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ABSTRACT
We propose to capture humans’ variable and idiosyncratic senti-
ment via building personalized sentiment classification models at
a group level. Our solution roots in the social comparison theory
that humans tend to form groups with others of similar minds and
ability, and the cognitive consistency theory that mutual influence
inside groups will eventually shape group norms and attitudes, with
which group members will all shift to align. We formalize person-
alized sentiment classification as a multi-task learning problem. In
particular, to exploit the clustering property of users’ opinions, we
impose a non-parametric Dirichlet Process prior over the personal-
ized models, in which group members share the same customized
sentiment model adapted from a global classifier. Extensive exper-
imental evaluations on large collections of Amazon and Yelp re-
views confirm the effectiveness of the proposed solution: it outper-
formed user-independent classification solutions, and several state-
of-the-art model adaptation and multi-task learning algorithms.

CCS Concepts
•Information systems → Sentiment analysis; Clustering and
classification;
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1. INTRODUCTION
Traditional solutions for text-based sentiment modeling mostly

focus on building population-level supervised classifiers [29, 28,
36], which estimate and apply a shared classifier across all users’
opinionated data. This postulates a strong assumption that the joint
probability of sentiment labels and text content is independent and
identical across users. However, this assumption is usually un-
dermined in practice: it is well known in social psychology and
linguistic studies that sentiment is personal and humans have di-
verse ways of expressing attitudes and opinions [37]. Hence, a
single generic sentiment model can hardly capture the heterogene-
ity among users, and it will inevitably lead to inaccurate opinion
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mining results. Explicitly modeling the heterogeneity to capture
individualized opinions is thus of particular importance.

Estimating a personalized sentiment model is challenging. Spar-
sity of individual users’ opinionated data prevents us from estimat-
ing supervised classifiers on a per-user basis. Some existing works
utilize semi-supervised methods to address the sparsity issue. For
example, [18, 33] utilized user-user and user-document relations
as regularizations to perform transductive learning. However, only
one global sentiment model is estimated in such solutions, and it
cannot capture the nuance in which individual users express their
diverse opinions. [1] developed a transfer learning solution to adapt
a global sentiment model to each individual user, but limited im-
provement is achieved on users with few observations, who form a
major portion of the user population.

In this work, we take a new perspective to build personalized
sentiment models by exploiting social psychology theories about
humans’ dispositional tendencies. First, the theory of social com-
parison [7] states that the drive for self-evaluation can lead people
to associate with others of similar opinions and abilities, thus to
form groups. This guarantees the relative homogeneity of opin-
ions and abilities within groups. In our solution, we capture such
clustering property of different users’ opinions by postulating a
non-parametric Dirichlet Process (DP) prior [12] over the individ-
ualized models, such that those models automatically form latent
groups. In the posterior distribution of this postulated stochastic
process, users join groups by comparing the likelihood of gener-
ating their own opinionated data in different groups (i.e., realiz-
ing self-evaluation and group comparison). Second, according to
the cognitive consistency theory [25], once the groups are formed,
members inside the same group will be influenced by other in-
group members mutually through both implicit and explicit infor-
mation sharing, which leads to the development of group norms and
attitudes [32]. We formalize this by adapting a global sentiment
model to individual users in each latent user group, and jointly es-
timating the global and group-wise sentiment models. The shared
global model can be interpreted as the global social norm, because
it is estimated based on observations from all users. It thus cap-
tures homogenous sentimental regularities across users. The group-
wise adapted models capture heterogenous sentimental variations
among users across groups. Because of this two-level information
grouping and sharing, the complexity of preference learning will be
largely reduced. This is of particular value for sentiment analysis
in tail users, who only possess a handful of observations but take
the major proportion in user population.

We should note that our notion of user group is different from
those in traditional social network analysis, where user interaction
or community structure is observed. In our solution, user groups
are latent: they are formed based on the textual patterns in users’



sentimental expressions, i.e., implicit sentimental similarity instead
of direct influence, such that members inside the same latent group
are not necessarily socially connected. This aligns with our mo-
tivating social psychology theories: people who have similar alti-
tudes or behavior patterns might not know each other, while they
interact via implicit influence, such as being exposed to the same
social norms or read each others’ opinionated texts. Being able to
quantitatively identify such latent user groups also provides a new
way of social network analysis – content-based community detec-
tion. But this is beyond the scope of this paper.

Our proposed solution can also be understood from the perspec-
tive of multi-task learning [10, 19, 39]. In particular, the problem
of personalized sentiment classification can be considered as es-
timating a set of related classifiers across users. In our solution,
we formalize this idea as clustered model sharing and adaptation
across users. We assume the distinct ways in which users express
their opinions can be characterized by different configurations of a
linear classifier’s parameters, i.e., the weights of textual features.
Individualized models can thus be achieved via a series of linear
transformations over a globally shared classifier, e.g., shifting and
scaling the weight vector [1]. Moreover, we enforce the relatedness
among users via the automatically identified user groups – users in
the same group would receive the same set of model adaptation op-
erations. The user groups are jointly estimated with the group-wise
and global classifiers, such that information is shared across users
to conquer data sparsity in each user and non-linearity is achieved
when performing sentiment classification across users.

We performed extensive experimentations on two large collec-
tions of Amazon and Yelp reviews to evaluate our solution. It
outperformed user-independent classification methods, and several
state-of-the-art model adaption and multi-task learning algorithms.

2. RELATED WORK
Building personalized sentiment classifiers can be considered

as a multi-task learning problem, which exploits the relatedness
among multiple learning tasks to benefit each individual task. Tasks
can be related in various ways. A typical assumption is that all
models learned are close to each other in some matrix norm of their
model parameters [10, 19]. This assumption has been empirically
proved to be effective for modeling consumer preferences in market
research [11]. [8] proposed a simultaneous co-clustering algorithm
between customers and products considering the dyadic property
of the data. Some recent efforts suggest that relatedness between
tasks should also be estimated to restrict information sharing only
within similar tasks [34, 3]. Dirichlet Process prior [12] naturally
satisfies this goal: it associates related tasks into groups via ex-
ploiting the clustering property of data. [21] utilized the property
to achieve content personalization of users by generating both the
latent domains and the mixture of domains for each user. And they
also trained the personalized models using the multi-task learning
idea to capture heterogeneity and homogeneity among users with
respect to the content. Their solution is different from ours as we
consider clustering users regarding to opinionated sentiment mod-
els. [39, 31] estimated a set of linear classifiers in automatically
identified groups. However, sparsity of personal opinionated data
in the sentiment analysis scenario still limits the practical value of
conventional multi-task learning algorithms, since in each task a
full set of model parameters still have to be estimated. Our solution
instead only learns simple model transformations over groups of
features in each task [1], which greatly reduces the overall model
learning complexity. And because the number of groups is auto-
matically identified from data, it naturally balances sample com-
plexity in learning group-wise models.

