stationary 
multi-armed bandit problem.” Thirty-Second AAAI Conference on Artificial Intelligence. 2018. 
[WWLW19] Wu, Q., Wang, H., Li, Y., & Wang, H. (2019, May). Dynamic Ensemble of Contextual Bandits to Satisfy 
Users' Changing Interests. In The World Wide Web Conference (pp. 2080-2090).
[CLLW19] Chen, Y., Lee, C. W., Luo, H., & Wei, C. Y. (2019). A new algorithm for non-stationary contextual bandits: 
Efficient, optimal, and parameter-free. arXiv preprint arXiv:1902.00980.

[BK19] Besson, L., & Kaufmann, E. (2019). The generalized likelihood ratio test meets klucb: an improved algorithm 
for piece-wise non-stationary bandits. arXiv preprint arXiv:1902.01575.
[Mai19] Maillard, O. A. (2019). Sequential change-point detection: Laplace concentration of scan statistics and 
non-asymptotic delay bounds.
[LWW21a] Li, C., Wu, Q., & Wang, H. (2021, March). Unifying Clustered and Non-stationary Bandits. 
In International Conference on Artificial Intelligence and Statistics (pp. 1063-1071). PMLR.

[LWW21b] Li, C., Wu, Q., & Wang, H. (2021). When and Whom to Collaborate with in a Changing Environment: A 
Collaborative Dynamic Bandit Solution. In SIGIR 2021.
References 78



Outline of this tutorial

•Motivation
• Background: bandit algorithms
• Bandit learning for recommender systems
• Bandit learning for retrieval systems
• Ethical considerations in IR with bandit learning
• Conclusion & future directions
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Bandit learning for retrieval systems

• Why the bandit algorithms for recommendation systems do not apply? 

Recommender systems
§ Top-1 ranking

§ Treat each item as an arm
§ Linear exploration space

§ Presentation bias
§ No position bias, as the recommended 

item will always be examined

Retrieval systems
§ Top-K ranking

§ Treat each ranking as an arm?
§ Exponential exploration space

§ Presentation bias
§ Position bias due to users’ 

examination behavior on a ranked list
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Online learning to rank

• OL2R under specific click models
• Dueling bandit gradient descent
• Online pairwise methods
• OL2R vs. offline unbiased learning to rank
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OL2R under specific click models

• Assume users’ behavior follows some specific click models, e.g., 
cascade model, position-based model
• Deal with the exponential ranking space        document space

82OL2R under specific click models



Cascading bandits [KSWA15]

• Cascade model is a popular model of user behavior in web search
• A set of L documents 
• Attraction probabilities
• User sequentially scan a list of ! documents

User exits the system

There is at most one click

Document is not attractive 
with prob

User examine document User examine item
Attracted with  
prob

Click on document
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Cascading bandits

• One model for each query

• Interaction at time !:
• Environment draws attraction weights #$ for % candidates

• The model chooses an ordered list of & documents, 

• User clicks first attractive item in π(, )$
• Update the weights of all observed items according to the feedback

• Learning agent receives reward *(,$, #$)

• Goal: minimize the expected cumulative regret over / steps

• Compute UCB on the attraction probability of 

each document.

• Rank the documents according to UCB and 

return the top-K documents.

The probability that none of the K 

documents is attractive.

At least one document is attractive.
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DCM bandits [KKSW16] 

• Dependent click model (DCM)
• Extend from cascade model where user may click on multiple documents

• Attraction probability:
• termination probability: Position-dependent

unsatisfied with prob

Document is not attractive 
with prob

User examine document User examine item
Attracted with  
prob

Click on document User exits the system

satisfied with prob 85OL2R under specific click models



DCM bandits [KKSW16] 

• Dependent click model (DCM)
• Extend from cascade model where user may click on multiple documents

• Attraction probability:
• termination probability:

• The probability that at least one document in ! is satisfactory:

• At each step, select the list that maximizes

Position-dependent
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TopRank: OL2R by topological sort [LKLS18] 

• Observation: no single existing click model captures the behaviors of 
an entire population of users
• Motivation: to eliminate the dependency on click models, TopRank

assumes, 

• The click probability does not factor into the examination probability of the 
position and the attractiveness of the documents at that position

an unknown function

87OL2R under specific click models



TopRank: OL2R by topological sort

The difference of the feedback received 
by document ! and " at round #

The cumulative difference of the feedback 
received by document ! and " until #

Document pair (", !) is added to '( when 
item ! receives sufficiently more clicks than "
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TopRank: OL2R by topological sort

