
Category-aware Collaborative Sequential Recommendation
Renqin Cai1, Jibang Wu1, Aidan San1, Chong Wang2, Hongning Wang1

1University of Virginia, Charlottesville, VA, USA
2Bytedance, Bellevue, WA, USA

1{rc7ne, jw7jb, aws9xm, hw5x}@virginia.edu, 2chong.wang@bytedance.com

ABSTRACT
Sequential recommendation is the task of predicting the next items
for users based on their interaction history. Modeling the depen-
dence of the next action on the past actions accurately is crucial to
this problem. Moreover, sequential recommendation often faces se-
rious sparsity of item-to-item transitions in a user’s action sequence,
which limits the practical utility of such solutions.

To tackle these challenges, we propose a Category-aware Collab-
orative Sequential Recommender. Our preliminary statistical tests
demonstrate that the in-category item-to-item transitions are often
much stronger indicators of the next items than the general item-
to-item transitions observed in the original sequence. Our method
makes use of item category in two ways. First, the recommender
utilizes item category to organize a user’s own actions to enhance
dependency modeling based on her own past actions. It utilizes
self-attention to capture in-category transition patterns, and de-
termines which of the in-category transition patterns to consider
based on the categories of recent actions. Second, the recommender
utilizes the item category to retrieve users with similar in-category
preferences to enhance collaborative learning across users, and thus
conquer sparsity. It utilizes attention to incorporate in-category
transition patterns from the retrieved users for the target user. Ex-
tensive experiments on two large datasets prove the effectiveness of
our solution against an extensive list of state-of-the-art sequential
recommendation models.

CCS CONCEPTS
• Information systems→Personalization;Recommender sys-
tems; • Computing methodologies→ Neural networks.

KEYWORDS
sequential recommendation, contextualized recommendation, col-
laborative learning, neural networks

ACM Reference Format:
Renqin Cai, Jibang Wu, Aidan San, Chong Wang, Hongning Wang. 2021.
Category-aware Collaborative Sequential Recommendation. In Proceedings
of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’21), July 11–15, 2021, Virtual Event, Canada.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3404835.3462832

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8037-9/21/07. . . $15.00
https://doi.org/10.1145/3404835.3462832

Figure 1: An illustration of collaborative sequential recom-
mendation. Each user’s actions are indexed chronologically.
The recommender system needs to predict which items to
recommend to the user Lily based on her and another user
Ivy’s past actions.

1 INTRODUCTION
The essence of sequential recommendation is to model the influ-
ence from past actions on the next action. This has been considered
as a sequential prediction problem, and various sequence mod-
els borrowed from other fields have been explored [3, 8, 9, 17, 24,
32, 35]. From the earliest Markov models [24] to recent neural
sequence models, such as Recurrent Neural Network (RNN) or
self-attention [8, 30], models with a stronger capacity in capturing
complex and high-order dependence among actions have shown to
achieve better recommendation quality.

However, most of existing solutions treat a user’s action history
as a long sequence [2, 5, 8]. Such simplification usually ignores the
fine-grained dependency structure in the action sequence. Consider
the example illustrated in Figure 1. For the user Lily, the reoc-
curred transitions from clothes to shoes suggest her next action is
very likely to be related to shoes, and the series of her previously
browsed shoes suggest her general preference on sports shoes. But
her recently browsed business suits suggest her current intent in
formal outfits. As a result, it is no longer appropriate for the sys-
tem to follow her general preference to recommend sports shoes;
instead, recommending formal shoes becomes a better choice. Such
observation informs us that sequential recommendation should
be context-aware: under different contexts, the prediction of next
action should depend on different subsequences of past actions.

Another challenge in sequential recommendation is data spar-
sity. Observations about individual user’s actions are known to
be sparse [12], not to mention the transitional patterns that could
be covered in a single user’s action sequence. For example, in the
example shown in Figure 1, the user Lily has never visited any
formal shoes in the past. Hence, even with the knowledge that
formal shoes should be recommended next, it is still clueless for
the system to predict which specific type/brand to start with.

As a remedy to the data sparsity issue, collaborative learning
methods have been recently introduced to sequential recommenda-
tion [14, 15, 19, 25]. The basic idea is to exploit users with similar

https://doi.org/10.1145/3404835.3462832
https://doi.org/10.1145/3404835.3462832

past action sequences for the next action prediction. As a typical so-
lution of this type, Wang et al. [34] modeled users’ action sequences
with RNNs and retrieved neighboring users based on the user la-
tent states learnt by RNNs. Then the target user’s representation is
combined with the retrieved neighboring users’ representations for
the next item prediction. However, user similarity is still measured
by the entire sequence of past actions in this type of solutions. As
we argued before, neglecting the context in sequential recommen-
dation introduces inaccurate dependency on the past actions, and
therefore erroneous neighborhood for next action prediction. Con-
sider the example in Figure 1 again. When looking at their entire
action sequences, Lily and Ivy might not be considered as neighbors,
as Lily visited mostly shoes and clothes while Ivy visited mostly
shoes and handbags. But the subsequences of shoes browsed by
these two users make them closer. Especially the transitions from
sport shoes to formal shoes in Ivy’s subsequence will be very help-
ful in predicting Lily’s next action about formal shoes. Therefore,
the neighborhood modeling in sequential recommendation should
also be context-aware.

Nevertheless, the context, under which a user takes the next
action, is not observable by the system [1]. We have to look for
proxies of it. We believe a good proxy of context should: 1) be
widely available in sequential recommendation problems, and 2)
enhance the modeling of dependence on past actions. In this work,
we consider two types of proxies: a user’s most recently interacted
items before the next action, and the category of the next item.
Treating the recent items as the context of the next action has been
a common practice in many existing studies [20, 33, 36]. Moreover,
we consider item category, a type of widely available metadata
about items, also provides context information. Our statistical tests
on two large public recommendation datasets prove the transitional
patterns among actions in the category-specific subsequences are
significantly stronger than those in the original action sequences
without considering the categories. We defer the details of our
statistical tests to Section 3 and the description of the dataset to
Section 4. To differentiate these two types of contexts, we term
the context inferred from recent items as episodic context and that
inferred from the item category as category context. These two types
of proxies provide complementary views about the context under
which the user is taking the next action [4, 22]. For instance, in
Figure 1, the episodic context suggests Lily is looking for formal
outfits, an intent shared by actions in close proximity, while the
category context suggests Lily is looking for shoes, an intent specific
to the next item.

Based on our insight discussed above, we propose a CategOry-
aware COllaborative sequential Recommender (CoCoRec), which
draws dependence of the next action on historical actions based
on the target user’s action sequence, item categories and neigh-
boring users’ action sequences. CoCoRec is composed of three key
components: an in-category encoder, a context encoder, and a col-
laboration module. The in-category encoder utilizes self-attention
to model item transition patterns in category-specific action sub-
sequences. The context encoder infers the episodic context and
the category context for the next action prediction. First, it uses
self-attention to model the user’s most recent actions to obtain the
episodic context. Second, it uses recent actions’ categories to predict
the category of the next action, and then based on this prediction,

it uses a gating network to activate the corresponding in-category
item-to-item transitions. The collaboration module uses a memory
tensor to record users’ in-category preferences. For each target user,
the collaboration module retrieves neighboring users with similar
in-category preferences. Combining the episodic context, the in-
category preferences of target user, and the neighbors’ in-category
preferences, CoCoRec predicts the next item for the target user.