The proposed solution is also closely related to model adap-
tation, which is an important topic in transfer learning [27]. In
the opinion mining community, model adaptation techniques are
mostly exploited for domain adaptation, e.g., adapting sentiment
classifiers trained on book reviews to DVD reviews [6, 26, 38].
There are also some recent works that attempt to perform model
adaptation on a per-user basis for sentiment classification. Li et al.
proposed an online learning algorithm to continue training person-
alized classifiers from a shared global model [20]. [1] applied the
idea of linear transformation based model adaptation for person-
alized sentiment classifier training. [17] adapted individual user
models from a updated global model to achieve user personaliza-
tion. However, no existing work in model adaptation considers the
relatedness among users, and thus adaptations are performed in an
isolated manner. Our solution enforces users in the same group to
share the same set of adaptation parameters and links models in
different user groups by a globally shared model, which propagates
information among users to overcome the data sparsity issue.

3. METHODOLOGY
Our solution roots in the social comparison theory and cogni-

tive consistence theory. Specifically, we build personalized senti-
ment classification models via a set of shared model adaptations
for both a global model and individualized models in groups. The
latent user groups are identified by imposing a Dirichlet Process
prior over the individual models. In the following, we first discuss
the motivating social behavior theories, and then carefully describe
how we formulate these social concepts to computational models
for personalized sentiment analysis.

3.1 Group Formation and Group Norms
In social science, the theory of social comparison explains how

individuals evaluate their own opinions and abilities by comparing
themselves to others in order to reduce uncertainty when express-
ing opinions and learn how to define themselves [13]. In the con-
text of sentiment analysis, we consider building personalized sen-
timent models as a set of inductive tasks. Because of the explicit
and implicit comparisons users have performed when generating
the opinionated data, those learning tasks become related. [23] fur-
ther suggested the drive for self-evaluation leads people to asso-
ciate with others of similar minds to form (latent) groups, and this
guarantees the relative homogeneity of opinions within groups. In
sentiment analysis, this can be translated as model regularization
among users in the same group. Correspondingly, the process of
self-definition can be considered as people recognizing a specific
group after comparison, i.e., joining an existing similar group or
creating a new distinct group after evaluating both self and group
information. This further suggests us to build personalized models
in a group-wise manner and identify the latent groups by exploiting
the clustering property of users’ opinionated data.

Once the groups of similar opinions are formed, cognitive con-
sistency theory [14, 25] suggests that members in the same group
interact mutually in order to reduce the inconsistency of opinions,
and this eventually leads to group norms that all members will shift
to align with. Group norms thus act as powerful force that dra-
matically shapes and exaggerates individuals’ emotional responses
[4]. Such groups are not necessarily defined by observed social
networks, as the influence can take forms of both implicit and ex-
plicit interactions. In the context of sentiment analysis, we capture
group norms by enforcing users in the same group to share iden-
tical sentiment models. Heterogeneity is thus characterized by the
distinct sentiment models across groups. This reduces the learning
complexity from per-user model estimation to per-group. Besides



the group norms, the simultaneously estimated global model pro-
vides the basis for group norms to evolve from, which represents
the homogeneity among all users.

3.2 Personalized Model Adaptation
We assume the diverse ways in which users express their opin-

ions can be characterized by different settings of a linear classifier,
i.e., the weight vector of textual features. We choose to estimate a
linear classifier for each user to model sentiment, because of its em-
pirically superior performance in text-based sentiment analysis [29,
28]. But the proposed solution can be easily extended to non-linear
classification models, with the constraints that the model takes a
linear combination of features in its core computation and its like-
lihood function can be readily evaluated at given data points.

Formally, denote a collection ofN users asU = {u1, u2, ...uN},
in which each user u is associated with a set of opinionated text
documents as Du =

{
(xud , y

u
d )
}|Du|
d=1

. Each document d is repre-
sented by a V -dimension vector xd of textual features, and yd is the
corresponding sentiment label. We assume each user is associated
with a sentiment model f(x;ωu) → y, which is characterized by
the individualized feature weight vector ωu. Estimating f(x;ωu)
for users in U is the inductive learning task of our focus.

Instead of assuming f(x;ωu) is solely estimated from the user’s
own opinionated data, we further assume it is obtained from a global
sentiment model f(x;ωs) via a series of linear model transforma-
tions [1, 35], i.e., shift and scale the shared model parameter ωs

into ωu based on Du. To simplify the discussions in this paper,
we assume binary sentiment classification, i.e., y ∈ {0, 1}, and we
will use logistic regression as the reference model in the follow-
ing discussions. To handle sparse observations in each individual
users’ opinionated data, we further assume that model adaptations
can be performed in feature groups [35]. Specifically, features in
the same group will be updated synchronously by performing the
same set of shifting and scaling operations, i.e., shift and scale the
model weights. This enables information propagation from seen
features to unseen features in the same feature group. Various fea-
ture grouping methods have been explored in [35], and we directly
employed their methods for this purpose, since feature grouping is
not the contribution of this work.

We define g(i)→ k as the feature grouping method, which maps
feature i in {1, 2, . . . , V } to feature group k in {1, 2, . . . ,K}. The
set of personalized model adaptation operations in user u can then
be represented as a 2K-dimension vector θu = (au1 , a

u
2 , . . . , a

u
K , b

u
1

, bu2 , . . . , b
u
K), where auk and buk represent the scaling and shifting

operations in feature group k for user u. This gives us a one-to-one
mapping of feature weights from global model ωs to personalized
model ωu as ∀i ∈ {1, 2, . . . , V }, ωui = aug(i)ω

s
i + bug(i). Because

θu uniquely determines the personalized feature weight vector ωu,
we will then refer to θu as the personalized sentiment model for
user u in our discussions.

