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Abstract

We perform online interactive recommendation via a
factorization-based bandit algorithm. Low-rank matrix com-
pletion is performed over an incrementally constructed user-
item preference matrix, where an upper confidence bound
based item selection strategy is developed to balance the
exploit/explore trade-off during online learning. Observable
contextual features and dependency among users (e.g., social
influence) are leveraged to improve the algorithm’s conver-
gence rate and help conquer cold-start in recommendation.
A high probability sublinear upper regret bound is proved
for the developed algorithm, where considerable regret re-
duction is achieved on both user and item sides. Extensive
experimentations on both simulations and large-scale real-
world datasets confirmed the advantages of the proposed al-
gorithm compared with several state-of-the-art factorization-
based and bandit-based collaborative filtering methods.

Introduction
Matrix factorization based collaborative filtering has be-
come a standard practice in recommender systems (Koren,
Bell, and Volinsky 2009; Koren 2008; Su and Khoshgoftaar
2009). The basic idea of such solutions is to characterize
both recommendation items and users by vectors of latent
factors inferred from historical user-item preference patterns
via low-rank matrix completion (Candès and Recht 2009;
Candès and Tao 2010), with an assumption that only a few
factors contribute to an individual’s choice (Koren, Bell, and
Volinsky 2009).

Despite a few recent advances in specific factorization
techniques (Agarwal and Chen 2009; Rendle 2012), recom-
mendation remains a challenging problem for at least two
reasons. First, a modern recommender system faces emerg-
ing new users and ever changing pools of recommendation
candidates. The classical offline training and online test-
ing paradigm for factorization models becomes incompe-
tent to handle the dynamics of users’ preferences, known
as cold-start (Schein et al. 2002). Second, it is nutritiously
difficult to perform online interactive recommendation, be-
cause the need to focus on items that raise users’ interest
and, simultaneously, the need to explore new items for im-
proving users’ satisfaction in the long run create an explore-
exploit dilemma. Periodically repeating model estimation to
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update latent factors is inept to handle the interactions be-
tween a system and its users on the fly, because not only
does it overly exploit the learnt model that is biased to-
wards previously frequently recommended items, but it is
also prohibitively expensive to afford in terms of computa-
tional complexity.

Some preliminary attempts have been made to perform
online matrix factorization for collaborative filtering. Basi-
cally, multi-armed bandit algorithms (Auer et al. 1995; Auer
2002) are employed to control the exploration of currently
less promising recommendations for user feedback, and
factorization is applied over the incrementally constructed
user-item matrix on the fly. However, these two compo-
nents are integrated in an ad-hoc manner: both contextual
and context-free bandits have been explored on top of var-
ious factorization methods (Zhao, Zhang, and Wang 2013;
Nakamura 2014; Kawale et al. 2015), given they only pro-
vide an index of candidate items for feedback acquisition.
As a result, little is known about whether such combinations
would lead to a converging recommendation performance
nor would it ensure long-term optimality in theory, i.e., re-
gret bound analysis.

We address the aforementioned challenges via per-
forming online interactive recommendation by placing a
factorization-based bandit algorithm on each user in the
system. Low-rank matrix completion is performed over
an incrementally constructed user-item preference matrix,
where an upper confidence bound (UCB) based item se-
lection strategy is developed to balance the exploit/explore
trade-off during online learning. To better conquer cold-
start in recommendation, two special treatments are devised.
First, observable contextual features are integrated with the
estimated latent factors during matrix factorization. This
improves recommendation when the number of candidate
items is large, but the payoffs are interrelated, i.e., context-
aware. Second, the dependence among users (e.g., social in-
fluence) is introduced to our bandit algorithm through a col-
laborative reward generation assumption (Wu et al. 2016). It
enables information sharing among the neighboring users in
online learning, so as to help reduce the overall regret.

More importantly, we rigorously prove that with high
probability the developed algorithm achieves a sublinear up-
per regret bound for interactive recommendation, i.e., the
average number of suboptimal recommendations made in
our algorithm over time rapidly vanishes with high proba-
bility. And considerable regret reduction is achieved on both



user and item sides because of our explicit modeling of ob-
servable contextual features and dependence among users.
Extensive experimentations on both simulations and large-
scale real-world datasets confirmed the advantages of the
proposed algorithm compared with several state-of-the-art
bandit-based factorization methods.