To investigate the effectiveness of CoCoRec for sequential rec-
ommendation, we performed extensive experiments on two large
public recommendation datasets. Compared with a list of state-
of-the-art solutions for sequential recommendation, CoCoRec im-
proved the recommendation quality in both recall and MRR. Our
ablation analysis further demonstrated the importance of modeling
the in-category user preferences and collaborative learning among
users with similar in-category preferences for CoCoRec to achieve
high quality recommendation performance.

2 RELATEDWORK
The improvement of sequence models’ capacities in capturing com-
plex and high-order sequential patterns has unleashed the devel-
opment in sequential recommendation. Fixed- and varying-order
Markov models are among the earliest attempts [3, 24], which as-
sume the prediction only depends on the recent several actions.
Factorizing Personalized Markov Chains [24] is a typical model of
this kind, which combines factorizationmachine [23] with aMarkov
model. It improves over vanilla matrix factorization by introducing
sequential order among historical actions into factorization. How-
ever, the Markovian assumption also limits the performance of such
models: as the state-space grows exponentially with respect to the
order of dependence, this type of solution can hardly capture high
order dependence in practice.

Neural sequencemodels, such as RNN, Long Short-TermMemory
(LSTM) [9], Gated Recurrent Unit (GRU) [6] and self-attention [30]
models, have been adopted to address the limitations in Markov
models [5, 8, 9, 17, 32, 35]. For example, Hidasi et al. [8] applied
RNNs to predict the next action based on actions in a session of
which the boundary is defined in regard to the idle duration be-
tween two consecutive actions. Li et al. [17] used attention to model
influence from the most related actions in the session. SASRec [13]
and BERT4Rec [27] extended the scope of self-attention models to
sequential recommendations.

Besides vanilla application of existing neural sequence mod-
els, problem-specific customizations are proposed to enhance the
modeling of action sequences. Tang et al. [28] has developed a so-
lution composed of a mixture of sequence models to capture both
long-term and short-term action dependence. Hierarchical neu-
ral network models have been applied to model users’ sequential
preferences across different sessions [21, 37, 39].

Nevertheless, Wu et al. [36] found that the session assumption
could be the bottleneck of these models, as the influence from past
actions does not necessarily differ with respect to the manually
defined session boundaries. In contrast, our fine-grained action de-
pendency modeling is supported by statistical tests, i.e., segmenting
action sequences into sub-sequences with respect to item categories
enhances sequential dependency modeling.

Collaborative learning has been introduced to sequential recom-
mendation to address the data sparsity issue. Based on the social
network among users, Song et al. [26] combined the transition
patterns of neighbors in the social network into the next item pre-
diction of the target user. Lifting the requirements of pre-existing
social networks, Jannach and Ludewig [12] measured user related-
ness by the degree of item overlap among action sequences. Actions
from the k-nearest neighbors are introduced to the target user’s pre-
diction. As a follow-up, Wang et al. [34] measured user similarities
based on the latent states learnt for users by RNNs; and directly com-
bined neighboring users’ latent states with target user’s latent state
for the next item prediction. To reduce the search space of neigh-
bors, Pan et al. [19] made the initial next item predictions based
on the target user’s action sequence, and then utilized the initial
item predictions to filter irrelevant users. All the aforementioned
methods used entire action sequences to measure user similarity.
However, under different context, the importance of past actions in
representing users is different. Failing to characterize target user’s
ongoing context when retrieving neighbors prevents collaborative
learning from helping the next item prediction of the target user.

Another line of work on sequential recommendation utilized
item categories as proxies of action context and incorporated the
context into various models to improve the modeling of action
sequences. Treating the prediction of the next item category as an
extra task along with the prediction of the next item, a multi-task
learning based solution has been developed to predict both the next
item and its category [38]. Treating the item category as a condition,
a generative adversarial network based solution validates the next
item prediction based on the category of the predicted item [22].
However, the in-category sequential transition patterns are ignored
by these solutions.

Besides item category, other types of external knowledge about
items have also been utilized for sequential recommendation, like
knowledge bases [10, 31] and category taxonomies [7, 11]. The
relations among items defined in knowledge base are utilized to
capture the dependence among actions [10, 31]. Huang et al. [11]
incorporated multi-hop categories to memory network to structure
the dependency. Likewise, Gu et al. [7] proposed to hierarchically
model actions based on the hierarchy of item category. However,
the limited availability of knowledge bases or category taxonomies
in different recommendation scenarios directly restricts the appli-
cation of these solutions in practice.

3 METHOD
We study sequential recommendations for a set of users 𝑢 ∈ 𝑈 over
a set of items 𝑣 ∈ 𝑉 from a set of item categories 𝑐 ∈ 𝐶 . We denote
an action as a tuple 𝑎𝑖 = (𝑣𝑖 , 𝑐𝑖), where 𝑖 is the index of the action
in a sequence, 𝑣𝑖 is the item that the user interacts with and 𝑐𝑖 is
the item’s category. Different actions may be associated with the
same item and each item is associated with a unique category. A
sequence of𝑁 actions from user𝑢 is denoted as 𝑆𝑢 = {𝑎1, 𝑎2, ..., 𝑎𝑁 },
which is ordered chronologically with respect to the timestamps of
actions. A subsequence of actions under category 𝑐 is denoted as
𝑆𝑐𝑢 = {𝑎𝑐1, ..., 𝑎

𝑐
𝑇
} where 𝑇 represents the number of actions in this

subsequence and actions are still ordered chronologically. Given
𝑆𝑢 from user 𝑢, the goal of sequential recommendation is to rank

Figure 2: Result of the statistical dependence analysis on
Taobao dataset. The distribution of frequencies of 3rd-
order item-to-item transition patterns in in-category subse-
quences are as the red points show. The distribution of the
frequencies of 3rd-order item-to-item transition patterns in
the original sequences are as the blue points show.

items for this user to consider as the next item 𝑣𝑁+1 in the next
action 𝑎𝑁+1. When no ambiguity is incurred, we omit the subscript
𝑢 to simplify our subsequent discussions.

3.1 Data-Driven Statistical Analyses
Before introducing our proposed solution, we first describe our
statistical analyses about users’ sequential behaviors on two pub-
lic recommendation datasets: Taobao dataset and BeerAdvocate
dataset. The number of total actions on both datasets are larger
than 500K, which ensures the statistical significance of our analyses.
The findings in these analyses directly lead to the design of our
solution. More details about these datasets are in Section 4.