Different from what has been explored in [1, 35], where the
global model ωs is predefined and fixed, we assume ωs is unknown
and dynamic. Therefore, it needs to be learnt based on the observa-
tions from all the users inU . This helps us capture the variability of
people’s sentiment, such as the dynamics of social norms. In par-
ticular, we apply the same linear transformation method to adapt
ωs from a predefined sentiment model ω0. ω0 can be empirically
set based on a separate user-independent training set, e.g., pool-
ing opinionated data from different but related domains. Since this
transformation will be jointly estimated across all users, a different
feature mapping function g′(·) can be used to organize features into
more groups to increase the resolution of sentiment classification in
the global model. We denote the corresponding global model adap-

tation as θs = (as1, a
s
2, . . . , a

s
L, b

s
1, b

s
2, . . . , b

s
L), in which additional

degree of freedom is given to the feature group size L. The benefit
of this second-level model adaptation is two-fold. First, the prede-
fined sentiment model ω0 can serve as a prior for global sentiment
classification [1]. This benefits multi-task learning when the over-
all observations are sparse. Second, non-linearity among features is
introduced when the global model and personalized models employ
different feature groupings. This enables observation propagation
across features in different user groups.

Plugging this two-level linear transformation based model spec-
ification into the logistic function, we can materialize the personal-
ized logistic regression model for user u as,

P (yud = 1|xud , θu, θs, ω0) = σ
( K∑
k=1

∑
g(i)=k

(aukω
s
i + buk)xud,i

)
(1)

where ωsi = asg′(i)ω
0
i + bsg′(i) and σ(x) = 1

1+exp(−x) .

3.3 Non-parametric Modeling of Groups
The inductive learning task in each user u hence becomes to es-

timate θu that maximizes the likelihood of the user’s own opin-
ionated data defined by Eq (1). Accordingly, a shared task for all
users is to estimate θs with respect to the likelihood over all of
their observations. As we discussed in the related social theories
about humans’ dispositional tendencies, people tend to automati-
cally form groups of similar opinions, and follow the mutually re-
inforced group norms in their own behavior. Therefore, instead of
estimating the personalized model adaptation parameters {θu}Nu=1

independently, we assume they are grouped and those in the same
group share identical model adaptation parameters.

Determining the task grouping structure in multi-task learning
is challenging, because the optimal setting of individual models is
unknown beforehand and it will also be affected by the imposed
task grouping structure. Ad-hoc solutions approximate the group
structure by first performing clustering in the feature space [5] or
individually trained models [16], and then restarting the learning
tasks with the fixed task structure as additional regularization. Un-
fortunately, such solutions have serious limitations: 1) they isolate
the learning of task relatedness structure from the targeted learn-
ing tasks; 2) one has to manually exhaust the number of clusters;p
and 3) the identified task grouping structure introduces unjustified
bias into multi-task learning. To avoid such limitations, we appeal
to a non-parametric approach to jointly estimate the task grouping
structure and perform multi-task learning across users.

Motivated by the social comparison theory, in our solution in-
stead of considering the optimal setting of {θu}Nu=1 as fixed but
unknown, we treat it as stochastic by assuming each user’s model
parameter θu is drawn from a Dirichlet Process prior [12, 2]. A
Dirichlet Process (DP), DP (α,G0) with a base distribution G0

and a scaling parameter α, is a distribution over distributions. An
important property of DP is that samples from it often share some
common values, and therefore naturally form clusters. The number
of unique draws, i.e., the number of clusters, varies with respect to
the data and therefore is random, instead of being pre-specified.

Introducing the DP prior thus imposes a generative process over
the learning task in each individual user in our problem. This pro-
cess can be formally described as follows,

G ∼ DP (α,G0),

θu|G ∼ G, (2)

yud |xud , θu, θs, ω0 ∼ P (yud = 1|xud , θu, θs, ω0).

where the hyper-parameter α controls the concentration of unique



draws from the DP prior, the base distributionG0 specifies the prior
distribution of the parameters in each individual model, and G rep-
resents the mixing distribution of the sampled results of θu. To
simplify the notations for discussion, we define au and bu as the
scaling and shifting components in θu, such that θu = (au, bu).
We impose an isometric Gaussian distribution in G0 over θu as
θu ∼ N(µ, σ2), where µ = (µa, µb) and σ = (σa, σb) accord-
ingly. That is, we allow the shifting and scaling operations to be
generated from different prior distributions. Correspondingly, we
also treat the globally shared model adaptation parameter θs as a la-
tent random variable, and impose another isometric Gaussian prior
over it as θs ∼ N(µs, σ

2
s), where µs and σ2

s are also decomposed
with respect to the shifting and scaling operations.

By integrating out G in Eq (2), the predictive distribution of θu

conditioned on the individualized models in the other users, de-
noted as θ−u = {θ1, .., θu−1, θu+1, ...θN}, can be analytically
computed as follows,

p(θu|θ−u, α,G0)=
α

N−1+α
G0+

1

N−1+α

N∑
j 6=i

δθu(θj) (3)

where δθu(·) is the distribution concentrated at θu.
This predictive distribution well captures the idea of social com-

parison theory. On the one hand, the second part of this predictive
distribution captures the process that a user compares his/her own
sentiment model against the other users’ models, as the distribution
δθu(·) takes probability one only when θj = θu, i.e., they hold the
same sentiment model. Hence, a user tends to join groups with es-
tablished sentiment models, and this probability is proportional to
the popularity of this sentiment model in overall user population.
On the other hand, the first part of Eq (3) captures the situation that
a user decides to form his/her own sentiment model, but this prob-
ability is small when the user population is large. As a result, the
imposed DP prior encourages users to form shared groups.