Related work
There are some recent developments that focus on online
collaborative filtering with multi-armed bandit algorithms, a
reference solution for explore-exploit trade-off (Auer et al.
1995; Auer 2002; Li et al. 2010). (Zhao, Zhang, and Wang
2013) studies interactive collaborative filtering via proba-
bilistic matrix factorization. Both context-free and contex-
tual bandit algorithms are introduced to perform online item
selection based on the factorization results. (Kawale et al.
2015) performs online low-rank matrix completion, where
the explore/exploit balance is achieved via Thompson sam-
pling. (Nakamura 2014) introduces a UCB-like strategy to
perform interactive collaborative filtering. The algorithm de-
terministically selects feedback user-item pairs using an in-
dex which depends on the covariance matrices of the pos-
terior distributions of both latent user and item vectors. (Li,
Karatzoglou, and Gentile 2016) performs co-clustering on
users and items for collaborative filtering, where confidence
bound on reward estimation is used to decide the cluster-
ing structures. However, because of the ad-hoc combina-
tions of collaborative filtering methods and bandit meth-
ods in the aforementioned studies, limited theoretical un-
derstanding is available in those solutions. In this work,
we provide a rigorous regret bound analysis of the devel-
oped factorization-based bandit algorithm, and demonstrate
the algorithm’s convergence property under different con-
ditions. Moreover, our online factorization solution is gen-
eral enough to incorporate several recent advances in fac-
torization techniques, such as feature-based latent factor
models (Agarwal and Chen 2009; Rendle 2012) and mod-
eling mutual dependence among users (Ma et al. 2011;
2008), which further improve the proposed algorithm’s con-
vergence rate during interactive online learning with users.

Methodology
A Bandit Solution for Interactive Recommendation
Matrix factorization based collaborative filtering solutions
map both users U = {u1, u2, ..., uN} and recommenda-
tion items A = {a1, a2, ..., aM} to a joint latent factor
space. The expected reward of an item with respect to a
given user is assumed to be an inner product of the latent
item factor va ∈ Rl and the latent user factor θu ∈ Rl.
Hence, the reward generation process can be formalized as
ra,u = vT

aθu + η, where the random variable η is drawn
from a Gaussian distribution N(0, σ2) to capture the noise
in observations. Regularized quadratic loss over a given set
of user-item feedback pairs is usually employed to estimate
the latent factors. Formally,

min
θu,va

1

2

∑
(a,u)∈K

(vT
aθu−ra,u)2+

λ1
2

∑
u∈U
‖θu‖2+

λ2
2

∑
a∈A
‖va‖2

(1)

where K is a set of user-item pairs with known reward (e.g.,
the offline training set), λ1 and λ2 are the trade-off parame-
ters. The key research challenge in interactive matrix factor-
ization is how to select the next feedback user-item pair for
model update. Current practice exploits the trained model
to collect user feedback, which unfortunately reinforces the
bias in a currently inaccurate model. Therefore, properly ex-
plore some currently less promising items for model correc-
tion becomes necessary for long-term optimality.

Upper Confidence Bound (UCB) has been proved to be
an effective strategy to balance exploitation and exploration
in multi-armed bandit problems. A UCB-style bandit algo-
rithm uses its estimation confidence of the predicted reward
on the candidate items for exploration: the item with the
highest expected reward within a selected confidence set will
be chosen for feedback (Auer 2002; Auer, Cesa-Bianchi,
and Fischer 2002). Under the context of matrix factoriza-
tion based collaborative filtering, the uncertainty of reward
prediction comes from two sources: 1) the estimation error
of latent user factors at trial t, i.e., ‖θ̂u,t − θ∗u‖, where θ̂u,t
is the current estimate of latent factors for user u, and θ∗u is
the ground-truth factors; and 2) the estimation error of latent
item factors at trial t, i.e., ‖v̂a,t − v∗a‖. Because of the reg-
ularized quadratic loss employed in Eq (1), the confidence
sets of θu and va estimation can be analytically computed
(Abbasi-yadkori, Pál, and Szepesvári 2011), and thus read-
ily be integrated to assemble a UCB-style bandit algorithm
for interactive matrix factorization as follows,(

at, 〈θ̂u,t, v̂a,t〉
)

= arg max(
a,〈θu,va〉

)
∈Dt×Ct−1

θT
uva (2)

where Dt is the set of candidate items for recommendation
at trial t, and Ct−1 is the confidence set for latent user and
item factors 〈θu,va〉 constructed at last trial.

However, such a straightforward combination of bandit
algorithm with matrix factorization cannot effectively solve
the cold-start problem, as the estimation uncertainty of the
latent factors for new users and new items is at the maxi-
mum. This inevitably requires more explorations on the new
users and new items, and hence leads to a decreased conver-
gence rate of online learning and reduced user satisfaction in
practice. We propose to solve these limitations by introduc-
ing observed contextual features (Agarwal and Chen 2009;
Rendle et al. 2011) and user dependence (Ma et al. 2011;
Wu et al. 2016) into online factorization. Both of these two
techniques have been proved to be effective in offline matrix
factorization, but little is known about their utility in an on-
line setting. In particular, we explicitly incorporate these two
components into our bandit algorithm’s reward generation
assumption, to make it a unified framework for interactive
matrix factorization.