We investigate the dependence structure introduced by item
categories. We segment a sequence of actions into multiple subse-
quences, where each subsequence consists of actions of the same
item category. We count the frequency of𝑀th-order item-to-item
transition patterns within subsequences and original sequences
respectively. Specifically, the𝑀th-order item-to-item transition pat-
tern refers to𝑀 items appearing consecutively in a given sequence
(or a subsequence), e.g., {𝑣𝑖 , ..., 𝑣𝑖+𝑀−2, 𝑣𝑖+𝑀−1}. Figure 2 (a) shows
on Taobao dataset, the probability of the 3rd-order item transition
patterns appearing multiple times within subsequences is signifi-
cantly higher than that in the original sequences. Due to space limit,
we omit the results on BeerAdvocate dataset, where we obtained
similar observations. By varying𝑀 from 2 to 10, we observed simi-
lar results. These findings strongly support our decision of using
item category to structure actions to enhance the modeling of the
action dependence.

3.2 Category-aware collaboration Sequential
Recommender

Propelled by the findings in our statistical analyses, we propose
a CategOry-aware COllaborative sequential Recommender (Co-
CoRec). In a nutshell, CoCoRec is composed of three modules: an
in-category encoder, a context encoder, and a collaboration module.
First, to model user preferences under a category, we segment an

Figure 3: Overview of CoCoRec. In CoCoRec, an action sequence is decomposed into multiple subsequences with respect to
the item category associated with each action. The in-category encoder encodes the category-specific action subsequences
into latent vectors representing users’ in-category preferences. The context encoder predicts the category of the next action
to activate the corresponding in-category item-to-item transitions for the next item prediction. The context encoder infers
the episodic context of the next action based on recent items. To address the sparsity issue, the collaboration module retrieves
neighbors based on users’ encoded in-category preferences. Based on signals from these three sources, CoCoRec predicts the
next item and make recommendations to the user.

action sequence into multiple subsequences with respect to item cat-
egories and each subsequence is restricted to contain actions of the
same item category. The in-category encoder utilizes self-attention
to model in-category item-to-item transition patterns in the sub-
sequences. In order to determine which in-category preference
to use for the next item prediction, the context encoder predicts
the next category based on the categories of recent actions with
self-attention. Second, to model the episodic context, the context
encoder utilizes another self-attention to model the item-to-item
transition patterns among recent actions. Third, to leverage the
neighboring users’ in-category item-to-item transition patterns,
we retrieve users with similar in-category preferences with regard
to the target user’s in-category preferences, based on the context
encoder’s next category prediction. Finally, the next item predic-
tion is made based on the episodic context, the in-category user
preferences, and neighboring users’ in-category preferences.

In the following, we dive into the details of each component of
CoCoRec to discuss about their designs.

3.2.1 In-category Encoder. The in-category encoder is designed to
obtain the category-specific user preferences. To capture high-order
item-item transition patterns, we choose a self-attention network
for the in-category encoder. The self-attention network parameters
are shared across categories to reduce model complexity, i.e., multi-
task learning via parameter sharing.

For each of the |𝐶 | categories, the in-category encoder learns a
hidden representation of the user preferences respectively. Without
loss of generality, we take the encoding process for an action subse-
quence of category 𝑐 as an example to illustrate our design details.
The item subsequence [𝑣𝑐1, . . . , 𝑣

𝑐
𝑇
], which are associatedwith the ac-

tion subsequence, are projected through the input item embedding
layer 𝐸𝑖𝑛 ∈R |𝑉 |×𝑑𝑖𝑛 into a set of dense vectors 𝑋𝑐 = [𝑒𝑣𝑐1 , . . . , 𝑒𝑣𝑐𝑇]

where𝑋𝑐 ∈R𝑇×𝑑𝑖𝑛 . The relative positions [𝑇, . . . , 1] of these actions
to the next action are projected through the position embedding
layer 𝑃 ∈ R𝑇×𝑑𝑖𝑛 into 𝑃𝑐 = [𝑃𝑐

𝑇
, . . . , 𝑃𝑐1]. Taking the dense vectors

𝑋𝑐+𝑃𝑐 as input, the self-attention network outputs the represen-
tation of the user preferences in this category, i.e., ℎ𝑐 ∈ R𝑑

𝑐
ℎ by

ℎ𝑐 =self-attention(𝑋𝑐 + 𝑃𝑐).
The self-attention network is composed of 𝑛𝑙 layers of a multi-

head attention block and a point-wise feed-forward network block [18,
30]. Due to the recursive nature of these multiple layers of blocks,
we use 𝑗th layer to explain the mechanism. There are 𝑛ℎ heads in
a multi-head attention block with 𝑑𝑎 hidden units. For the 𝑖th at-
tention head, the attention block transforms the input latent states
𝐻 𝑗 ∈R𝑇×𝑑𝑎 of an action sequence into the output states as,

𝑨𝑗
𝑖
= Attention(𝑯 𝑗𝑊

𝑄

𝑖
,𝑯 𝑗𝑊𝐾

𝑖 ,𝑯
𝑗𝑊𝑉
𝑖)

Attention(𝑄,𝐾,𝑉) = softmax
(
𝑸 · 𝑲𝑇√
𝑑𝑎/𝑛ℎ

)
where the projection matrices𝑊𝑄

𝑖
,𝑊𝐾

𝑖
,𝑊𝑉

𝑖
∈ R𝑑𝑎×𝑑𝑎/𝑛ℎ are learn-

able parameters mapping𝐻 𝑗 into query𝑄 , key𝐾 and value𝑉 repre-
sentations. In addition,

√
𝑑𝑎/𝑛ℎ is the scaling factor to encourage a

softer attention distribution for avoiding extremely small gradients.
We then concatenate the output states obtained by all heads and

project the concatenated representation to 𝑨𝑗 = [𝑨𝑗1, . . . ,𝑨
𝑗
𝑛ℎ
]𝑊𝑂 ,

where𝑊𝑂 ∈ R𝑑𝑎×𝑑𝑎 is another projection matrice. Feeding this
representation into the a fully connected feed-forward network
(𝐹𝐹𝑁 𝑗) and then a layer normalization network (LN), we obtain
self-attended hidden vectors of this sequence as:

𝑯 𝑗+1 = LN
(
𝑯 𝑗 + 𝐹𝐹𝑁 𝑗 (𝑨𝑗)

)

In the in-category encoder, the input to the self-attention net-
work is 𝐻0= [𝑒𝑣𝑐1 +𝑃

𝑐
𝑇
, . . . , 𝑒𝑣𝑐

𝑇
+𝑃𝑐1] and 𝑑

𝑐
ℎ
=𝑑𝑎 . The self-attention

network transforms 𝐻0 into 𝐻𝑛𝑙 = [ℎ𝑐1, . . . , ℎ
𝑐
𝑇
] and uses the hidden

state of the last action as the output of the self-attention network
to represent the user preferences within category 𝑐 , i.e., ℎ𝑐 =ℎ𝑐

𝑇
.