We denote the unique samples in G as {φ1, φ2, . . . , φc}, i.e.,
the group models, where the group index c takes value from 1 to
∞, and φi represents the homogeneity of sentiment models in user
group i. We should note that the notion of an infinite number of
groups is only to accommodate the possibility of generating new
groups during the stochastic process. As the sample distribution
G resulting from the DP prior in Eq (2) only has finite supports
at the points of {θ1, θ2, . . . , θN}, the maximum value for c is N ,
i.e., all users have their own unique sentiment models. Then the
likelihood of the opinionated data in user u can be computed under
the stick-breaking representation of DP [30] as follows:

P (yu|xu, ω0, α,G0) (4)

=

∫
dφ

∫
dθs
∫
dπ

∞∑
cu=1

|Du|∏
d=1

P (yud |xud , φcu , θ
s, ω0)p(cu|π)

p(φcu |µ, σ
2)p(θs|µs, σ2

s)p(π|α)

whereπ = (πc)
∞
c=1 ∼ Stick(α) captures the proportion of unique

sample φc in the whole collection. And the stick-breaking process
Stick(α) for π is defined as: π′c ∼ Beta(1, α), πc = π′c

∏c−1
t=1 (1−

π′t), which is a generalization of multinomial distribution with a
countably infinite number of components.

As the components to be estimated in each latent puser group
(i.e., {φc}∞c=1) is a set of linear model transformations, we name
the resulting model defined by Eq (4) as Clustered Linear Model
Adaptation, or cLinAdapt in short. And using the language of
graphical models, we illustrate the dependency between different
components of cLinAdapt in Figure 1. We should note that our
cLinAdapt model is not a fully generative model: as defined in

α

πi

cu yud xud

φi

µ, σ2

θs ω0

µs, σ
2
s

N

∞

D

1

Figure 1: Graphical model representation of cLinAdapt. Light
circles denote the latent random variables, and shadow circles
denote the observed ones. The outer plate indexed by N de-
notes the users in the collection, the inner plate indexed by D
denotes the observed opinionated data associated with user u,
and the upper plate denotes the parameters for the countably
infinite number of latent user groups in the collection.

Eq (4), we treat the documents {xu}Nu=1 as given and do not spec-
ify any generation process on them. The group membership vari-
able cu can thus only be inferred for users with at least one labeled
document, since that is the only supervision for group membership
inference. As a result, we assume the group membership for each
user is stationary: once inferred from training data, it can be used
to guide personalized sentiment classification in the testing phase.
Modeling the dynamics in such latent groups is outside the scope
of this work.

3.4 Posterior Inference
To apply cLinAdpat for personalized sentiment classification, we

need to infer the posterior distributions of: 1) group-wise model
adaptation parameters {φc}∞c=1, each one of which captures the
homogeneity of personalized sentiment models in a correspond-
ing latent user group; 2) global model adaptation parameter θs,
which is shared by all users’ sentiment models; 3) group member-
ship variable cu for user u; and 4) sentiment labels yu for testing
documents in user u. However, because there is no conjugate prior
for the logistic regression model, exact inference for cLinAdapt
becomes intractable. In this work, we develop a stochastic Expec-
tation Maximization (EM) [9] based iterative algorithm for poste-
rior inference in cLinAdapt. In particular, Gibbs sampling is used
to infer the group membership {cu}Nu=1 for all users based on the
current group models {φc}∞c=1 and global model θs, and then max-
imum likelihood estimation for {φc}∞c=1 and θs is performed based
on the newly updated group membership {cu}Nu=1 and correspond-
ing observations in users. These two steps are repeated until the
likelihood on the training data set converges. During the iterative
process, the posterior of yu in testing documents in user u is accu-
mulated for final prediction.

Next we will carefully describe the detailed procedures of each
step in this iterative inference algorithm.
• Inference for {cu}Nu=1: Following the sampling scheme pro-
posed in [24], we introduce a set of auxiliary random variables of
size m, i.e., {φai }mi=1, drawn from the same base distribution G0 to
define a valid Markov chain for Gibbs sampling over {cu}Nu=1. To
facilitate the description of the developed sampling scheme, we as-
sume that at a particular step in sampling cu for user u, there are in
total C active user groups (i.e., groups that associate with at least
one user, excluding the current user u), and by permuting the in-



dices, we can index them from 1 to C. By denoting the number of
users in group c as n−uc (excluding the current user u), the posterior
distribution of cu can be estimated by,

P
(
cu = c|yu,xu, {φi}Ci=1, {φaj }mj=1, θ

s, ω0) ∝ (5){
n−uc

∏|Du|
d=1 P (yud |xud , φc, θs, ω0) for 1 ≤ c ≤ C,

α
m

∏|Du|
d=1 P (yud |xud , φac , θs, ω0) for 1 < c ≤ m.

If an auxiliary variable is chosen for cu, it will be appended to
{φi}Ci=1 as one extra active user group.

Because of the introduction of auxiliary variables {φai }mi=1, the
integration of {φc}∞c=1 with respect to the base distribution G0 is
approximated by a finite sum over the current active groups and
auxiliary variables. Therefore, the number of sampled auxiliary
variables affects accuracy of this posterior. To avoid bias in sam-
pling cu, we will draw a new set of auxiliary variables from G0

every time when sampling. As the prior distributions for θu in G0

are Gaussian, sampling the auxiliary variables is efficient.
We should note that the sampling step derived in Eq (5) for cLi-

nAdapt is closely related to the social comparison theory. The
auxiliary variables can be considered as pseudo groups: no user
has been assigned to them but they provide options for construct-
ing new sentiment models. When a user develops his/her own
sentiment model, he/she will evaluate the likelihood of generating
his/her own opinionated data under all candidate models together
with such a model’s current popularity among other users. In this
comparison, the likelihood function serves as a similarity measure
between users. Additionally, new sentiment models will be cre-
ated if no existing model can well explain this user’s opinionated
data. This naturally determines the proper size of user groups with
respect to the overall data likelihood during model update.
• Estimate for {φc}∞c=1 and θs: Once the group membership
{cu}Nu=1 is sampled for all users, the grouping structure among
individual learning tasks is known, and the estimation for {φc}∞c=1

and θs can be readily performed by maximizing the complete-data
likelihood based on the current group assignments.

Specifically, assume there areC active user groups after the sam-
pling of {cu}Nu=1, the complete-data log-likelihood over {φc}Cc=1

and θs can be written as,

L
(
{φc}Cc=1, θ

s) =

N∑
u=1

logP (yu|xu, φcu , θ
s, ω0) (6)

+

C∑
c=1

log p(φc|µ, σ2) + log p(θs|µs, σ2
s)

As the global model adaptation parameter θs is shared by all the
users (as defined in Eq (1)), it makes the estimation of {φc}Cc=1 de-
pendent across all the user groups, i.e., information sharing across
groups in cLinAdapt.