First, to reduce the reward prediction uncertainty on new
items, we introduce observable contextual features into the
estimation of latent item factors. Typical item-level contex-
tual features include topic categories for news recommen-
dation (Li et al. 2010; Agarwal and Chen 2009) and genre
for music recommendation (Cesa-Bianchi, Gentile, and Zap-
pella 2013). Formally, we denote the observed contextual
features for an item a as xa ∈ Rd and keep using va ∈ Rl

for its latent part (with ‖(xa,va)‖2 ≤ L). Accordingly, on
the user side we redefine θu = (θx

u ,θ
v
u) ∈ Rd+l (with



‖θu‖2 ≤ S), in which θx
u ∈ Rd corresponds to the context

feature xa and θv
u ∈ Rl corresponds to the latent item factor

va. These extended user and item factors now determine the
rewards in recommendation.

Second, we incorporate mutual influence among users to
reduce the reward prediction uncertainty on new users. Dis-
tinct from existing solutions, where the dependency among
users (such as social network) is introduced as graph-based
regularization over the latent user factors (Ma et al. 2011;
Cesa-Bianchi, Gentile, and Zappella 2013), we encode such
dependency directly into our reward generation assumption
for matrix factorization. We assume the observed reward
from each user is determined by a mixture of neighbor-
ing users (Wu et al. 2016). Formally, instead of assuming
N independent users for factorization, we place them on a
weighted graph G = (V,E), which encodes the affinity re-
lation among users, to perform the estimation across them
simultaneously. Each node Vu in G is parameterized by the
latent user factor θu for user u; and each edge in E repre-
sents the influence across users in reward generation. We en-
code this graph as an N ×N stochastic matrix W, in which
each element wij is nonnegative and proportional to the in-
fluence that user j has on user i in determining the reward
of different items. W is column-wise normalized such that∑N

j=1 wij = 1 for i ∈ {1, ...., N}, and we assume W is
time-invariant and known to the algorithm beforehand.

Based on the introduced contextual features and user re-
lational graph G, we define a (d + l) × N matrix Θ =
(θ1, . . . ,θN ), which consists of latent user factors from all
N users in graph G, and define Xat

= (xat,1, ...,xat,N )
and Vat

= (vat,1, ...,vat,N ) for the observable contex-
tual features and latent item factors of the items to be pre-
sented to the N users respectively. To simplify the notations
for discussion, we decompose Θ into two sub-matrices,
Θx = (θx

1 , . . . ,θ
x
N ) and Θv = (θv

1 , . . . ,θ
v
N ), correspond-

ing to the observed context features and latent factors for
items. As a result, we enhance our reward generation as-
sumption as follows,

rat,u = (xat
,vat

)TΘwu+ηt = xT
at

Θxwu+vT
at

Θvwu+ηt
(3)

Intuitively, in Eq (3) not only the observed contextual fea-
tures, but also the estimated latent factors will be propagated
through the user graph to determine the expected reward of
items across users. Later we prove such information shar-
ing greatly reduces sample complexity in learning the latent
factors for both users and items.

Plugging the enhanced reward generation assumption de-
fined in Eq (3) into the regularized quadratic loss function
in Eq (1), we can easily derive the closed-form solutions
for Θ and va after trial t via the alternating least square
(ALS) method as vec(Θ̂t) = A−1t bt and v̂a,t = C−1a,tda,t,
where the detailed computation of (At,bt,Ca,t,da,t) can
be found in Algorithm 1. vec(·) is the vectorization opera-
tion, and I1 and I2 are identity matrices with dimensions of
(d+ l)N × (d+ l)N and l × l respectively. We define X̊at

as a special case of Xat
: only the column corresponding to

user u is set to xat,u and all the other columns are zero; and

the same notation applies to ˚̂
Vat .

One potential issue with this closed-form solution is its
computational complexity: matrix inverse has to be per-

formed on At and Ca,t at every trial. First, because rank one
update is performed on these two matrices (11th and 14th
step in Algorithm 1), quadratic computational complexity is
possible via applying the Sherman-Morrison formula. Sec-
ond, we can update these two matrices in a mini-batch man-
ner to further reduce computation, with some extra penalty
in regret. We will leave this as our future research.

Under our enhanced reward generation assumption de-
fined in Eq (3), the confidence set of 〈θu,va〉 estimation can
be analytically computed by the following lemma.