3.2.2 Context Encoder. The context encoder is to obtain the context
(both category and episodic context) for the next item prediction. To
decide which in-category user preferences to leverage, we predict
the category of the next item. Specifically, we use a top-𝑘 gating net-
work to obtain the category context. In addition, we use a recency
encoder to capture the episodic context buried in recent items.
• Top-𝑘 gating network. We use the categories of recent items as
the input to the top-𝑘 gating network. The categories of the most
recent 𝐿 items are projected through the input category embedding
layer 𝐸𝑧

𝑖𝑛
∈R |𝐶 |×𝑑𝑧

𝑖𝑛 into a set of dense vectors, 𝑍 = [𝑒𝑧𝑐𝑁−𝐿 , . . . , 𝑒
𝑧
𝑐𝑁

].
The relative positions of recent actions, denoted as [𝐿, . . . , 1], are
projected through the position embedding layer 𝑃𝑐𝑎𝑡𝑒 ∈ R𝐿×𝑑𝑧𝑖𝑛
into a set of dense vectors 𝑃𝑧 = [𝑃𝑧

𝐿
, . . . , 𝑃𝑧1].

In the top-𝑘 gating network, a self-attention network transforms
the dense category vectors 𝑍 +𝑃𝑧 into hidden representations and
utilizes the hidden representation at the last action as the represen-
tation summarizing the category information of recent actions, as
ℎ𝑧 =self-attention(𝑍+𝑃𝑧) ∈R𝑑

𝑧
ℎ . Feedingℎ𝑧 into the output category

embedding layer 𝐸𝑧𝑜𝑢𝑡 and then a softmax layer, the top-𝑘 gating
network generates a probability distribution over all categories:

𝑝 (𝑐𝑁+1 = 𝑗) ∝ exp(⟨ℎ𝑧 , 𝑒𝑧𝑗 ⟩), (1)

where 𝑝 (𝑐𝑁+1= 𝑗) denotes the probability of category 𝑗 being the
category of the next item and 𝑒𝑧

𝑗
is the category embedding of the

category 𝑗 . To account for the uncertainty in next category pre-
diction, the gating network selects top-𝑘 most probable categories
according to Eq. (2):

{𝑐 𝑗 }𝑘𝑗=1 = arg topk
𝑗 ′

(
{𝑝 (𝑐𝑁+1= 𝑗

′)} |𝐶 |
𝑗 ′=1

)
where 𝑐 𝑗 ∈ 𝐶. (2)

With respect to these 𝑘 predicted categories, we include correspond-
ing in-category user preferences to predict the next item, i.e., the
hidden representations {ℎ𝑐 𝑗 }𝑘

𝑗=1 from the in-category encoder are
selected. Besides, we also count the probabilities 𝑝 (𝑐𝑁+1) of these 𝑘
categories in the prediction of the next item, which we will discuss
later. Because of this design, this top-𝑘 gating network is still dif-
ferentiable, i.e., the training loss can be propagated back to update
the category embeddings.
• Recency encoder. The recency encoder is introduced to infer the
episodic context from recent actions. Due to their close proximity to
the next action, the recent actions reflect the ongoing intent of the
next action. For example, in Figure 1, Lily’s recent actions suggest
she is looking for formal outfits. To capture high-order dependence,
we adopt another self-attention network to encode item-to-item
transition patterns among recent actions.

Specifically, the input of the recency encoder is the most recent
𝐿 items in the original sequence 𝑆 , i.e., [𝑣𝑁−𝐿, . . . , 𝑣𝑁], which are
projected through the input item embedding layer 𝐸𝑖𝑛 into dense
vectors 𝑋𝑟 = [𝑒𝑣𝑁−𝐿 , . . . , 𝑒𝑣𝑁], where 𝑋𝑟 ∈ R𝐿×𝑑𝑖𝑛 . The relative
positions of recent actions, denoted as [𝐿, . . . , 1], are projected
through the position embedding layer 𝑃𝑟𝑒𝑐𝑒𝑛𝑡 ∈ R𝐿×𝑑𝑖𝑛 into a set

of dense vectors 𝑃𝑟 = [𝑃𝑟
𝐿
, . . . , 𝑃𝑟1]. Then the self-attention network

transforms vectors 𝑋𝑟+𝑃𝑟 into hidden states and we use the hidden
state of the last action as the representation of the inferred episodic
context as ℎ𝑟 =self-attention(𝑋𝑟 +𝑃𝑟) ∈ R𝑑

𝑟
ℎ . This episodic context

is utilized for the next item prediction. We should note the recency
encoder examines the recent items disregarding their categories, as
the episodic context refers to information shared by actions with
close proximity beyond specific categories. It provides complemen-
tary view of the next action besides the category context.

3.2.3 Collaboration Module. The collaboration module is designed
to leverage neighboring users’ in-category preferences for the tar-
get user’s next item prediction. Due to the sparsity of observations
in individual users’ actions, the item-to-item transition patterns
in a single user are expected to be sparse. Collaborative learning
across neighboring users with similar preferences has the poten-
tial to mitigate the sparsity issue. Because our statistical analyses
demonstrate that the in-category item-to-item transition patterns
strongly suggest the user’s preferences of the next item, we uti-
lize the in-category subsequences to obtain the similarities among
users. Then we combine the neighboring users’ information based
on their similarities for the next item prediction.

The collaborationmodule uses amemory tensor𝑀𝑒𝑚 ∈R |𝐶 |×𝐹×𝑑𝑐
ℎ

to record users’ in-category preferences, denoted as “collaborative
memory” in Figure 3. Specifically, it records the latent states of last
𝐹 users for each category 𝑐 in a chronological order.
• Reading operation. Given the target user’s in-category prefer-
ences ℎ𝑐𝑢 of the category 𝑐 , we compute its similarities to 𝐹 latent
states of user preferences of this category 𝑐 in𝑀𝑒𝑚: sim(ℎ𝑐𝑢 , ℎ𝑐𝑖) ∝
exp(⟨ℎ𝑐𝑢 , ℎ𝑐𝑖 ⟩). We choose the top-𝑓 similar users as the neighbors
and take a weighted sum of their representations by the correspond-
ing similarities as the neighborhood representation for the next
item prediction, as ℎ𝑓 =

∑top-f
𝑖′ sim(ℎ𝑐𝑢 , ℎ𝑐𝑖′)ℎ

𝑐
𝑖′ .

•Writing operation.We randomly initialize the memory tensor
𝑀𝑒𝑚 and update it with the latest user’s in-category preference rep-
resentations ℎ𝑐 which are outputs of the in-category encoder. The
memory tensor is organized as a queue: the collaboration module
pushes the most recently served user’s representations of the cate-
gory 𝑐 to the memory tensor, while popping out the representations
of users inactive for a long time.

3.2.4 Next Item Prediction. Based on in-category user preferences
of the predicted top 𝑘 categories, neighboring users’ in-category
preferences, and episodic context inferred from the most recent
items, CoCoRec predicts the next item. Specifically, we concatenate
these three representations for each of 𝑘 categories and project con-
catenated representations into the output item embedding space
with a feed-forward network layer (FFN). The mixture of obtained
representations is considered as the user representation for predict-
ing the next item as ℎ 𝑗 =FFN(ℎ𝑟 ⊕ ℎ𝑐 𝑗 ⊕ ℎ𝑓𝑗),where 𝑗 = {1, ..., 𝑘}.