Ranking example

i.e., Sufficient observations are received that 
document 1 is better than document 3

One possible ranking: 2, 1, 3, 4, 5
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Mini summary

• Cascading bandits
• Assume user behavior follows cascade model: only one click
• Maximize the probability that at least one document is attractive

• DCM bandits
• Assume user behavior follows DCM model to allow multiple clicks
• Maximize the probability that at least one document is attractive

• TopRank
• No specific click model assumption
• Rank documents with topological sort with respect to the confidence of the 

preference between documents
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Dueling bandit gradient descent [YJ09] 

• DBGD is built on interleaving, an online evaluation method for rankings
• Infer preference between two ranking lists based on clicks on the interleaved 

ranking
• DBGD: online gradient descent based on the inferred preference between 

models           explore the model space
d1
d2
d3
d4

d1
d3
d2
d4

Ranking A

Ranking B

d1
d3
d2
d4

Interleaved ranking

Ranking A receives one click. 
Ranking B receives two clicks.

Winner!
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Dueling bandit gradient descent [YJ09] 

• Interleaving method offers a reliable mechanism for deriving relative 
preferences between retrieval functions

d1
d2
d3
d4

d1
d3
d2
d4

d1
d3
d2
d4

d1

d2
d4

d3

d1

d2
d4

d3
Dueling Bandit Gradient Descent
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Dueling bandit gradient descent [YJ09] 

• Unform exploration by random sampling: unbiased gradient estimation
• Perform online gradient descent in expectation
• DBGD has a sublinear regret upper bound:
• Regret: 

• ! is the number of feature dimensions, T is the number of interaction rounds
• " quantify the difference between two models

• Problems:
• One single direction is explored at a time
• #$ is uniformly sampled in the d-dimension feature space: 

high variance and slow convergence

d1

d2
d4

d3
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Multileave gradient descent [SOWR16] 

• Compared to DBGD, MGD explores multiple directions uniformly from 
parameter space simultaneously
• Reduce the updates

• Multileaved comparison among candidate rankers

d1
d2
d3
d4

d1
d3
d2
d4

d2
d1
d3
d4

d3
d1
d4
d2

d3
d1
d2
d4

Winners are
• Winner takes all: randomly choose 

one winner

• Mean winner: compute the mean of 
the winner
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Dual-Point DBGD [ZK16] 

• Dual-Point DBGD: explore two opposite directions simultaneously
• Explore more efficiently than DBGD
• Reduce uncertainty in the exploration with MGD

d1
d2
d3
d4

d1
d3
d2
d4

d2
d1
d3
d4

d2
d1
d3
d4

Update the model
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Null space gradient descent [WLKMW18]

• Intuition: avoid making similar mistakes again
• Null space exploration: 
• Maintain a collection of recently explored gradients that performed poorly
• Sample new directions from the null space of these gradients
• Avoid repeatedly exploring poorly performing directions

• Top K worst performing historical directions:
• At time !, sample "# from
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Null space gradient descent [WLKMW18]

• Intuition: avoid making similar mistakes again
• Context-dependent ranker preselection
• Construct the candidate ranker to maximize the chance that thy can be 

differentiated from the current ranker
• At time !, sample "#$ $%&

'
from 

• Select top ( directions that maximize |+̅,"#$| from "#$ $%&
'

d1
d2
d3
d4

d1
d2
d3
d4

• -# and -#& rank the candidate documents in the 
same order

• No interleaved test can differentiate the ranking 
quality for current query

• NSGD favors -#. as it ranks the documents in a 
different order than -#

d1
d3
d2
d4

d1

d2
d4

d3

97DBGD family



DBGD-document space projection [WKMWW19] 

• Observation: users only examine ! documents (! ≪ #)
• Intuition: only consider the gradient belongs to the document space

Figure credit: Baeza-Yates, 2018 [3]
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DBGD-document space projection [WKMWW19] 

• Observation: users only examine ! documents (! ≪ #)
• Intuition: only consider the gradient belongs to the document space

1000s 10s

d1
d3
d2
d4

d1
d3
d2
d4

Uniformly sampled!

