
Personalized Ranking Model Adaptation for Web Search

Hongning Wang
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana IL, 61801 USA

wang296@illinois.edu

Xiaodong He1, Ming-Wei Chang1,
Yang Song1, Ryen W. White1, Wei Chu2

1Microsoft Research, Redmond WA, 98052 USA
2Microsoft Bing, Bellevue WA, 98004 USA

{xiaohe,minchang,yangsong,ryenw,wechu}
@microsoft.com

ABSTRACT
Search engines train and apply a single ranking model across
all users, but searchers’ information needs are diverse and
cover a broad range of topics. Hence, a single user-independent
ranking model is insufficient to satisfy different users’ result
preferences. Conventional personalization methods learn
separate models of user interests and use those to re-rank
the results from the generic model. Those methods require
significant user history information to learn user preferences,
have low coverage in the case of memory-based methods that
learn direct associations between query-URL pairs, and have
limited opportunity to markedly affect the ranking given
that they only re-order top-ranked items.
In this paper, we propose a general ranking model adapta-

tion framework for personalized search. Using a given user-
independent ranking model trained offline and limited num-
ber of adaptation queries from individual users, the frame-
work quickly learns to apply a series of linear transforma-
tions, e.g., scaling and shifting, over the parameters of the
given global ranking model such that the adapted model
can better fit each individual user’s search preferences. Ex-
tensive experimentation based on a large set of search logs
from a major commercial Web search engine confirms the
effectiveness of the proposed method compared to several
state-of-the-art ranking model adaptation methods.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Retrieval Models

Keywords
Learning to rank, model adaptation, personalization

1. INTRODUCTION
Search engine users’ information needs are diverse. Even

for the same query, different users might express different
preferences over the retrieved documents, resulting in dis-
tinct ranking requirements for search results [11, 27, 29]. For

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGIR’13, July 28–August 1, 2013, Dublin, Ireland.
Copyright 2013 ACM 978-1-4503-2034-4/13/07 ...$15.00.

example, for the seemingly unambiguous query “facebook,”
some people might search for the login page of the social net-
working service, i.e., www.facebook.com; while others might
be more interested about the recent news reports of the pub-
lic company, stock quotes, and suchlike. However, the de-
ployed ranking function in search engines is usually tuned
according to general relevance judgments for a generic pop-
ulation of users [2, 19]; as a result, one globally-optimized
ranking model cannot satisfy such diverse search preferences.
In this scenario, it is preferable for the search engine to adapt
the global ranking function to accommodate each individual
user’s result preference, i.e., personalized search.

Prior research has demonstrated that users’ aggregated
clicks are informative for learning their preferences and de-
veloping global search result ranking models [1, 17]. How-
ever, these models only reflect the common preferences across
all searchers. Adapting the global ranking model towards
each individual’s search preferences to maximize search util-
ity for each single user is more desirable. Existing person-
alization methods require rich user history information to
learn user preferences [24, 25] (meaning that they are slow to
adapt to user interests and interest dynamics), have low cov-
erage in the case of memory-based methods that learn direct
associations between query-URL pairs [28], and have limited
opportunity to affect the ranking given that they frequently
only re-order the top-ranked items [3]. In this paper, we
proposed a method that effectively learns to adapt a generic
ranking algorithm on a per-user basis, and overcomes many
of the aforementioned challenges faced by existing personal-
ization approaches.

Beside the adapted model’s ranking accuracy, adaptation
efficiency is also a primary consideration in this work. Ex-
isting work of ranking model adaptation in information re-
trieval (IR) mainly focuses on domain adaptation, e.g., from
Web search to image search, where the goal of adaptation
is to estimate a new ranking model for a target domain us-
ing information from a related source domain [6, 12, 13, 14].
Rooted in the classifier adaptation problem in transfer learn-
ing (c.f. [21]), the general assumption of domain adaptation
in IR is that in the target domain there are insufficient la-
beled queries to accurately estimate a ranking model, but
there is adequate supervision in the source domain. There-
fore, to help model learning in the target domain, the adap-
tation methods need to effectively exploit supervision from
the source domain. However, since most of existing methods
estimate the adapted model in an offline manner, adapta-
tion efficiency has received little attention in prior research.
Nevertheless, in the scenario of adapting a generic ranking
model for personalized search (our focus here), adaptation