Matching the user representation with the item embeddings
𝐸𝑜𝑢𝑡 , we obtain the ranking scores of items by,

score(𝑣𝑁+1) =
𝑘∑
𝑗=1

score𝑗 (𝑣𝑁+1)𝑝 (𝑐𝑁+1=𝑐 𝑗) (3)

where score𝑗 (𝑣𝑁+1) = softmax(⟨ℎ 𝑗 , 𝐸𝑜𝑢𝑡 ⟩). CoCoRec ranks the
items with respect to their predicted scores 𝑠𝑐𝑜𝑟𝑒 (𝑣𝑁+1) in a de-
scending order as recommendations to the user.

3.3 Model Training & Inference
We train CoCoRec in an end-to-end fashion by minimizing the loss
on the predictions of both the next item and its category, where
the cross entropy loss is adopted.

Since the item space can be very large in practice, we apply the
negative sampling trick to compute the loss of item predictions.
For each positive item, we randomly sample 𝑁𝑠 items as negative
instances according to their popularities in training dataset. Thus,
the loss of item prediction is,

𝐿𝑖𝑡𝑒𝑚 = −
𝑁𝑠+1∑
𝑣=1

𝛿 (𝑣𝑁+1=𝑣) log𝑝 (𝑣𝑁+1 = 𝑣)

𝑝 (𝑣𝑁+1 = 𝑣) = softmax
(
𝑠𝑐𝑜𝑟𝑒 (𝑣𝑁+1 = 𝑣)

)
where 𝛿 (·) is an indicator function, 𝑣𝑁+1 is the ground-truth item,
and 𝑣𝑁+1 is the model’s prediction. Likewise, we compute the loss
against all categories,

𝐿𝑐𝑎𝑡𝑒 = −
𝐶∑
𝑗=1

𝛿 (𝑐𝑁+1 = 𝑗) log𝑝 (𝑐𝑁+1 = 𝑗).

where the 𝑝 (𝑐𝑁+1 = 𝑗) is computed by Eq (1). The joint loss is thus
computed as

𝐿 = 𝜆 × 𝐿𝑖𝑡𝑒𝑚 + (1 − 𝜆) × 𝐿𝑐𝑎𝑡𝑒 .

where 𝜆 is a hyper-parameter controlling the weight of these two
losses in the objective function.

In addition, we modify the training scheme to deal with the dis-
crepancy between training stage and testing stage. During training,
the ground-truth category of the next item is available. Thus, we
can directly choose the in-category user preferences of the ground-
truth category for the next item prediction. In contrast, during
testing, the next category is unknown. The errors of the next cate-
gory prediction will be propagated to the next item prediction. To
mitigate this issue, we separate the training phase into two stages.
In the early stage of training the model, we directly use the ground-
truth category for the next item prediction. In the second stage, we
use the top-𝑘 predicted categories. Particularly, we start the second
stage model training only when the accuracy of category prediction
stops increasing.

4 EXPERIMENTS
In this section, we study the effectiveness of CoCoRec for sequen-
tial recommendation. We first describe two evaluation datasets,
followed by the implementation details of our model on these two
datasets. Then we compare CoCoRec against an extensive set of
baselines, ranging from heuristic solutions to state-of-the-art se-
quential recommendation solutions. In addition, a complete ablation
analyses illustrates the importance of modeling the in-category user
preferences and collaborative learning among users with similar
in-category preferences. We also study the influence of the hyper-
parameters on the performance of CoCoRec.

4.1 Datasets
We performed the evaluation on Taobao dataset 1 and BeerAdvocate
dataset 2, which are both publicly available. The Taobao dataset
contains sequences of user actions from the online shoppingwebsite
taobao.com. Each action is associated with a user ID, an item ID,
a category ID of the item, and a timestamp of the action. Due
to privacy concerns, the semantic meanings of categories are not
available. We randomly sampled 100,000 sequences from November
25, 2017 to December 3, 2017 for our experiments, where we used
the actions in the first 7 days as the training set, actions on the
8th day as the validation set, and actions on the 9th day as the test
set. We removed items associated with fewer than 20 actions, and
removed users with fewer than 20 or more than 300 actions. We
merged categories which have fewer than 100 items into a special
category, denoted as category “UNK”. The BeerAdvocate dataset
contains user reviews about beer from October 31, 2000 to January
11, 2012. The type of beer is chosen as category, and a user review
is treated as an action. We use actions from October 31, 2000 to
January 28, 2011 as the training set, those from January 28, 2011
to July 18, 2011 as the validation set, and the rest as the test set.
We removed items with fewer than 5 actions, and removed users
with fewer than 10 or more than 300 actions. Again, we merged
categories with fewer than 100 items into the “UNK” category. The
basic statistics of datasets are reported in Table 1.
Implementation Details. On both datasets, the in-category en-
coder of CoCoRec utilizes at most 𝑇 =20 actions of the same cate-
gory. The context encoder utilizes the most recent 𝐿=20 actions as
input to both the top-𝑘 gating network and the recency encoder.
The item input embedding layer shares the same parameters as the
item output embedding layer. The category input embedding layer
also shares the same parameters as the category output embedding
layer. The self-attention networks in the in-category encoder, the
top-𝑘 gating network and recency encoder stack 𝑛𝑙 = 2 layers of
a multi-head attention block with 𝑛ℎ =1 head and a feed-forward
network block. In the objective function, the hyper-parameter 𝜆 is
set to 0.5. The dropout rates are all set to 0.2. The batch size is set
to 256. We utilize Adam as the optimizer.

On Taobao dataset, the dimension 𝑑𝑖𝑛 of item embeddings is
chosen from {128, 256, 512}. We set 𝑑𝑖𝑛 = 256 in our experiments,
as we did not observe further improvement of performance with
higher dimensions. The dimension 𝑑𝑐

ℎ
of the hidden representa-

tions in the self-attention network of the in-category encoder is
chosen from {128, 256, 512} and we set 𝑑𝑐

ℎ
= 256. The dimension

𝑑𝑧
𝑖𝑛

of category embeddings is chosen from {32, 64, 128} and we
set 𝑑𝑧

𝑖𝑛
= 64 due to its promising performance. The dimension 𝑑𝑧

ℎ
of the hidden representations in the self-attention network of the
top-𝑘 gating network is set to be the same as 𝑑𝑧

𝑖𝑛
. The top-𝑘 gat-

ing network selects 𝑘 = 5 category-specific action subsequences
for the next item prediction. Likewise, we set the dimension 𝑑𝑟

ℎ
in the self-attention network of the recency encoder to 256. The
collaboration module records the in-category preferences of last
𝐹 =10240 users and retrieves 𝑓 =256 neighboring users. The num-
ber of negative items 𝑁𝑠 in model training is set to 10000. We find
that CoCoRec is sensitive to the learning rate, and the optimal

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
2https://www.beeradvocate.com/

taobao.com

Table 1: Statistics of two evaluation datasets.
Dataset #Users #Items #Categories #Actions #Actions per user #Actions per item
Taobao 51,275 68,007 201 3,785,961 73.84±47.44 77.07±86.83

BeerAdvocate 7,313 17,373 102 563,638 55.67±69.44 32.44±98.76

learning rate 0.0001 is chosen from {0.0001, 0.0005, 0.001, 0.00001}.
On BeerAdvocate dataset, the details of our model are as follows:
𝑑𝑖𝑛 =64, 𝑑𝑐ℎ =64, 𝑑

𝑧
𝑖𝑛
=32, 𝑑𝑧

ℎ
=32 and 𝑑𝑟

ℎ
=64. The hyper-parameters

in collaboration module are 𝐹 =2048 and 𝑓 =128. The top-𝑘 gating
network selects 𝑘 =5 category-specific action subsequences for the
next item prediction. The number of negative items 𝑁𝑠 in model
training is set to 1000. The learning rate is set to 0.00001. The influ-
ence of the hyper-parameters on the performance of CoCoRec is
discussed later. The code has been released publicly 3.