Considerable regret reduction:
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Mini summary

• Explore in the entire model space
• DBGD: randomly sample one single direction
• MGD: randomly sample multiple directions
• DP-BGD: randomly sample two opposite directions
• NSGD: maintain a set of “bad” directions, and sample from the null space of them
• DBGD-DSP: project the gradient into document space and use it to update model

• DBGD and its extensions
• Explore in the entire model space
• High variance and slow convergence
• The assumption for theoretical analysis does not hold for all models

• There is a single optimal model
• The utility space is smooth 100Summary



PDGD [OR18]

• Pairwise differentiable gradient descent
• Optimize a Plackett Luce ranking model, which models a probabilistic 

distribution over documents
• Infer the preference between document pairs
• Intuition: provide an unbiased pairwise gradient to update the ranking model
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PDGD [OR18]

• At each time !
• Observe user query
• Sample a ranking from the document distribution:

• Present the ranking to the user
• Infer pairwise preference from user clicks

Biased!!
Some preferences are more likely to be 
observed due to position/selection bias.

d1
d2
d3
d4

"# receives click and "$
does not receive click.
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PDGD [OR18]

• At each time !
• Observe user query

• Sample a ranking from the document distribution:

• Present the ranking to the user

• Infer pairwise preference from user clicks

• Update model according to the estimated unbiased pairwise gradient:

d1

d2

d3

d4

Weighting function to deal 

with bias: the ratio between 

the probability of the ranking 

and the reversed pair ranking

The presented ranking

Compared to "#, $% and $&
are swapped.
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PairRank [JWGW21] 

Uncertain rank orders

1 2

3

4

5

5

Explore the uncertain rank orders
Exploit the certain rank orders

1

5

4

3

2

Document graph

• Online learning to rank by divide-and-conquer
• Key insights:
• A complete ranking can be decomposed into a series of pairwise comparisons
• Only explore the pairs the ranker is currently still uncertain about the order

• Divide-and-Conquer
• Reduce exponentially sized action space to quadratic
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Pairwise learning to rank

!"#$ : whether the document i is preferred over 
document j in the click feedback Sigmoid function to model the pairwise preference 

probability:% & = (
()*+,(.$)

0"#$ = 0"$ − 0#$: feature difference between 
document i and document j

Regularization term

• Learn a pairwise ranking model online
• Ranking model: a single layer RankNet[10] model with sigmoid 

activation function
• Loss function at time t:

Training data 
observed so far

105Pairwise OL2R



Pairwise estimation uncertainty

Estimated pairwise 
preference between i and j

Ground truth pairwise 
preference between i and j

Covariance matrix constructed with 
previous observations

• Pairwise feedback is noisy:
• Given the documents are examined, the click feedback is independent from 

each other

• Confidence interval of pairwise preference estimation
• At round t, with probability at least 1 − #$,
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• With high probability, the optimal value belongs to

Certain rank order & uncertain rank order

Estimated pairwise preference

0.5

1.0

document pair (i, j) document pair (i’, j’)

!(#$%&
'(&)

*+$%&

*+$%&
*+$,%,&

*+$,%,&

Lower confidence bound

!(#$,%,& '(&)

!(0)

Certain rank order:
true preference is consistent 
with the estimated 
preference: . ≻ 0.

estimated preference: 
.1 ≻ 01

true preference might 
be: 01 ≻ .1

Uncertain rank order:
true preference may present 
an opposite order from the 
estimated order.

Pairwise preference estimation Estimation uncertainty
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PairRank: explore via divide and conquer
1

5

4

3

2

Document graph

Constructed with the certain 
and uncertain rank orders 
between document pairs.

1

54

3

2

Uncertain order graph

Explore the uncertain rank 
orders: construct blocks with 
the connected components.

Block 1

Block 2

Topological sort between 
blocks: exploit the certain 
rank orders.

1

54

3

2

Block graph

Block 1

Block 2

Ranked list 
(possible one)

Randomly shuffle the order 
of documents within each 
block: explore the uncertain 
rank orders.