Lemma 1 With proper initialization of ALS, the Hessian
matrix of Eq (1) is positive definite at the optimizer Θ∗ and
v∗a, such that for any ε1 > 0, ε2 > 0, and δ ∈ (0, 1), with
probability at least 1− δ, the estimation error of latent user
and item factors satisfies,

‖vec(Θ̂t)− vec(Θ∗)‖At ≤
√

ln
(det(At)

δλ1

)
+
√
λ1S (4)

+
2√
λ1

(q1 + ε1)(1− (q1 + ε1)t)

1− (q1 + ε1)

‖v̂a,t − v∗a‖Ca,t ≤
√

ln
(det(Ca,t)

δλ2

)
+
√
λ2L (5)

+
2√
λ2

(q2 + ε2)(1− (q2 + ε2)t)

1− (q2 + ε2)

in which q1 ∈ (0, 1) and q2 ∈ (0, 1).

In Lemma 1, ε1 and ε2 are the precision parameters for
ALS, and q1 and q2 can be explicitly estimated as de-
scribed in (Uschmajew 2012). The key assumption behind
this lemma is the noise distribution in reward generation de-
fined in Eq (3) is stationary. As a result, this lemma gives us
a reasonable construction of the confidence sets for Θ and
va estimation, which can be easily transformed to the esti-
mation uncertainty of payoff rat,u. The proof sketch of this
lemma can be found in the supplementary material.

Based on Lemma 1, we define αu
t and αa

t as the upper
bound of ‖vec(Θ̂t)− vec(Θ∗)‖At

and ‖v̂a,t − v∗a‖Ca,t
re-

spectively. By applying the UCB principle, the item selec-
tion strategy for our bandit algorithm can be derived as step
9 in Algorithm 1. In particular, the first term in our item
selection strategy is an online prediction of the expected re-
ward based on the current estimation of latent user factors
and item factors. It reflects the tendency of exploiting the
current estimates. The second and third terms are related to
the estimation uncertainty of va and Θ. They reflect the ten-
dency of exploring currently less promising but highly un-
certain items. It is easy to verify that the exploration terms
shrink when more observations become available, such that
the exploit/explore trade-off is balanced dynamically. Later
on we prove that because of the explicit modeling of user de-
pendency (i.e., Eq (3)), the exploration term also uniformly
shrinks for new users and new items, which lead to consid-
erable regret reduction over all users. We name the resulting
bandit algorithm as FactorUCB, and illustrate the detailed
procedure of it in Algorithm 1.

Regret Analysis
To quantify the performance of factorUCB, we consider the
cumulated (pseudo) regret defined as the expected difference



Algorithm 1 FactorUCB
1: Inputs: λ1, λ2 ∈ (0,+∞), l ∈ Z+

2: Initialize: A1 ← λ1I1, b1 ← 0(d+l)N , vec(Θ̂1)← A−1
1 b1

3: for t = 1 to T do
4: Receive user ut

5: Observe feature vectors, xa ∈ Rd

6: if item a is new then
7: initialize Ca,t ← λ2I2, da,t ← 0l, v̂a,t ← 0l

8: end if
9: Select item by at = arg maxa∈A

(
(xa, v̂a,t)

TΘ̂twut +

αu
t

√
vec
(
(X̊at ,

˚̂
Vat)W

T
)
A−1

t vec
(
(X̊at ,

˚̂
Vat)W

T
)T)

+

αa
t

√
(Θ̂twut)C

−1
a,t(Θ̂twut)

T

10: Observe reward rat,ut from user ut

11: At+1 ← At +

vec((X̊at ,
˚̂
Vat)W

T)vec((X̊at ,
˚̂
Vat)W

T)T

12: bt+1 ← bt + vec((X̊at ,
˚̂
Vat)W

T)rat,ut

13: vec(Θ̂t+1)← A−1
t+1bt+1

14: Cat,t+1 ← Cat,t + (Θ̂v
t wut)(Θ̂

v
t wut)

T

15: dat,t+1 ← dat,t + (Θ̂v
t wut)(rat,ut − xT

at
(Θ̂x

t wut))

16: v̂at,t+1 ← C−1
at,t+1dat,t+1

17: Project Θ̂t+1 and v̂at,t+1 with respect to the constraints
‖θu‖2 ≤ S and ‖(xa,va)‖2 ≤ L

18: end for

between the optimal reward obtained by the oracle item se-
lection strategy and the reward received following the algo-
rithm over T trials,

R(T ) =

T∑
t=1

Rt =

T∑
t=1

(ra∗t ,ut
− rat,ut

) (6)

in which a∗t is the best item to be presented to the current
user ut according to the oracle and at is the item selected by
the algorithm, and Rt is the one-step regret at trial t.