4.2 Comparison against Baselines
We compare CoCoRec with an extensive set of baselines, and catego-
rize them based on their modeling assumptions and the information
they leveraged.
Heuristic solutions. We include two heuristic-based solutions,
which have been shown to be strong baselines [29].

• Global Popularity (GlobalPop). It ranks items according to their
popularities in the training set in a descending order.

• Sequence Popularity (SeqPop). It ranks items according to their
popularities in the target user’s sequence in a descending order. The
popularity of an item is updated sequentially when more actions
are observed.
Classical sequential recommendation solutions.We include so-
lutions which only consider sequential order of actions for depen-
dence modeling.

• Recurrent Neural Network (GRU4Rec). It adopts GRU for sequen-
tial recommendations [8].

• Bidirectional Self-attentive Sequential Recommendation (BERT4Rec).
It adopts self-attention for sequential recommendations [27], which
extends the SASRec model [13].

• Multi-temporal-range Mixture Model (M3R). It utilizes a mix-
ture of RNN and self-attention to capture the dependence on both
distant past actions and recent past actions for sequential recom-
mendations [28].
Category-aware sequential recommendation solutions.We in-
clude solutions leveraging the item category for recommendations.

• Category-Based Recommender (RNN+MTL). It incorporates cat-
egory information by treating it as an additional input to the neural
sequence model [38]. Particularly, this solution utilizes multi-task
learning to predict both the next item and its category.

• Multi-Factor Generative Adversarial Network (MFGAN)4. It uti-
lizes adversarial training to ensure the generated action sequences
still follow the distribution of the real-world action sequences [22].
It leverages the category of the next action and item popularity as
conditions used by the discriminator in the adversarial learning.
Collaborative learning based sequential recommendation so-
lutions.We include sequential recommendation solutions utilizing
collaborative learning to combat data sparsity issue.

3code available at https://github.com/RenqinCai/CoCoRec
4the knowledge graph in this method is omitted as it is not available on these two
datasets.

• Collaborative Session-based Recommendation Machine (CSRM).
It utilizes the entire action sequences of users to define the users’
similarities and retrieves neighboring users with similar prefer-
ences [34]. The neighboring users’ preferences are combined with
the target user’s preferences to predict the next item.

• Intent-guided Collaborative Machine for Session-based Recom-
mendation (ICM-SR). This work is an extension of CSRM, aiming
at reducing the search space of neighbors [19]. It utilizes action
sequences to make initial next item predictions and filters the irrel-
evant users based on these initial item predictions.
Evaluation Metrics. Recall@K and Mean Reciprocal Rank@K
(MRR@K) are used as evaluation metrics. We rank all items for
evaluation, instead of sampling a subset of items. This can avoid
the bias introduced by the sampling to the evaluation, as Krichene
and Rendle [16] demonstrated.
• Recall@K : It counts the proportion of times when ground-truth
items are ranked among the top-𝐾 predictions.
• MRR@K : It reports the average of reciprocal ranks of the ground-
truth items among the top-𝑘 predictions. If the rank is larger than
𝐾 , the reciprocal rank is set to 0.
Results & analysis. The results of CoCoRec and baselines on two
datasets are reported in Table 2, where CoCoRec outperformed all
baselines. Regarding heuristic solutions, since GlobalPop treats each
action independently and SeqPop only considers the dependence
on actions associated with the same item, both of them performed
worse than CoCoRec.

None of the classical sequential recommendation solutions lever-
age category information when modeling the action sequences.
Without considering the fine-grained dependence among actions,
vanilla applications of existing neural sequencemodels, like GRU4Rec
and BERT4Rec, performed much worse than CoCoRec. M3R con-
siders fine-grained dependence through a mixture of these neu-
ral sequence models. But its worse performance against CoCoRec
suggests that leveraging category information is more useful to
calibrate the dependence modeling than blindly combining a set of
distinct neural sequence models.

The category-aware sequential recommendation solutions leverage
category information to enhance the sequential recommendations.
The worse performance achieved by RNN+MTL suggests that with-
out careful design, considering category information does not nec-
essarily improve sequential recommendation. MFGAN utilizes the
category of the next action and the popularity of items to calibrate
the dependence on past actions. But it does not specifically model
item-to-item transition patterns within each category. Moreover,
CoCoRec also makes use of category-specific action subsequences
of the neighboring users to enhance the next item prediction. There-
fore, we observe that CoCoRec achieved better performance than
these category-aware solutions.

The collaborative learning based sequential recommendation solu-
tions take advantage of neighboring users’ actions to enhance the
sequential recommendations. The better performance achieved by

Table 2: Performance of models on two datasets.

Models Taobao BeerAdvocate
Recall@5 MRR@5 Recall@20 MRR@20 Recall@5 MRR@5 Recall@20 MRR@20

GlobalPop 0.0024 0.0014 0.0076 0.0019 0.0078 0.0036 0.0341 0.0059
SeqPop 0.0944 0.0533 0.1754 0.0613 0.0004 0.0002 0.0016 0.0003
GRU4Rec 0.1283 0.0811 0.1888 0.0839 0.0173 0.0089 0.0492 0.0097
BERT4Rec 0.1291 0.0813 0.2122 0.0869 0.0222 0.0092 0.0533 0.0124

M3R 0.1294 0.0818 0.2163 0.0875 0.0235 0.0102 0.0615 0.0142
RNN+MTL 0.1283 0.0801 0.1979 0.0833 0.0202 0.0101 0.0573 0.0121
MFGAN 0.1307 0.0817 0.2176 0.0852 0.0233 0.0114 0.0599 0.0143
CSRM 0.1291 0.0818 0.1923 0.0842 0.0188 0.0093 0.0514 0.0112
ICM-SR 0.1299 0.082 0.2057 0.0849 0.0214 0.011 0.0587 0.0129
CoCoRec 0.1557 0.0917 0.2609 0.1029 0.0278 0.0141 0.0737 0.0192

Figure 4: Performance of variants of CoCoRec for ablation analysis on two datasets.

CSRM over GRU4Rec shows explicit collaborative learning helps
sequential recommendation. The comparison between CSRM and
ICM-SR suggests that improving the quality of retrieved neighbor-
ing users enhances the utility of collaborative learning on sequen-
tial recommendations. Moreover, CoCoRec outperformed ICM-SR,
which proves that context-aware neighborhood modeling can fur-
ther increase the benefits of leveraging neighboring users’ actions.