In Section 3.3, we did not specify the detailed configuration of
the prior distributions on θu and θs, i.e., Gaussian’s mean and stan-
dard deviation. But given θu and θs stand for linear transformations
in model adaptation, proper assumption can be postulated on their
priors. In particular, we believe the scaling parameters should be
close to one and shifting parameters should be close to zero, i.e.,
µa = 1 and µb = 0, to encourage individual models to be close to
the global model (i.e., reflecting social norm). The standard devi-
ations control the confidence of our belief and can be empirically
tuned. The same treatment also applies to µs and σ2

s for the global
model adaptation parameter θs.

Eq (6) can be efficiently maximized by a gradient-based opti-
mizer, and the actual gradients of Eq (6) reveal the insights of our
proposed two-level model adaptation in cLinAdapt. For illustration

purpose, we only present the decomposed gradients with respect to
the complete-data log-likelihood for scaling operation in φc and θs

on a specific training instance (xud , y
u
d ) in user u:

∂L(·)
∂acuk

= ∆u
d

∑
g(i)=k

(
asg′(i)ω

0
i + bsg′(i)

)
xudi +

acuk − 1

σ2
(7)

∂L(·)
∂asl

= ∆u
d

∑
g′(i)=l

acug(i)ω
0
i x
u
di +

asl − 1

σ2
s

(8)

where ∆u
d = yud − P (yud = 1|xud , φcu , θs, ω0), and g(·) and g′(·)

are the feature grouping functions for individual users’ and global
model adaptation. First, observations from all group members will
be aggregated to update the group-wise model adaptation param-
eter φc (as users in the same group share the same model padap-
tations). This can be understood as the mutual interactions within
groups to form group norms and attitudes. Second, the group-wise
observations are also utilized to update the globally shared model
adaptations among all the users (as shown in Eq (8)), which adds
another dimension of task relatedness for multi-task learning. Also
as illustrated in Eq (7) and (8), when different feature groupings
are used in g(·) and g′(·), nonlinearity is introduced to propogate
information across features.
• Predict for yu: During the t-th iteration of stochastic EM, we
use the newly inferred group membership and sentiment models to
predict the sentiment labels yu in user u’s testing documents by,

P (yud = 1|xud , {φtc}Ct
c=1, θ

s
t , ω

0) = (9)
Ct∑
c=1

P (ctu = c)P (yud = 1|xud , φtctu , θ
s
t , ω

0)

where
(
{φtc}Ct

c=1, c
t
u, θ

s
t

)
are the estimates of latent variables at

the tth iteration, P (ctu = c) is estimated in Eq (5) and P (yud =
1|xud , φctu , θ

s, ω0) is computed by Eq (1). Then the posterior of yu

can thus be estimated via empirical expectation after T iterations,

P (yud = 1|xud , ω0, α,G0) =
1

T

T∑
t=1

P (yud = 1|xud , {φtc}Ct
c=1, θ

s
t , ω

0)

To avoid auto-correlation in the Gibbs sampling chain, samples in
the burn-in period are discarded and proper thinning of the sam-
pling chain is performed in our experiments.

4. EXPERIMENTS AND DISCUSSIONS
We performed empirical evaluations to validate the effectiveness

of our proposed personalized sentiment classification algorithm.
Extensive quantitative comparisons on two large-scale opinionated
review datasets collected from Amazon and Yelp confirmed the ef-
fectiveness of our algorithm against several state-of-the-art model
adaptation and multi-task learning algorithms. Our qualitative stud-
ies also demonstrated the automatically identified user groups rec-
ognized the diverse use of vocabulary across different users.

4.1 Experimental Setup
• Datesets. We used two publicly available review datasets, Ama-
zon [22] and Yelp1, for our evaluation purpose. In these two datasets,
each review is associated with various attributes such as author ID,
review ID, timestamp, textual content, and an opinion rating in a
discrete five-star range. Specifically, the Amazon dataset is ex-
tremely sparse: 89.8% reviewers only have one or two reviews and

1Yelp dataset challenge. http://www.yelp.com/dataset_challenge

http://www.yelp.com/dataset_challenge


Figure 2: Trace of likelihood, group size and performance during iterative posterior sampling in cLinAdapt for Amazon.

Figure 3: Trace of likelihood, group size and performance during iterative posterior sampling in cLinAdapt for Yelp.

only 0.85% of them have more than 50 reviews. This raises a seri-
ous challenge for personalized sentiment analysis.

We performed the following pre-processing steps on both datasets:
1) labeled the reviews with less than 3 stars as negative, and those
with more than 3 stars as positive; 2) excluded reviewers who posted
more than 1,000 reviews and those whose positive or negative re-
view proportion is greater than 90% (little variance in their opin-
ions and thus easy to classify); 3) ordered each user’s reviews with
respect to their timestamps. We then constructed feature vector
for each review with both unigrams and bigrams after stemming,
and performed feature selection by taking the union of top features
ranked by Chi-square and information gain metrics [40]. The fi-
nal controlled vocabulary consists of 5,000 and 3,071 text features
for Amazon and Yelp datasets respectively; and we adopted TF-
IDF as the feature weighting scheme. From the resulting datasets,
we randomly sampled 9,760 Amazon reviewers and 10,830 Yelp
reviewers for evaluation purpose. There are 105,472 positive and
37,674 negative reviews in the selected Amazon dataset; 157,072
positive and 51,539 negative reviews in the selected Yelp dataset.
• Baselines. We compared the proposed cLinAdapt algorithm with
nine baselines, covering several state-of-the-art model adaptation
and multi-task learning algorithms. Below we briefly introduce
each one of them and discuss their relationship with our algorithm.