efficiency becomes an equally important criterion for two
main reasons: 1) such an operation must be executable on
the scale of all the search engine users; 2) due to the dy-
namic nature of users’ search intent and the need to offer
searchers a great experience quickly, search engines cannot
wait weeks or even days to collect adaptation data, since
by then user preferences may have already shifted or they
may have switched to another search engine. Our specific
emphasis on adaptation efficiency prohibits us from directly
applying most of existing domain adaptation methods.
Inspired by the linear regression based model adaptation

methods widely studied in automatic speech recognition (e.g.,
maximum likelihood linear regression [18], minimum classi-
fication error linear regression [15]), we propose a general
framework of ranking model adaptation, which enables rapid
personalization. In particular, we assume that in a paramet-
ric ranking model different users’ ranking preferences can be
fully characterized by different settings of model parameters.
For example, some users might prefer high authority web-
sites, i.e., larger weight on the static rank score (page quality
independent of query); while other users would emphasize
query-term matching in documents, e.g., larger weight on
retrieval-score features such as BM25. As a result, adjust-
ment of the generic ranking model’s parameters with respect
to individual user’s ranking preferences, e.g., click feedback,
is necessary to satisfy their distinct ranking requirements. In
our framework, such adjustment is achieved via linear trans-
formations; and to meet the efficiency requirement for fast
adaptation, we restrict such transformations to be simple
and shared across features in a group-wise manner.
In this paper, based on the proposed framework for rank-

ing model adaptation at the level of individual users, we aim
to answer the following two research questions:

1) Under efficiency constraints, how should we effectively
perform ranking model adaptation for each individual
user? and;

2) What type of queries/users will benefit most from the
proposed ranking model adaptation?

The first question is answered by the proposed ranking
model adaptation framework, in which the parameters of
a global ranking model are updated via a series of linear
transformations, e.g., scaling and shifting, for each indi-
vidual user. In the per-user basis ranking model adapta-
tion scenario, the lack of adaptation data is a serious prob-
lem leading to sparse observations of ranking features for
each user. To alleviate the sparsity problem, transforma-
tions are shared across features in a group-wise manner,
such that it is possible to adapt the parameters of features
that are not observed in the adaptation data. The pro-
posed framework is general, and we demonstrated the de-
tailed instantiation of the framework to three frequently
used learning-to-rank algorithms, i.e., RankNet [4], Lamb-
daRank [22] and RankSVM [16], where several important
properties of the proposed adaptation framework is unveiled.
To answer the second question, we collected a large set
of search logs from Bing.com, and compared the proposed
method against several state-of-the-art ranking model adap-
tation methods. Through extensive comparisons, our pro-
posed method achieved significant improvement, not only in
adaptation efficiency (measured in terms of the number of
queries until reaches a performant state), but also in terms of
the adapted model’s ranking accuracy, against the baseline
methods.

2. RELATED WORK
There are two major types of research closely related to

our work in this paper, namely, ranking model adaptation
and personalized search.

The major body of ranking model adaptation study in IR
focuses on domain adaption, which can be categorized into
three classes. One popular class is instance-based adapta-
tion [6, 10, 13], which assumes certain parts of the data in
the source domain can be reused for the target domain by
re-weighting. Chen et al. [6] weighted the queries in the
source domain by a heuristically defined utility function. In
[13], Gao et al. employed a binary classifier to separate the
documents in target domain from those in source domain,
and then defined the importance of each source-domain doc-
ument by the output of this classifier. The second category
of work is feature-based [5], where a new feature represen-
tation is learned for the target domain and used to transfer
knowledge across domains. Chen et al. proposed CLRank in
[5], which constructs a new ranking feature representation so
as to reduce the distributional difference between source and
target domains. The third category is model-based [12, 14],
which assumes the source and target ranking models share
some parameters or priors. Geng et al. [14] regularized
target-domain ranking model training using a given model
from the source domain. Gao et al. [12] updated the source-
domain model by the training errors on the adaptation data
via stochastic gradient boosting algorithm.

To the best of our knowledge, few work attempts to adapt
a generic ranking model for each individual user. Under ef-
ficiency constraints, both instance-based and feature-based
methods are infeasible for this task, because they have to
operate on numerous instances in the source domain, which
is prohibitively expensive to perform for each single user. To
avoid costly operation for each user, our proposed method
falls in the class of model-based adaptation: we update the
parameters of global ranking model for each individual user
according to the observed click feedback. To alleviate the
problem of sparse observation in adaptation data, transfor-
mations are shared across features so that parameters of
unseen features can also be effectively updated.