Based on Lemma 1 and the developed item selection strat-
egy, we have the following theorem about the upper regret
bound of our FactorUCB algorithm.
Theorem 1 Under proper initialization of ALS in Algorithm
1, with probability at least 1 − δ, the cumulated regret of
FactorUCB algorithm satisfies,

R(T ) ≤2αu
T

√
2(d+ l)NT ln

(
1 +

L2
∑T

t=1

∑N
j w2

ut,j

δλ1(d+ l)N

)

+ 2αa
T

√
2lT ln

(
1 +

S2
∑T

t=1

∑N
j w2

ut,j

δλ2l

)
+ 2αa

T

(q2 + ε2)
(
1− (q2 + ε2)T

)
1− (q2 + ε2)

(7)

in which q2 and ε2 are the same as those defined in Lemma 1,
αu
T and αa

T are the upper bound of ‖vec(Θ̂t)−vec(Θ∗)‖At

and ‖v̂a,t − v∗a‖Ca,t
over all t ∈ {1, . . . , T} respectively,

and δ is also encoded in αu
T and αa

T as shown in Eq (4)
and (5). Though required by the theorem that λ1 and λ2
have to be sufficiently large, in our empirical evaluations
the algorithm’s performance is not sensitive to this setting.
The specific form of αu

T and αa
T and the proof sketch of

this theorem are provided in the supplementary material. As
highlighted in the proof, because the confidence interval is
shrinking via exploration, a sublinear regret is achieved af-
ter T trials of interactions; otherwise without proper explo-
ration, such as in the conventional offline training and on-
line testing paradigm of matrix factorization, a linear regret
is inevitable. Some other ad-hoc exploration strategies have
been proposed in literature (Zhao, Zhang, and Wang 2013;
Nakamura 2014), but little is known about their regret
bound, or analysis is only provided for overly simplified
situations (e.g., the user-item matrix is one rank one and
all the latent factors can be properly discretized beforehand
(Kawale et al. 2015)). For an online learning algorithm, a
sublinear upper regret bound is vital, as it indicates the aver-
age number of suboptimal recommendations a system makes
vanishes rapidly over time (a linear regret bound means the
algorithm makes constant errors).

Moreover, the resulting regret bound of factorUCB has
the following important theoretical properties under differ-
ent conditions.

First, the dependency structure among users plays an im-
portant role in reducing the regret on both user side and
item side. Consider the following two extreme cases. In
the first case, when W is an identity matrix, i.e., no de-
pendency among users, the first term of the upper regret
bound in Eq (7) degenerates toO

(
N(d+l)

√
T ln T

N

)
, which

roots in the reward prediction uncertainty from the esti-
mated latent user factors. And the second term degener-
ates to O

(
l
√
T lnT

)
, which corresponds to the estimated

latent item factors. In the second case, when users are ho-
mogenous and have uniform influence among each other,
i.e., ∀i, j, wij = 1

N , the first term in the regret bound de-
creases to O

(
N(d+ l)

√
T ln T

N2

)
and the second decreases

toO
(
l
√
T ln T

N

)
. As a result, via modeling user dependency,

FactorUCB achieves an O
(
N(d+ l)

√
T lnN

)
regret reduc-

tion on the user side and an O
(
l
√
T lnN

)
regret reduc-

tion on the item side. The best known upper regret bound
for a linear bandit algorithm is O

(√
Td log(Td)

)
(Abbasi-

yadkori, Pál, and Szepesvári 2011), which increases lin-
early with respect to the number of users in a recommender
system. In factorUCB, our worst case upper regret bound
matches that known bound, but its average regret per user
is decreasing as more users interact with the system to pro-
vide feedback. The same analogy also applies to the num-
ber of recommendation candidates. This is an advantageous
property for a practical system to provide satisfactory rec-
ommendations rapidly in an online setting.

Second, as denoted in Eq (7), the user arrival sequence
is recorded in the summation term of

∑T
t=1

∑N
j=1 w

2
ut,j

,
which is bounded by T from above, no matter how users
arrive to the system (as wu is a stochastic vector). There-
fore, the upper regret bound of factorUCB stays inO

(
N(d+

l)
√
T ln T

N

)
in the worse case scenario, such as users arrive

in an adversarial way – the least connected users come first
and most often.

Third, following our enhanced reward generation assump-
tion specified in Eq (3), the estimation quality of latent user
factors in factorUCB satisfies the following inequality (sim-
ilar result applies to the estimation quality of latent item fac-



(a) Cumulated regret (b) Effect of latent dimensions (c) Effect of (αu
t , α

a
t )

Figure 1: Analysis of regret, hidden feature dimension and parameter tuning.

tors as well),

‖vec(Θ̂t)− vec(Θ∗)‖At ≤
√

ln
(det(At)

δλ1

)
+
√
λ1S (8)