1) Base: In order to perform the proposed clustered model adap-
tation, we need a user-independent classification model to serve as
the prior model (i.e., ω0 in Eq (1)). We randomly selected a subset
of 2,500 users outside the previously reserved evaluation dataset
in Amazon and Yelp to estimate logistic regression models for this
purpose accordingly. 2) Global SVM: We trained a global linear
SVM classifier by pooling all users’ training data together to ver-
ify the necessity of personalized classifier training. 3) Individual
SVM: We estimated an independent SVM classifier for each user
based on his/her own training data as a straightforward personal-

ized baseline. 4) LinAdapt: This is a linear transformation based
model adaptation solution for personalized sentiment classification
proposed in [1]. 5) LinAdapt+kMeans: To verify the effective-
ness of our proposed user grouping method in personalized sen-
timent model learning, we followed [5] to first perform k-means
clustering of users based on their training documents, and then es-
timated a shared LinAdapt model in each identified user group. 6)
LinAdapt+DP: We also introduced DP prior to LinAdapt to per-
form joint user grouping and model adaptation training. Because
LinAdapt directly adapts from the predefined Base model, no in-
formation is shared across user groups. 7) RegLR+DP: It is an
extension of regularized logistic regression for model adaptation
[15] with the introduction of DP prior for automated user group-
ing. In this model, a new logistic regression model will be esti-
mated in each group with the predefined Base model as prior. As
a result, this baseline is essentially the same algorithm as that in
[39]. 8) MT-SVM: It is a state-of-the-art multi-task learning solu-
tion proposed in [10]. It encodes the task relatedness via a shared
linear kernel across tasks. Comparing to our learning scheme, it
only estimates shifting operation in each user without user grouping
nor feature grouping. 9) MT-RegLR+DP: This baseline identifies
groups of similar tasks that should be learnt jointly while the extend
of similarity among different tasks are learned via a Dirichlet pro-
cess prior. Instead of estimating individual group models from the
Base model in RegLR+DP independently, the same task decom-
position used in MT-SVM is introduced. As a result, the learning
tasks will be decomposed to group-wise model learning and global
model learning. But it estimates a full set of model parameters of
size V in each individual task and global task, such that it requires
potentially more training data.
• Evaluation Settings. In our experiment, we split each user’s re-
view data into two parts: the first half for training and the rest for
testing. As we introduced in Section 3.3 and 3.4, the concentra-



tion parameter α in DP together with the the number of auxiliary
variables m in sampling of {cu}Nu=1 play an important role in de-
termining the number of latent user groups in all DP-based models.
We empirically fixed α = 1.0 and m = 6 in all such models.
Due to the biased class distribution in both datasets, we compute
F1 measure for both positive and negative class in each user, and
take macro average among users to compare the different models’
classification performance.

4.2 Feasibility of Automated User Grouping
First of all, it is important to verify our stochastic EM based

posterior inference in cLinAdapt is converging, as only one sam-
ple was taken from the posterior of {cu}Nu=1 when updating the
group sentiment models {φc}∞c=1 and global model θs. We traced
the complete-data log-likelihood, the number of inferred latent user
groups, together with the testing performance (by Eq (9)) during
each iteration of posterior inference in cLinAdapt over all users
from both datasets. We reported the results for the two datasets in
Figure 2 and 3, where for visualization purpose the illustrated re-
sults were collected in every five iterations (i.e., thinning the sam-
pling chain) after the burn-in period (the first ten iterations).

As observed from the results on both datasets, the likelihood kept
increasing during the iterative posterior sampling process and con-
verged later on. In the meanwhile, the group size fluctuated a lot at
the beginning of sampling and became more stable near the end
of iterations. On the other hand, the classification performance
on the testing collection kept improving as more accurate senti-
ment models were estimated from the iterative sampling process.
This verifies the effectiveness of our posterior inference procedure.
We also looked into the automatically identified groups and found

Figure 4: Word clouds on Amazon.

Figure 5: Word clouds on Yelp.

many of them exhibited unique characteristics. The median num-
ber of reviews per user in these two datasets were only 7 and 8,
while in some groups the average number of reviews per user is as
large as 22.1, with small variances. This indicates active users were
grouped together in cLinAdapt. In addition, the overall positive
class ratio on these two datasets is 74.7% and 75.3% respectively,
but in many identified groups the class distribution was extremely

Table 1: Effect of different feature groupings in cLinAdapt.

Method Amazon Yelp
Pos F1 Neg F1 Pos F1 Neg F1

Base 0.8092 0.4871 0.8809 0.6284
400-1600 0.8313 0.5033 0.8942 0.6563
400-all 0.8405 0.5213 0.8981 0.6632
800-1600 0.8325 0.5115 0.8959 0.6592
800-all 0.8437 0.5478 0.9010 0.6694
1600-all 0.8440 0.5334 0.8993 0.6674
all-all 0.8404 0.5391 0.8995 0.6681

biased: some towards negative, as low as 62.1% positive; and some
towards positive, as high as 88.2% (note users with more than 90%
positive or negative reviews have been removed). This suggests
users with similar opinions were also successfully grouped in cLi-
nAdapt. In addition, small fluctuation in the number of sampled
user groups near the end of iterations is caused by a small number
of users keeping switching groups (as new groups were created for
them). This is expected and reasonable, since the group assignment
is modeled as a random variable and multiple latent user groups
might fit a user’s opinionated data equally well. This provides us
the flexility to capture the variance in different users’ opinions.

In addition to the above quantitative measures, we also looked
into the learnt word sentiment polarities reflected in each group’s
sentiment classifier to further investigate the automatically identi-
fied user groups. Most of the learnt feature weights followed our
expectation of the words’ sentiment polarities, and many words in-
deed exhibited distinct polarities across groups. We visualized the
variance of learnt feature weights across all the groups using word
clouds and demonstrated the top 10 words with largest variance and
top 10 words with smallest variance in Figure 4 and 5 for Amazon
and Yelp datasets respectively. Considering the automatically iden-
tified groups were associated with different number of users, we
normalized the group feature weight vector by its L2 norm. The
displayed size of the selected features in the word cloud is pro-
portional to their variances. From the results we can find that, for
example, the words “bore, lack, worth” conveyed quite different
sentiment polarities among diverse latent user groups in Amazon
dataset, while the words like “pleasure, deal, fail” had quite con-
sistent polarities. This is also observed in the Yelp dataset, as we
can find words like “star, good, worth” were used quite differently
across groups, while the words like “horribl, sick, love” are used
more consistently.

4.3 Effect of Feature Grouping
We then investigated the effect of feature grouping in cLinAdapt.

As discussed in Section 3.3, different feature groupings can be ap-
plied to the individual models and global model, such that nonlin-
earity is introduced when different grouping functions are used in
these two levels of model adaptation.