4.3 Detailed Analysis on Our Approach
4.3.1 Ablation Analysis. We conducted ablation analysis to demon-
strate the importance of different components in CoCoRec. Specifi-
cally, we tested the following variants of CoCoRec:

¬ in-category. This variant excludes the in-category encoder
from CoCoRec. It only utilizes the recency encoder and the collab-
oration module (ignoring item category) to predict the next item.
The comparison between this variant and CoCoRec demonstrates
the importance of using the in-category encoder to model the in-
category user preferences.

¬ collaboration. This variant excludes the collaboration module
from CoCoRec. It only uses the in-category encoder and the context
encoder to predict the next item. The comparison between this vari-
ant and CoCoRec demonstrates the value of using the collaboration
module to leverage neighboring users’ in-category preferences.

Results are reported in Figure 4. The observation that these
two variants perform worse than CoCoRec suggests that both the
modeling f in-category preferences and the collaborative learning
are useful for sequential recommendation.

4.3.2 Hyper-parameter Analysis. We changed the value of hyper-
parameters in CoCoRec and investigated their influence on the
recommendation quality.

Figure 5: Performance of CoCoRec with different number of
selected categories (𝑘) on Taobao.

• Number of categories in top-𝑘 gating network. Because of the influ-
ence from the next category prediction on the next item prediction,
we study the effect of the number of categories 𝑘 selected by the
gating network on the performance of CoCoRec. We report results
in Figure 5. We can observe CoCoRec achieves the best performance
with 𝑘 =3; and when 𝑘 =1, the performance drops. This is caused
by imperfect category prediction, i.e., the ground-truth categories
are not ranked at the first position. In particular, the performance
of the category prediction is Recall@5:0.7328 and MRR@5:0.5510.
The wrong predictions of the next category further impact the next
item predictions. On the other hand, when 𝑘 keeps increasing, the
performance also drops. The reason is that larger 𝑘 means more

in-category user preferences are included for the next item predic-
tion. This inevitably introduces irrelevant in-category preferences,
which eventually hurts the next item prediction.
• Number of actions in in-category encoder and context encoder. The
lengths of category-specific action subsequences affect the mod-
eling of in-category user preferences. We study the effect of the
number of actions 𝑇 per category on the performance of CoCoRec.
In addition, since the number of recent actions affects both the
modeling of category context and episodic context, we also study
the effect of the number of recent actions 𝐿 on the performance of
CoCoRec. The results on Taobao dataset are reported in Table 3. We
can observe when too few actions are considered in the in-category
encoder, i.e.,𝑇 =2, CoCoRec perform poorly. This is because limited
information about the in-category user preferences can be captured.
Similarly, when too few recent actions are considered in the context
encoder, i.e., 𝐿 = 2, the performance drops. This suggests recent
actions contain important signals for the next item prediction.

Table 3: Performance of CoCoRec with different number of
actions in in-category encoder (𝑇) and context encoder (𝐿)
on Taobao dataset.

Settings Recall@5 MRR@5 Recall@20 MRR@20
T=2 0.1322 0.0821 0.2371 0.0931
T=20 L=20 0.1557 0.0917 0.2609 0.1029
T=50 0.1559 0.0918 0.2604 0.1026

T=20 L=2 0.1301 0.0811 0.2253 0.0876
L=50 0.1559 0.0919 0.2612 0.1030

• Number of retrieved neighboring users in collaboration module.
Because the number of retrieved neighbors affects the collaborative
learning, we study the effect of the number of retrieved neighboring
users 𝑓 on the performance of CoCoRec. The results are reported in
Table 4. We can see retrieving either too few or too many neighbor-
ing users hurts the next item prediction. When too few neighbors
are retrieved, the collaboration effect is limited. Thus, the CoCoRec
cannot benefit from similar users. On the other hand, when too
many neighbors are retrieved, including the action subsequences
from less relevant users hurts the next item prediction.

Table 4: Performance of CoCoRec with different number of
retrieved neighbors on Taobao dataset.

Settings Recall@5 MRR@5 Recall@20 MRR@20
f=128 0.1502 0.0903 0.2371 0.0931
f=256 0.1557 0.0917 0.2609 0.1029
f=1024 0.1534 0.0907 0.2583 0.1017

4.3.3 Case Study. To examine our model’s behaviors, we qualita-
tively study in-category action subsequences, recent action subse-
quences, neighors’ in-category action subsequences, and the atten-
tion weights of actions in these subsequences. Due to the space
limit, we select a user and one of her actions in the testing set
as the target action. We retrieve the neighbors with similar in-
category preferences to her, as Figure 6 shows. We can observe the
in-category subsequence of the top ranked neighbor has actions
in common with the in-category subsequence of the target user.

Figure 6: An example of the next item prediction by Co-
CoRec. The target user’s (user 45323) action sequence is sep-
arated into category-specific subsequences. On the top, We
visualize the action subsequence containing the recent ac-
tions, and the action subsequence specific to the category
of the next item. On the bottom, the most similar neigh-
bor’s (user 4461) in-category subsequence is presented. The
actions in each subsequence are indexed chronologically, de-
noted as a tuple (item id, category id). The color indicates the
attention weight in self-attention networks.

The actions associated with items (e.g., item 19412) which have
appeared multiple times likely have large attention weight. In addi-
tion, the item-to-item transitions (from item 19412 to item 2761) in
the category-specific subsequence suggest the next item.

5 CONCLUSION
In this paper, suggested by our statistical analyses on the depen-
dence structure introduced by the category-specific action context,
we propose CoCoRec to leverage category information to capture
the context-aware action dependence for sequential recommenda-
tion. Specifically, a sequence of actions is decomposed into multiple
subsequences with respect to item categories. Within each category-
specific subsequence, CoCoRec employs a self-attention network
to capture item-to-item transition patterns. A top-𝑘 gating net-
work is employed to predict the category of the next item, so as to
activate the in-category preferences for the next item prediction. Be-
sides, CoCoRec models the most recent actions as episodic context,
due to their close proximity to the next action. To handle sparsity
in individual user’s action sequences, CoCoRec employs context-
aware collaborative learning across users with similar in-category
preferences. Extensive experiments and ablation analyses on two
large datasets show that category-aware dependency modeling and
context-aware collaborative learning in CoCoRec help improve its
sequential recommendation quality.

Currently we only considered the sequential order of actions in
users’ interaction history with the system. Since the actual time
of those actions also conveys important contextual information, it
is important to consider how to extend CoCoRec to model such
temporal information in the furture work.

ACKNOWLEDGMENTS
We would like to thank Zhan Xu, Haiyun Jin and Ruocheng Guo for
insightful feedback and discussions. We also thank the anonymous
reviewers for their valuable comments and helpful suggestions. This
work is supported in part by the US National Science Foundation
under grants IIS-2007492, IIS-1553568 and IIS-1718216.

REFERENCES
[1] Gediminas Adomavicius and Alexander Tuzhilin. 2011. Context-aware recom-

mender systems. In Recommender systems handbook. Springer, 217–253.
[2] Mingxiao An, Fangzhao Wu, Chuhan Wu, Kun Zhang, Zheng Liu, and Xing Xie.