+
2√
δλ1

t∑
t′=1

‖v∗at′ ,u
− v̂at′ ,u‖2

If the dimension of latent factors matches the ground-
truth, based on the proved convergence property of ALS
in (Uschmajew 2012), the estimation of Θ and va is q-
linearly convergent to the optimum (Θ∗,v∗a), which is the
conclusion in Lemma 1. But if the dimension is not cor-
rectly set and those latent factors are independent from each
other, the third term in Eq (8) will not converge. It makes
αu
t linearly increase over time as αu

t is the upper bound of
‖vec(Θ̂t) − vec(Θ∗)‖At . This leads to a linear regret in
factorUCB at the worst case. Admittedly, determining the
correct dimension of latent factors is always a bottleneck of
factorization-based methods in practice. But by introducing
the observable contextual features, especially those strongly
correlated with the expected rewards, the reward prediction
uncertainty can be reduced as the latent factors only need to
fit the residual of reward prediction from the observed fea-
tures (as shown in the estimation of va in Algorithm 1). This
leads to reasonable performance of factorUCB in our empir-
ical evaluations.

Experiment
We performed extensive empirical evaluations of our pro-
posed factorUCB algorithm against several state-of-the-art
factorization-based and bandit-based collaborative filtering
methods, including: 1) Alternating Least Square (ALS) with
ε-greedy (Zhao, Zhang, and Wang 2013), which applies
context-free ε-greedy algorithm based on both observed fea-
tures and latent factors, but cannot utilize the user relational
graph; 2) Particle Thompson Sampling for matrix factoriza-
tion (PTS) (Kawale et al. 2015), which combines Thomp-
son sampling with probabilistic matrix factorization based
on Rao-Blackwellized particle filter, and it cannot utilize ob-
served features and user relational graph; 3) GOB.Lin (Cesa-
Bianchi, Gentile, and Zappella 2013), which models the de-
pendency among a set of contextual bandits over users via
a graph Laplacian based model regularization, but it can-
not estimate the latent factors; 4) CLUB (Gentile, Li, and

Zappella 2014), which clusters users during online learn-
ing to enable model sharing; but it only works with con-
textual features; 5) CoLin (Wu et al. 2016), which imposes a
similar collaborative reward generation assumption over the
user relational graph as that in our algorithm, but it does not
model the latent item factors; 6) factorUCB w/o W, which is
factorUCB with an identity W matrix, i.e., the dependency
among users is not considered; it demonstrates of utility of
modeling user dependency in interactive recommendation.

Experiments on synthetic dataset
In simulation, we generated a size-K item pool A, in which
each item a is associated with a (d + l)-dimension feature
vector (xa,va). Each dimension is drawn from a set of zero-
mean Gaussian distributions with variances sampled from a
uniform distribution U(0, 1). Principle Component Analysis
(PCA) was performed to make all the dimensions orthogo-
nal to each other. To simulate the reward generation defined
in Eq (3), we used all the (d+ l)-dimension features to com-
pute the true reward for each item, but only revealed the
first d dimensions (i.e., xa) to an algorithm. We simulated
N users, each of who is associated with a (d+ l)-dimension
preference vector θ∗u. Each dimension of θ∗u is drawn from
a uniform distribution U(0, 1). θ∗u is treated as the ground-
truth latent user factor in reward generation, and is unknown
to the algorithms. We then constructed the golden relational
stochastic matrix W for the dependency graph of users by
defining wij ∝ 〈θ∗i ,θ∗j 〉, and normalize each column of W
by its L1 norm. The resulting W was disclosed to all the al-
gorithms. To increase the learning complexity, at each trial
t, our simulator only disclosed a subset of items in A to the
learners for selection, e.g., randomly selected 10 items from
A without replacement. At each trial t, the same set of items
were presented to all the algorithms; and the Gaussian noise
ηt in Eq (3) was sampled once for all those items at each
trial. We fixed the dimension d of observable features to 20,
the dimension l of latent item factors to 5, user size N to
100, the standard derivation σ of Gaussian noise to 0.1, and
the item pool size K to 1000 in our simulation.

Cumulated regret defined in Eq (6) was used to evalu-
ate the performance of different algorithms in Figure 1 (a),
where we set the dimension for latent factors in PTS to 10
(which gave us the best performance) and 5 in ALS ε-greedy
and factorUCB. We observed that PTS took much longer
time to converge, because PTS cannot utilize the observed
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Figure 2: Experimental comparisons on real-world datasets.