We adopted the most effective feature grouping method named
“cross” from [35]. Following their design, we first evenly spilt
the hold-out training set (for Base model training) into N non-
overlapping folds, and estimated a single SVM model on each fold.
Then, we created a V × N matrix by collecting the learned SVM
weights from the N folds, on which k-means clustering was ap-
plied to group V features into K and L feature groups. We com-
pared the performance of varied combinations of feature groups for
individual and global models in cLinAdapt. The experiment results
are demonstrated in Table 1; and for comparison purpose, we also
included the base classifier’s performance in the table. In Table 1,
the first column indicates the feature group sizes in the personal-



ized models and global model respectively. And all indicates one
feature per group (i.e., no feature grouping). All adapted models in
cLinAdapt achieved promising performance improvement against
the Base model. In addition, further improved performance in cLi-
nAdapt’s was achieved when we increased the feature group size
in the global model. Under a fixed feature group size in the global
model, a moderate size of feature groups in personalized models
was more advantageous.

These observations follow our expectation. Since the global model
is shared across all users, the whole collection of training data
can be leveraged to adapt the global model to overcome sparsity.
This allows cLinAdapt to afford more feature groups in the global
model, and leads to a more accurate model adaptation. But at the
group level, data sparsity remains as the major bottleneck for ac-
curate estimation of model parameters, although observations have
already been shared in groups. Hence, the trade-off between ob-
servation sharing among features and estimation accuracy has to
be made. Based on this analysis, we selected the combination of
800-all feature grouping methods in the following experiments.

4.4 Personalized Sentiment Classification
We compared cLinAdapt against all nine baselines on both Ama-

zon and Yelp datasets, and the detailed performance is reported in
Table 2. Overall, cLinAdapt achieved the best performance against
all baselines, except the prediction of positive class in Amazon
dataset. Considering these two datasets are heavily biased towards
positive class, improving the prediction accuracy in negative class
is arguably more challenging and important.

It is meaningful to compare different algorithms’ performance
according to their model assumptions. First, as the Base model was
trained on an isolated collection, though from the same domain,
it failed to capture individual users’ opinions. Global SVM bene-
fited from gathering large collection of data from the targeted user
population but was short of personalization, thus it performed well
on positive class while suffered in negative class. Individual SVM
could not capture each user’s own sentiment model due to serious
data sparsity issue; and it was the worst solution for personalized
sentiment classification.

Second, as a state-of-the-art model adaptation based baseline,
LinAdapt slightly improved over the Base model; but as the user
models were trained independently, its performance was limited by
the sparse observations in each individual user. The arbitrary user
grouping by k-means barely helped LinAdapt in personalized clas-
sification, though more observations became available for model
training. The joint user grouping with LinAdapt training finally
achieved substantial performance improvement (especially on the
Yelp dataset). Similar result was achieved in RegLR+DP as well.
This confirms the necessity of joint task relatedness estimation and
model training in multi-task learning.

Third, global information sharing is essential. All methods with
a jointly estimated global model, i.e., MT-SVM, MT-RegLR+DP,
cLinAdapt and also Global SVM, achieved significant improve-
ment over others that do not have such a globally shared compo-
nent. Additionally, as the class prior was against negative class
in both datasets, observations of negative class became even rare in
each user. As a result, compared with MT-SVM and MT-RegLR+DP
baselines, cLinAdapt achieved improved performance in this class
by sharing observations across features via its unique two-level fea-
ture grouping mechanism. However, comparing to MT-SVM, al-
though no user grouping nor feature grouping was performed, its
performance was very competitive. We hypothesized it was be-
cause on both datasets we had overly sufficient training signals for
the globally shared model in MT-SVM. To verify this hypothesis,

Table 2: Personalized sentiment classification results.
Method Amazon Yelp

Pos F1 Neg F1 Pos F1 Neg F1
Base 0.8092 0.4871 0.8809 0.6284
Global SVM 0.8386 0.5245 0.8982 0.6596
Individual SVM 0.5582 0.2418 0.5691 0.3492
LinAdapt 0.8091 0.4894 0.8811 0.6281
LinAdapt+kMeans 0.8096 0.4990 0.8836 0.6461
LinAdapt+DP 0.8157 0.4721 0.8878 0.6391
RegLR+DP 0.8256 0.5021 0.8929 0.6528
MT-SVM 0.8484 0.5367 0.9002 0.6663
MT-RegLR+DP 0.8466 0.5247 0.8998 0.6630
cLinAdapt 0.8437 0.5478 0.9010 0.6694
Oracle-cLinAdapt 0.9049 0.6791 0.9268 0.7358

we reduced the number of users in the evaluation data set when
training MT-SVM and cLinAdapt. Both models’ performance de-
creased, but cLinAdapt decreased much slower than MT-SVM. When
we only had five thousand users, cLinAdapt significantly outper-
formed MT-SVM in both classes on these two evaluation datasets.
This result verifies our hypothesis and demonstrates the distinct ad-
vantage of cLinAdapt: when the total number of users (i.e., in-
ductive learning tasks) is limited, properly grouping the users and
leveraging information from a pre-trained model help improve over-
all classification performance.

One limitation of cLinAdapt is that the latent group membership
can only be inferred for users with at least one labeled training
instance. This limits its application in cases where new users keep
emerging for analysis. This difficulty is also known as cold-start,
which concerns the issue that a system cannot draw any inferences
for users about which it has not yet gathered sufficient information.
One remedy is to acquire a few labeled instances from the testing
users for cLinAdapt model update. But it would be prohibitively
expensive if we do so for every testing user. Instead, we decide
to only infer the group membership for the new users based on
their disclosed labeled instances, while keep the previously trained
cLinAdapt model intact (i.e., perform sampling defined in Eq (5)
without changing the group structure). This implicitly assumes the
previously identified user groups are comprehensive and the new
users can be fully characterized by one of those groups.

In order to verify this testing scheme, we randomly selected
2,000 users with at least 4 reviews to create hold-out testing sets
on both Amazon and Yelp reviews accordingly, and used the rest
users to estimate the cLinAdapt model. During testing in each
user, we held the first three reviews’ labels as known, and grad-
ually disclosed them to cLinAdapt to infer this user’s group mem-
bership and classify in the rest reviews. For comparison purpose,
we also included Individual SVM, LinAdapt and MT-SVM trained
and tested in the same way on these two newly collected evaluation
datasets for cold-start, and reported the results in Table 3. From the
results, it is clear that Individual SVM’s performance was almost
random due to the limited amount of training data in this testing
scenario. LinAdapt benefited from a predefined Base model, while
the independent model adaptation in single users still led to sub-
optimal performance. The same reason also limited MT-SVM: it
treats users independently by only sharing the global model among
them, so that the newly available labeled instances could not ef-
fectively help individual models at beginning. cLinAdapt better
handled cold-start by reusing the learned user groups for new users.
Significant improvement was achieved for negative class, as the ob-
servations in negative class were even more scarce in those newly
disclosed labeled instances of each testing user.