The task of personalized search aims at leveraging infor-
mation about an individual to identify the most relevant
search results for them. Mainstream of personalization tech-
niques target the extraction of user-centric profiles or fea-
tures, e.g., location, gender and click history, and incorpo-
rating such information into the original ranking function.
Teevan et al. encoded user profiles extracted from relevance
feedback to re-rank the retrieved documents [26]. Dou et al.
[9] performed a large-scale evaluation of several personalized
search strategies, e.g., user profile based re-ranking [7], and
revealed that personalization has mixed effects on the rank-
ing performance. These and other personalization models
(e.g., [24, 25]) use significant quantities of search history to
learn interest profiles for each user, requiring sufficient data
available to perform personalization effectively.

Memory-based personalization techniques learn direct as-
sociations between query-URL pairs [28] (e.g., given this
query, the current user consistently selects a particular URL),
which can perform well given high revisitation likelihoods,
but have limited query coverage. Shen et al. [23] developed
a context-sensitive language model by introducing both click
feedback and preceding queries for short-term personaliza-
tion. However, these short-term models are specific to the
current context and cannot generalize well to accommodate

user’s general preferences. Once a model is learned, a com-
mon strategy for the application of personalization is to re-
rank the top-n results [3, 9]. This means the personalized
models do not have the opportunity to promote results of
low general interest (i.e., outside of the top n), but of high
interest to the current user, into the top-ranked results.
In our approach, we quickly adapt the search engine’s

generic ranking function on a per-user basis, and therefore
overcome many of these shortcomings.

3. RANKING MODEL ADAPTATION
Inspired by the linear regression based model adaptation

methods in speech recognition [15, 18], we propose a general
framework to perform ranking model adaptation. We as-
sume that a global ranking model is trained based on a large
user-independent training set. For each user, an adapted
model is obtained by applying a set of learned linear trans-
formations, e.g., scaling and shifting, to the parameters of
the global model based on each individual user’s adaptation
data, e.g., query with corresponding clicks.
In the following discussions, we first describe our gen-

eral framework of ranking model adaptation, and then we
take three frequently used learning to rank algorithms, i.e.,
RankNet [4], LambdaRank [22] and RankSVM [16], as ex-
amples to demonstrate the detailed procedures of applying
the proposed adaptation framework.

3.1 General Framework
For a given set of queries Qu = {qu1 , qu2 , . . . , qum} from user

u, each query qui is associated with a list of document-label
pairs {(xu

i1, y
u
i1), (x

u
i2, y

u
i2), . . . , (x

u
in, y

u
in)}, where xu

ij denotes
a retrieved document represented by a V -dimensional vector
of ranking features, and yu

ij is the corresponding relevance
label indicating if the document xu

ij is relevant to user u
(e.g., clicks). Since our focus of this work is on user-level
ranking model adaptation, in the following discussions we
ignore the superscript u to make the notations concise when
no ambiguity is involved.
A ranking model f is defined as a mapping from a doc-

ument xij to its ranking score sij , i.e., f : xij → sij , such
that when we order the retrieved documents for query q by
f , a certain ranking metric, e.g., mean average precision
(MAP) or precision at k (P@k) [2], is optimized. Such rank-
ing model can be manually set, or estimated by an automatic
algorithm based on a collection of annotated queries [19]. In
this work, we focus on linear ranking models, which can be
characterized by a parametric form of linear combination of
ranking features, i.e., f(x) = wTx, where w is the linear
coefficients for the corresponding ranking features.
Denoting fs(x) = wsTx as the given global ranking model

estimated in a user-independent manner, the adaptation of
fs(x) for each individual user is performed via the linear
transformations defined by a V ×(V +1) dimensional matrix
Au, by which three linear operations, i.e., scaling, shifting
and rotation, can be encoded. More precisely,

fu(x) = (Auw̃s)Tx (1)

where w̃s is an augmented vector of ws, i.e., w̃s = (ws, 1), to
facilitate the shifting operation for parameter adaptation.
There are two major considerations in designing such a

transformation matrix Au. First, a full transformation ma-
trix has the number of O(V 2) free parameters, which is re-
dundant and even larger than the number of parameters
needed to estimate a new ranking model for each user (i.e.,

O(V)). As a result, it is infeasible for us to estimate a full
transformation matrix for every user. To reduce the size of
free parameters in Au, we decide to only focus on the scal-
ing and shifting operations for adapting the parameters in
fs(x). This reduces the size of free parameters in Au from
O(V 2) to O(V). Second, a more important consideration is
how to alleviate the problem of sparse observation of rank-
ing features in the limited adaptation data. Because some
advanced ranking features used in modern search engines,
e.g., topic category of documents, might not be trigged in
the scattered adaptation queries, one will encounter missing
feature values. In order to properly update the parame-
ters for unseen features during adaptation, we organize the
features in groups and share the same shifting and scaling
transformations to the parameters within the same group.