context features for reward prediction, so that it requires
much more observations to improve the accuracy of latent
factor estimation. Instead, ALS ε-greedy and factorUCB
leveraged the context features to quickly reduce the reward
prediction uncertainty (i.e., less exploration). Two contex-
tual bandits, i.e., GOB.Lin and CoLin, suffered from linear
regret, since they do not model the latent item factors. In
addition, factorUCB converged much faster than factorUCB
w/o W, which confirmed our theoretical analysis about the
regret reduction from user dependency modeling. Because
factorUCB requires the dimension of latent factor as input,
we test its sensitivity to the setting of latent dimension l. To
investigate the importance of correct setup of latent factor
dimension in factorUCB, we tested two different ways of la-
tent factor construction in our simulator: 1) we chose the top
5 dimensions with the largest eigenvalue from PCA’s result
as latent item factors, i.e., we hid the top 5 most informa-
tive factors in reward generation from the learners; 2) we hid
the bottom 5 most informative factors. And on the algorithm
side, we varied the dimension of latent factors used in fac-
torUCB from 1 to 7. From the results shown in Figure 1 (b),
we can reach three conclusions. First, when the latent factors
were the most informative ones, we obtained much worse
regret than that in the case of the least informative factors
were hidden. Second, the large difference between the regret
of a bandit algorithm that does not model the latent factors
(such as GOB.Lin) and the one that models latent factors
(factorUCB, even with wrong dimensions) emphasizes the
necessity of latent factor learning in online recommendation.
Third, although our theoretical analysis predicts a linear re-
gret if the latent factor dimension was not accurately set, the
actual performance was much more promising. One reason
is that our theoretical analysis is for the worst case scenario
(upper regret bound), which does not preclude a sub-linear
converging regret in practice.

In addition, we also investigated the effect of exploration
parameter αu

t and αa
t in factorUCB, compared with fac-

torUCB w/o W. In Figure 1 (c), each column illustrates
a combination of αu

t and αa
t used in factorUCB and fac-

torUCB w/o W. The last column indexed by (αu
t , α

a
t ) rep-

resents the theoretical values of those two parameters com-
puted from the algorithm’s corresponding regret analysis. As
shown in the results, the empirically tuned (αu, αa) yielded
comparable performance to the theoretical values, and made
online computation more efficient. As a result, in all our fol-
lowing experiments we will use the manually set αu

t and αa
t .

Experiments on real-world datasets

Yahoo dataset: This data set contains 10-days clickstream
logs from Yahoo! Today Module collected in May 2009, to-
talling 45,811,883 user visits (Li et al. 2010). In each logged
event, both the user and each of the 10 candidate articles are
associated with a feature vector of 6 dimensions. However,
this data set does not contain any user identity due to pri-
vacy concern. To associate the observations with individual
users, we first clustered all users into user groups by apply-
ing a k-means algorithm on the given user features. Each
logged event was assigned to its closest user group as its
user ID. The adjacency matrix W was estimated by the dot
product between the centroids from k-means’ output, i.e.,
wij ∝ 〈ui, uj〉. We set the dimension of latent factors in
FactorUCB and ALS ε-greedy to 5, and that in PTS to 10.

Click-Through-Rate (CTR) was used as the performance
metric. Average CTR was computed in every 2000 obser-
vations (not the cumulated CTR) for each algorithm based
on the unbiased offline evaluation protocol developed in (Li
et al. 2011; 2010), and normalized by the corresponding
logged random strategy’s CTR. We reported the normal-
ized CTR results from different algorithms over 160 derived
user groups in Figure 2 (a) (similar relative improvement
was obtained with different number of derived user groups),
where we had several important observations. First, compar-
ing to the conventional contextual bandits (i.e., GOB.Lin,
CoLin and CLUB), which do not model the latent factors,
factorUCB demonstrated significant improvement in recom-
mendation quality. This proves the benefit of learning la-
tent factors to enhance reward prediction, especially when
the given context features are not informative. Second, fac-
torUCB improved more rapidly than PTS and factorUCB
w/o W at the early stage. This confirms the value of user de-
pendency modeling for addressing cold-start in online rec-
ommendation. But these two factorization-based baselines
caught up in the later stage, as more observations became
available for them to accurately estimate the latent factors
and our approximated user dependency graph might intro-
duce unnecessary bias that prevented factorUCB from accu-
rately recovering the latent factors. This also indicates the
importance of accurate user dependency modeling in fac-
torUCB, and we plan to explore W learning in factorUCB
as our future work. Third, the performance improvement in
ALS ε-greedy was much slower compared with factorUCB
(and factorUCB w/o W), while they are using the same in-
formation and mechanism for latent factor learning. This
further proves the advantage of estimation confidence based
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Figure 3: Item-based and user-based analysis

exploration strategy over the simple context-free random ex-
ploration in interactive recommendation.

LastFM dataset: This dataset is extracted from the online
music streaming service Last.fm (http://www.last.
fm). It contains 1,892 users, 17,632 items (artists), and the
users’ social network graph. Following the same settings as
used in (Cesa-Bianchi, Gentile, and Zappella 2013), we pre-
processed the dataset to fit it into an online recommendation
setting. The dimension of context features was set to 25 by
applying PCA over the text descriptions of each item, and
the dimension of latent factors in factorUCB and ALS ε-
greedy was fixed to 5, and 10 in PTS.