Table 3: Effectiveness of model sharing for cold-start on Amazon and Yelp.
Amazon Yelp

Obs. Individual SVM LinAdapt MT-SVM cLinAdapt Individual SVM LinAdapt MT-SVM cLinAdapt
Pos F1 Neg F1 Pos F1 Neg F1 Pos F1 Neg F1 Pos F1 Neg F1 Pos F1 Neg F1 Pos F1 Neg F1 Pos F1 Neg F1 Pos F1 Neg F1

1st 0.0000 0.4203 0.8587 0.5898 0.8588 0.5073 0.8925 0.6675 0.0000 0.4101 0.9322 0.7724 0.9251 0.7285 0.9582 0.8335
2nd 0.4683 0.3831 0.8455 0.5495 0.8534 0.5267 0.8795 0.6076 0.7402 0.3116 0.9243 0.7176 0.9291 0.7027 0.9501 0.7726
3rd 0.7362 0.1751 0.8113 0.4863 0.8283 0.4919 0.8440 0.5402 0.7812 0.1608 0.8873 0.6639 0.8954 0.6619 0.9116 0.7147

Table 4: Collaborative filtering results on Amazon and Yelp.

Models Amazon Yelp
NDCG MAP NDCG MAP

Average 0.7758 0.5587 0.6798 0.3867
LinAdapt 0.8046 0.6640 0.7445 0.4945
LinAdapt+kMeans 0.8030 0.6635 0.7399 0.4901
LinAdapt+DP 0.8004 0.6597 0.7454 0.4986
RegLR+DP 0.8023 0.6614 0.7460 0.4991
MT-SVM 0.8050 0.6646 0.7439 0.4935
MT-RegLR+DP 0.8030 0.6626 0.7419 0.4935
cLinAdapt 0.8052 0.6652 0.7473∗ 0.5001

∗p-value<0.05 under binomal test

Another observation in Table 3 is that all models’ testing perfor-
mance decreased with more labeled instances disclosed from the
testing users. This is unexpected and might indicate the consis-
tence assumption about a user’s sentiment model does not hold. To
verify this, we tested an oracle setting of cLinAdapt in the original
evaluation set: we revealed the labels of testing data when infer-
ring group assignments in testing, and this greatly boosted the test
performance of cLinAdapt. We appended the result in Table 2.
This indicates the performance bottleneck of cLinAdapt is the ac-
curacy of inferred group membership in testing phase. We assumed
this membership is stationary in each user, but this might not be
true given the reviews were generated in a chronological order and
users’ sentiment model might change over time. In our future work,
we plan to also model the generation of document content in cLi-
nAdapt, such that the inferred group membership can be calibrated
for each testing document accordingly.

4.5 Serve for Collaborative Filtering
Collaborative filtering technique has been successfully applied in

many recommendation systems. One of its key components is to in-
fer the similarity between users. The learnt personalized sentiment
model for each user naturally serves as a good proxy of their pref-
erence; and the distance between the model weights can therefore
characterize the similarity between users. In this experiment, we
evaluated the utility of learnt personalized models in collaborative
filtering based recommendation. To create an evaluation data set,
besides the items that a user has reviewed, we randomly selected
a set of items from other users and label them as irrelevant in rec-
ommendation evaluation. We fixed this random item set to be four
times large as a user’s actually reviewed item size and maintained
the same random candidate items in all the algorithms. In addi-
tion, we also removed the items that were only reviewed by one
user. For each candidate item, we selected the target user’s top K
most similar neighbors who also reviewed this item, and calculated
the weighted average of neighbors’ actual ratings as ranking score
for this item. Normalized discounted cumulative gain (NDCG) and
mean average precision (MAP) are used to measure the recommen-
dation quality. In particular, NDCG takes the user’s original five
star rating as a multi-scale relevance judgment, and MAP takes re-
views with higher than 3 star as relevant and the rest as irrelevant.

We compared the recommendation performance based on the

user similarity computed by different personalized sentiment clas-
sification methods on both Amazon and Yelp datasets. We also
included a baseline that makes recommendations by the simple
average of ratings from all the users who reviewed the item, and
named it as Average. The average number of users who reviewed
the same item in Amazon is 3.2 and in Yelp it is 10. Correspond-
ingly, we selected top-4 neighbors and top-8 neighbors in Amazon
and Yelp datasets respectively based on the cosine similarity be-
tween the users’ personalized models. We report the resulting MAP
and NDCG performance across all users in Table 4. As we can find
from the Table 4, cLinAdapt achieved encouraging recommenda-
tion performance on both datasets, which indicates its learned sen-
timent models better captured the relatedness among users in their
preferences over the recommended items. Despite the very sparse
distribution of reviews in both datasets, cLinAdapt correctly recog-
nized the preference of different users, and found the best neighbors
for collaborative filtering.

5. CONCLUSION AND FUTURE WORK
In this paper, we developed a clustered model adaptation so-

lution for personalized sentiment classification. Our work is in-
spired by the well-established social theories about humans’ dis-
positional tendencies, i.e., social comparison and cognitive consis-
tence. By exploiting the clustering property of users’ sentiment
models, empirically improved sentiment classification performance
was achieved on two large collections of opinionated review docu-
ments.

Several areas are left open for our future explorations. In the cur-
rent work, we assumed a user’s latent group membership is station-
ary: once inferred from training data, it could be repeatedly used in
testing. However, a user’s group membership and even sentiment
model might evolve over time. It is beneficial to efficiently up-
date the model when new labeled data and users become available.
Also, the current model is unable to inference group memberships
over users with no labeled instances. This could be overcome if the
generative model also accounts for the generation of review content
in each user. In addition, it is interesting to study how to identify
the feature grouping together with the user groups, such that the
balance can be automatically adjusted with respect to the available
training data in each latent user group.
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