2019. Neural News Recommendation with Long-and Short-term User Represen-
tations. In Proceedings of the 57th Conference of the Association for Computational
Linguistics. 336–345.

[3] Ron Begleiter, Ran El-Yaniv, and Golan Yona. 2004. On prediction using variable
order Markov models. Journal of Artificial Intelligence Research 22 (2004), 385–
421.

[4] Renqin Cai, Xueying Bai, ZhenruiWang, Yuling Shi, Parikshit Sondhi, and Hongn-
ingWang. 2018. Modeling Sequential Online Interactive Behaviors with Temporal
Point Process. In Proceedings of the 27th ACM International Conference on Infor-
mation and Knowledge Management. ACM, 873–882.

[5] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and
Hongyuan Zha. 2018. Sequential recommendation with user memory networks.
In Proceedings of the eleventh ACM international conference on web search and
data mining. ACM, 108–116.

[6] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[7] Yulong Gu, Zhuoye Ding, Shuaiqiang Wang, and Dawei Yin. 2020. Hierarchical
User Profiling for E-commerce Recommender Systems. In Proceedings of the 13th
International Conference on Web Search and Data Mining. 223–231.

[8] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[9] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[10] Hao Hou and Chongyang Shi. 2019. Explainable Sequential Recommendation
using Knowledge Graphs. In Proceedings of the 5th International Conference on
Frontiers of Educational Technologies. 53–57.

[11] Jin Huang, Zhaochun Ren, Wayne Xin Zhao, Gaole He, Ji-RongWen, and Daxiang
Dong. 2019. Taxonomy-aware multi-hop reasoning networks for sequential
recommendation. In Proceedings of the Twelfth ACM International Conference on
Web Search and Data Mining. ACM, 573–581.

[12] Dietmar Jannach and Malte Ludewig. 2017. When recurrent neural networks
meet the neighborhood for session-based recommendation. In Proceedings of the
Eleventh ACM Conference on Recommender Systems. 306–310.

[13] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197–206.

[14] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver.
2010. Multiverse recommendation: n-dimensional tensor factorization for context-
aware collaborative filtering. In Proceedings of the fourth ACM conference on
Recommender systems. 79–86.

[15] Yehuda Koren. 2009. Collaborative filtering with temporal dynamics. In Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 447–456.

[16] Walid Krichene and Steffen Rendle. 2020. On sampled metrics for item recom-
mendation. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 1748–1757.

[17] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural attentive session-based recommendation. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management. ACM, 1419–1428.

[18] Jiacheng Li, Yujie Wang, and Julian McAuley. 2020. Time Interval Aware Self-
Attention for Sequential Recommendation. In Proceedings of the 13th International
Conference on Web Search and Data Mining. 322–330.

[19] Zhiqiang Pan, Fei Cai, Yanxiang Ling, and Maarten de Rijke. 2020. An Intent-
guided Collaborative Machine for Session-based Recommendation. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 1833–1836.

[20] Jiarui Qin, Kan Ren, Yuchen Fang, Weinan Zhang, and Yong Yu. 2020. Sequential
recommendation with dual side neighbor-based collaborative relation modeling.
In Proceedings of the 13th international conference on web search and data mining.

465–473.
[21] Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cremonesi.

2017. Personalizing session-based recommendations with hierarchical recurrent
neural networks. In Proceedings of the Eleventh ACM Conference on Recommender
Systems. ACM, 130–137.

[22] Ruiyang Ren, Zhaoyang Liu, Yaliang Li, Wayne Xin Zhao, Hui Wang, Bolin
Ding, and Ji-Rong Wen. 2020. Sequential recommendation with self-attentive
multi-adversarial network. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. 89–98.

[23] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International Confer-
ence on Data Mining. IEEE, 995–1000.

[24] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalizedmarkov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. ACM, 811–820.

[25] Badrul Munir Sarwar, George Karypis, Joseph A Konstan, John Riedl, et al. 2001.
Item-based collaborative filtering recommendation algorithms. Www 1 (2001),
285–295.

[26] Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, and Jian
Tang. 2019. Session-based social recommendation via dynamic graph attention
networks. In Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining. 555–563.

[27] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Repre-
sentations from Transformer. arXiv preprint arXiv:1904.06690 (2019).

[28] Jiaxi Tang, Francois Belletti, Sagar Jain, Minmin Chen, Alex Beutel, Can Xu, and
Ed H Chi. 2019. Towards neural mixture recommender for long range dependent
user sequences. In The World Wide Web Conference. ACM, 1782–1793.

[29] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-
tion via convolutional sequence embedding. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining. ACM, 565–573.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[31] Chenyang Wang, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. 2020.
Make it a chorus: knowledge-and time-aware item modeling for sequential rec-
ommendation. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval. 109–118.

[32] Jianling Wang and James Caverlee. 2019. Recurrent Recommendation with Local
Coherence. In Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining. ACM, 564–572.

[33] Jianling Wang, Raphael Louca, Diane Hu, Caitlin Cellier, James Caverlee, and
Liangjie Hong. 2020. Time to Shop for Valentine’s Day: Shopping Occasions and
Sequential Recommendation in E-commerce. In Proceedings of the 13th Interna-
tional Conference on Web Search and Data Mining. 645–653.

[34] Meirui Wang, Pengjie Ren, Lei Mei, Zhumin Chen, Jun Ma, and Maarten de Rijke.
2019. A collaborative session-based recommendation approach with parallel
memory modules. In Proceedings of the 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 345–354.

[35] Qinyong Wang, Hongzhi Yin, Zhiting Hu, Defu Lian, Hao Wang, and Zi Huang.
2018. Neural memory streaming recommender networks with adversarial train-
ing. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 2467–2475.

[36] Jibang Wu, Renqin Cai, and Hongning Wang. 2020. Déjà vu: A Contextualized
Temporal Attention Mechanism for Sequential Recommendation. In Proceedings
of The Web Conference 2020. 2199–2209.

[37] Jiaxuan You, Yichen Wang, Aditya Pal, Pong Eksombatchai, Chuck Rosenburg,
and Jure Leskovec. 2019. Hierarchical Temporal Convolutional Networks for
Dynamic Recommender Systems. In The World Wide Web Conference. ACM,
2236–2246.

[38] Qian Zhao, Jilin Chen, Minmin Chen, Sagar Jain, Alex Beutel, Francois Belletti,
and Ed Chi. 2018. Categorical-Attributes-Based Multi-Level Classification for
Recommender Systems. (2018).

[39] Nengjun Zhu, Jian Cao, Yanchi Liu, Yang Yang, Haochao Ying, and Hui Xiong.
2020. Sequential Modeling of Hierarchical User Intention and Preference for
Next-item Recommendation. In Proceedings of the Thirteenth ACM International
Conference on Web Search and Data Mining. ACM.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Data-Driven Statistical Analyses
	3.2 Category-aware collaboration Sequential Recommender
	3.3 Model Training & Inference

	4 Experiments
	4.1 Datasets
	4.2 Comparison against Baselines
	4.3 Detailed Analysis on Our Approach

	5 Conclusion
	References