We normalized the cumulated reward from different al-
gorithms by that from a random algorithm, and reported
the results in Figure 2 (b). We can clearly notice that PTS
performed the worst, while two contextual bandits (i.e.,
GOB.Lin and CoLin) achieved much better performance
than it. This indicates the observed context features in this
dataset were sufficiently informative for the algorithms to
make accurate recommendations. A purely factorization-
based method got penalized by not utilizing such informa-
tion. On the other hand, we also noticed that factorUCB
converged much faster than factorUCB w/o W, which again
demonstrates the utility of user dependency modeling for ad-
dressing cold-start in recommendation.

To further investigate the effect of modeling context fea-
tures and user dependency in alleviating cold-start in rec-
ommendation, we designed a set of controlled experiments.
We first split users into two groups using a max-cut algo-
rithm on the constructed user relational graph to maximize
the connectivity between these two groups. Observations in
the first user group are called “learning group” and those
in the second group are called “testing group.” To simulate
cold-start, we only executed algorithms on the testing group.
Correspondingly, we simulated warm-start by first running
algorithms on the learning group to pre-estimate the mod-
els, and then continued executing them on the testing group.
Since users in the testing group were isolated from the learn-
ing group, their model parameters could only be initialized
by the propagated information via the user relational graph,
if an algorithm explicitly modeled that.

We measured the differences in average CTR on Yahoo
and differences in cumulated rewards on LastFM between
warm-start and cold-start in Figure 2 (c) and (d). On the Ya-
hoo dataset, factorization-based algorithms (i.e., factorUCB,
PTS and ALS ε-greedy) benefit the most from the collabora-
tion in latent factor estimation: latent item factors estimated
in the learning group helped them better estimate user pref-

erences in testing group. On the LastFM dataset, consid-
erable improvement was achieved in algorithms explicitly
modeling user dependency, i.e., factorUCB, GOB.Lin and
CoLin. We should note Figure 2 (c) and (d) demonstrated
the relative performance improvement from warm-start to
cold-start, so that it does not represent the algorithm’s final
recommendation quality in these experiments. In the final
results, factorUCB achieved the best performance in both
warm-start and cold-start on Yahoo dataset, and cold-start
on LastFM dataset (factorUCB w/o W was best in warm-
start in this data set).

We performed both item-based and user-based analysis
to understand where the improved recommendations were
achieved. On the item side, we computed the precision and
recall of the recommendations made by different algorithms
on both datasets (because of the offline evaluation protocol
used in Yahoo dataset, recall is undefined there) and sum-
marized the results in Figure 3 (a)-(c). In the reported re-
sults, we ranked the items based on their popularity in the
corresponding datasets. As we can notice that factorUCB
achieved encouraging precision over the less popular items
in Yahoo dataset, and best recall on popular items in LastFM
dataset. In the user side analysis, we investigated how soon
a user would receive improved recommendations during the
interactive process. We defined an improved user as the user
who is served with improved recommendations from a tar-
get recommendation algorithm than those from the purely
factorization-based algorithm PTS. The design behind this
experiment is that because the PTS algorithm cannot utilize
observable contextual features nor user dependency relation,
it serves as a good basis to assess the value of contextual
features and user dependency for online recommendation.
In addition, to understand the specific contribution of con-
text feature modeling and user dependency modeling in fac-
torUCB, we also included factorUCB w/o W and CoLin in
this analysis, where the CoLin baseline can be considered
as factorUCB w/o V. We applied the same evaluation setting
as previously used in warm-start and cold-start comparison,
and reported the percentage of improved users in the first
1%, 2%, 3%, 5%, and 10% observations during the inter-
active recommendation in Figure 3 (d). The results clearly
demonstrated that combining both components gave us the
most advantage in providing users with improved recom-
mendations in the early stage (first 3% recommendations),
and it becomes more beneficial in the warm-start setting,
where information was prorogated from the users and items
in learning group to those in the testing group.



Conclusions
In this work, we studied the problem of online interac-
tive recommendation via a factorization-based bandit al-
gorithm. Observable contextual features and dependency
among users are leveraged to improve the algorithm’s con-
vergence rate and help conquer cold-start in recommenda-
tion. A high probability sublinear upper regret bound is
proved, where considerable regret reduction is achieved on
both user and item sides. Our current solution assumes the
knowledge of ground-truth user dependency and hidden fea-
ture dimension. It is important to explore how to determine
the user dependency structure and dimension of hidden fea-
tures during online learning. In addition, our regret analysis
is based on the assumption of proper initialization of alter-
nating least square. It is necessary to explore other tech-
niques in matrix analysis or optimization procedures for
model parameter estimation and derive the corresponding
provable arm selection strategies.
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