1

5

4

3

2
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Pairwise regret

• Pairwise regret for OL2R
• The cumulative number of mis-ordered pairs from the presented ranking to 

the ideal one, i.e., the Kendall tau rank distance

• Most ranking metrics deployed in real-world retrieval systems, such as ARP 
and NDCG, can be decomposed into pairwise comparisons

• Sublinear upper regret bound of PairRank:
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OL2R vs. offline unbiased L2R

• Goal: to find the best models that rank documents based on their utility
• Learn from user interactions, implicit feedback, e.g., clicks

110OL2R vs. Offline Unbiased L2R



OL2R vs. offline unbiased L2R

• OL2R
• Interactively optimize and update 

a ranking model after every 
interaction
• Combat bias by interventions, i.e., 

exploration
• User experience might be hurt due 

to exploration

• Offline unbiased L2R
• Learn a ranking model from a 

historical interaction log
• Remove data bias by re-weighting 

strategies
• There is no presentation bias
• Do not affect user experience but 

cannot explore and limited to 
rankings in the historical log
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OL2R vs. offline unbiased L2R

• To model or to intervene [JOR19] 
• Compare the counterfactual L2R and OL2R methods under different experimental 

conditions
• Performance of OL2R and counterfactual L2R depend on the presence of selection 

bias, the degree of position bias and interaction noise
• Counterfactual method performs best when there is litter bias or noise in the feedback
• OL2R methods are more robust to bias and noise, but they may hurt user experience

• Unbiased learning to rank: online or offline [AYWM21] 
• Are counterfactual L2R and OL2R are two sides of the same coin for unbiased L2R?
• Almost all unbiased L2R algorithms in offline learning can be directly applied to 

online learning
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Unifying online and counterfactual learning to 
rank [OR21]
• Intervention-aware estimator
• Bridge the online and counterfactual L2R divisions

• Key insights
• Use the offline policy-aware estimator to correct position bias, presentation 

bias and user trust bias
• Online intervention: take the entire collection of logging policies into 

consideration
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Unifying online and counterfactual learning to 
rank [OR21]
• Intervention-oblivious estimator
• Clicks follow an affine model, for item ! displayed at rank ":

• Conditioned on logging policy $, the click probability is:

• The estimator is based on the inverse:
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Unifying online and counterfactual learning to 
rank [OR21]
• Intervention-aware estimator
• Clicks follow an affine model, for item ! displayed at rank ":

• Conditioned on the set of logging policies $, the click probability is:

• The estimator is based on the inverse:
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Open questions

• How to balance the efficiency and effectiveness of OL2R? 
• Online stochastic gradient descent
• Perturbation-based/randomization-based exploration 
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Ethical considerations

• Privacy concerns
• Background: differential privacy (for continual release)
• Global and local differentially private bandit learning

• Fairness concerns
• Meritocratic fairness 
• Merit-based fair exposure

• Safety and security concerns
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Ethical considerations

• Privacy concerns

• Background: differential privacy (for continual release)

• Global and local differentially private bandit learning

• Fairness concerns

• Meritocratic fairness 

• Merit-based fair exposure

• Safety and security concerns: exploration with constraints 

• Regret constraint: conservative exploration [WSLS16, KGYR17] 

• Side constraint: [AAT19, KB20]

• Will not cover the details due to time limit
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Adversary tries to extract 
user’s reward from 
recommendation sequence

Privacy concerns

• “A Face Is Exposed for AOL Searcher No. 4417749” [BZH06]
• “Robust De-anonymization of Large Datasets (How to Break Anonymity 

of the Netflix Prize Dataset)” [NS08]
• Tutorial “Differential Privacy for Information Retrieval” @ WSDM 2018
• In bandit learning:  privacy for reward (and context) under extraction 

attacks
• Idea: exploration reconciles the need for learning and the need for 

privacy protection

122Privacy
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Differential privacy [Dwo06]

• A randomized mechanism !: # → % is (', ))-differentially private if 
for all neighboring inputs #′ and for all sets of outputs O ⊆ %, 

• ) = 0: '-DP

• Intuition: cannot differentiate whether a data point is presented

123
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Differential privacy for continual observations

• Data stream has T examples, !" ∈ [0, 1]
• Goal: Privately output the sum of first k data )*, + ∈ [1. . -]
• Aggregate k data by tree representation .". . /"
• Output private statistics of ∑)12..32

124Privacy
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Tree-based aggregation [CSS10, DNPR10]

• Represent sum of !"to !# as $"..& + $(..) + $#
• Separate into log(.) partial sums

• Every node is a private partial sum with noise                        : 0
1234-DP

• By composition theorem the total sum is 5-DP
• Noise (error) in private sum is bounded by

Sum of !" to !&
with 678 1234

0
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Differentially private UCB1 [MT15]

• Idea: keep the averaged reward                             private
• Post-processing invariant

• Use tree-based aggregation, add noise to            for private 
• Arm selection strategy: 

• Additional confidence term for exploration in private setting

• Regret:

126Privacy
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Differentially private LinUCB

• Privacy for reward [NR18]
• Use tree-based aggregation, add noise to !"
• Arm selection strategy:

• Regret:

127
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Differentially private LinUCB

• Privacy for both context and reward [SS18]
• Use tree-based aggregation, add noise 

to !" and #"
• Arm selection strategy: 

• Regret: 
• Also showed a matched gap-dependent lower 

bound
• Constructing the lower bound based on definition of 

privacy for context
128
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Local differential privacy

• DP: user sent data to central server, and server adds noise to the 
aggregated result
• Concerns: Data communication or even the center can be compromised

• LDP: Data is randomized on the user side before sent to aggregator
• LDP is a stronger privacy definition
• Larger cost / regret is expected

129Privacy
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UCB with local differential privacy

• LDP-UCB-Laplace [RZLS20]
• User sends noisy feedback                            to the server

• Arm selection strategy:

• Added confidence term for exploration in private setting

• Regret:

130Privacy



Private Collaborative Bandits [WZWCKW20] 

• Main idea: add Laplace noise                       to the 
reward during model estimation; 
• Scale the noise based on sensitivity Δ and privacy 

budget "
• Collaborative learning: calibrate sensitivity with 

respect to the user dependency structure W
• Δ = max( 2 *+ ,
• Vanilla (independent users) setting assumes rewards in 

[-1, 1], so Δ = 2

W
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Fairness concerns

• Algorithmic bias – an important topic
• Research of bias in data, model, algorithm etc.
• E.g., discriminatory treatment of subpopulations

• The need to explore
• Fairness guarantee during online decision making
• Fair recommendation / fair LTR

• Many literatures in offline learning setting
• Check “Tutorial on Fairness of Machine Learning in 

Recommender Systems” @ SIGIR 2021

132Fairness
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Weakly meritocratic fairness [JKMNR16]

• Fairness definition: if reward                 then
• A fair bandits should never favor a worse arm at any round

• Prefect strategy is fair:                     -- but we don’t which arm is 
perfect at the beginning
• Uniformly random is fair:                          -- linear regret
• Somewhere in between?
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FairUCB [JKMR16]

• Idea: uniformly pull arm within the first confidence interval chain
• Start from the largest UCB, find overlapped confidence intervals

• Guaranteed fairness at every step with high probability
• Regret: 
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Merit-based fair exposure 

• Fairness definition: given merit function ! , 

• Intuition: exposure should be proportional to the merit
• Compare with previous fairness definition: prefect strategy with      

is no longer fair
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FairX-UCB [WBSJ21]

• Idea: pull arm proportional to the merit ! #̃$
• %# is an optimism reward prediction satisfying fairness constraint

136Fairness
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FairCo [MSHJ20]

• Controlling Fairness and Bias in Dynamic Learning-to-Rank
• Divide documents into groups {"#}
• Group fairness / individual fairness

• Exposure:

• Averaged examination probability
• Merit function:

• Averaged relevance 
• Fairness: exposure should be proportional to the merit
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FairCo [MSHJ20]

• Fairness: exposure should be proportional to the merit
• Idea: fairness constraints as an added error term 
• Ranking list

• Error term is the exposure-based fairness disparity between 
two groups
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Marginal fairness [YA21]

• Fairness in top-k settings
• Proportional is not enough

• FairExposure@k

•

•

• Idea: minimize the marginal unfairness between 
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Open questions

• Regret Lower Bound for bandits with privacy guarantee
• What is the minimum noise and regret to achieve !-DP/LDP?

• Calibrate privacy and fairness with problem-dependent structure 
• Collaborative Bandits
• Low-rank structure
• Non-stationary environment

• Other fairness definition 

140Ethical considerations
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Outline of this tutorial

•Motivation
• Classical exploration strategies
• Efficient exploration in complicated real-world environments
• Exploration in non-stationary environments
• Ethical considerations of exploration
• Conclusion & future directions
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Conclusions

• Interactive information retrieval with bandit feedback

Conclusions 144
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Conclusions

• Interactive information retrieval with bandit feedback

Conclusions 145

Interactive IR System

Exploitation

Present the best results 
estimated so far to satisfy users

Exploration
Present currently underestimated 
results to best improve the ranker



Conclusions

• Key problems
• Reward estimation
• Arm selection

Conclusions 146

ActionReward

Convergence matters! Exploration matters!



Future research directions

• Going beyond linear models
• How about deep models?

Complex models 147

Some preliminary studies exist: 
[ZLG19, AFB14] 

ActionReward

Convergence matters! Exploration matters!



Future research directions

• Online deployment
• Policy update driven by every interaction in real-time

Learning efficiency 148

ActionReward

Convergence matters! Exploration matters!

Some recent work: [WHCW19, 
KSL16, MWLS20] 



Future research directions

• Learning under adversarial contexts
• Privacy breach under extraction attacks

Private Learning 149

Exploration reconciles the need for learning 
and the need for privacy protection

[CKNFS11, Kor10]



Future research directions

• Learning under adversarial contexts
• Robustness under poisoning attacks

Robust Learning 150

ActionFeedback

Action

Feedback

Action

Feedback

Randomness in exploration hardens the model 
against adversary; dependence structure among 
users improves privacy utility trade-off.



Future research directions

• Incentivize the exploration
• No regret under information gap

Incentivized Learning 151

Latent factors Semantic features

{Romance, Cameron}

{Drama, Korean}

{Drama, Damon}
Explanations?



Future research directions

• System learning in accordance with user learning
• User is not omniscient, but also learns from interactions with the 

system

Incentivized Learning 152



References X

[ZLG19] Zhou, D., Li, L., & Gu, Q. (2019). Neural Contextual Bandits with Upper Confidence Bound-Based Exploration. arXiv
preprint arXiv:1911.04462.

[AFB14] Allesiardo, R., Féraud, R., & Bouneffouf, D. (2014, November). A neural networks committee for the contextual 
bandit problem. In International Conference on Neural Information Processing (pp. 374-381). Springer, Cham.

[WHCW19] Wang, Y., Hu, J., Chen, X., & Wang, L. (2019). Distributed bandit learning: Near-optimal regret with efficient 
communication. arXiv preprint arXiv:1904.06309.

[KSL16] Korda, N., Szorenyi, B., & Li, S. (2016, June). Distributed clustering of linear bandits in peer to peer networks. In 
International Conference on Machine Learning (pp. 1301-1309).

[MWLS20] Mahadik, K., Wu, Q., Li, S., & Sabne, A. (2020, June). Fast distributed bandits for online recommendation systems. 
In Proceedings of the 34th ACM International Conference on Supercomputing (pp. 1-13).

[CKNFS11] Calandrino, J. A., Kilzer, A., Narayanan, A., Felten, E. W., & Shmatikov, V. (2011, May). " You might also like:" Privacy 
risks of collaborative filtering. In 2011 IEEE symposium on security and privacy (pp. 231-246). IEEE.

[Kor10] Korolova, A. (2010, December). Privacy violations using microtargeted ads: A case study. In 2010 IEEE International 
Conference on Data Mining Workshops (pp. 474-482). IEEE.

153References



Acknowledgement

Acknowledgement 154

IIS-1553568
IIS-1618948



Back-up slides
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• Simulation-based evaluation
• Simulate the non-stationary environment

• Semi-simulation-based evaluation
• Real-world datasets (that do not have non-stationarity) 

+ simulated changes
• Evaluation on real-world datasets
• On real-world datasets that have non-stationarity

Non-stationary environments



Empirical evaluations
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• Simulation-based evaluation
• Simulate the non-stationary environment

• Semi-simulation-based evaluation
• Real-world datasets (that do not have non-stationarity) 

+ simulated changes
• Evaluation on real-world datasets
• On real-world datasets that have non-stationarity

Non-stationary environments



Empirical evaluations
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Figure 4. Real time CTR ratio in 10 days on Yahoo
dataset

• Yahoo! Today Module dLinUCB

WMDUCB1

adTS
LinUCB

Non-stationary environments



Empirical evaluations
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• LastFM dataset
• Simulate a non-stationary environment by attaching

different users’ observations[]

Change Points

Non-stationary environments



Empirical evaluations
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Figure 5. Word cloud of tags from high reward actions in the four identified environments by dLinUCB on LastFM
dataset.

Non-stationary environments



Empirical evaluations
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Figure 5. Word cloud of tags from high reward actions in the four identified environments
by dLinUCB on LastFM dataset.

Change-invariant actions Change-invariant actions

change sensitive actions change sensitive actions

Learner 1 Learner 2

Non-stationary environments