Based on the above considerations, we design the trans-
formation matrix Au to be the following specific form,

Au =

au
g(1) 0 . . . bug(1)
0 au

g(2) . . . bug(2)
...

...
. . .

...
0 . . . au

g(V) bug(V)

V ×(V +1)

where g(·) is a feature grouping function, which maps V
original ranking features to K different groups, au

k and buk
denote the scaling and shifting operations applied to the
linear coefficients ws of the source model fs(x) in group k.
As a result, Eq (1) can be realized as,

fu(x) =

K∑
k=1

∑
g(i)=k

(au
kw

s
i + buk)xi (2)

The grouping function g(·) defines the transformation shar-
ing among the original ranking features. It enables the ob-
servations from seen features to be propagated to unseen
features within the same group during adaptation, which is
critical in addressing the problem of sparsity in the limited
adaptation data. However, defining the optimal grouping of
ranking features is non-trivial; we postpone the discussion
of constructing g(·) to Section 3.4.

Once the grouping function g(·) is given, another impor-
tant component in our adaptation framework is the criterion
to estimate the optimal transformation matrix Au. An ideal
transformation should be able to adjust the generic rank-
ing model to meet each individual’s ranking preference, i.e.,
maximizing the search utility for each user. In the study of
learning-to-rank algorithms in IR, various types of objective
functions, e.g., pairwise and listwise, have been proposed to
realize the goal of optimizing ranking metrics [19]. There-
fore, to make the proposed framework generally applicable,
we do not restrict our adaptation objective to any specific
form, but instantiate it with the objective function from the
ranking algorithm we choose to adapt.

We want to emphasize that although in our framework
we utilize the objective function from the ranking algorithm
to be adapted as the criterion to estimate the transforma-
tion matrix Au, it does not necessarily restrict the global
model to being estimated by the same ranking algorithm. As
long as the global model and adapted model share the same
model structure, e.g., neural network structure in RankNet
and linear model in RankSVM, the proposed adaptation
framework is applicable.

To summarize, our general framework for ranking model

adaptation can be formalized as follows,

min
Au

Ladapt(A
u) = L(Qu; fu) + λR(Au) (3)

where fu(x) = (Auw̃s)Tx and w̃s = (ws, 1)

in which L(Qu; fu) is the objective function defined in the
ranking algorithm we choose to adapt, e.g., cross-entropy in
RankNet or hinge loss in RankSVM, R(Au) is a regulariza-
tion function defined on the transformation matrix Au, λ is
a trade-off parameter, and ws is the linear coefficients for
ranking features in the global ranking model.

3.2 Adapting RankNet & LambdaRank
RankNet [4] is a probabilistic learning-to-rank algorithm,

which models the probability that a document xij is ranked
higher than xil for query qi, i.e., P (yij > yil). A logistic
function is employed to map the predicted ranking scores of
two documents, e.g., sij and sil, to probability of ordering,

P (yij > yil) =
1

1 + e−(sij−sil)
.

The training objective function in RankNet is defined as
the cross-entropy between the predicted pairwise ordering
probabilities and the observed pairwise preferences in the
training data, i.e.,

LRankNet =
∑
qi

∑
yij ,yil

−P̄ (yij > yil) logP (yij > yil)

− (1− P̄ (yij > yil)) log(1− P (yij > yil)) (4)

where P̄ (yij > yil) is the empirically estimated probability
that xij is ranked higher than xil.
RankNet is usually optimized via a neural network. Be-

cause in each layer of a neural network, every neuron’s out-
put is linearly combined to feed into the next layer, our
adaption framework can be smoothly applied to the linear
weights for each neuron (e.g., different transformation ma-
trices for each neuron in the hidden layers). In order to un-
derstand the effect of the proposed adaptation in RankNet,
we will use a RankNet with no hidden layers for discussion,
but the same procedure can be applied to general RankNet
with an arbitrary number of hidden layers.
To adapt RankNet, we take the same cross-entropy func-

tion defined in Eq (4) as our adaptation objective, and define
the following regularization function on matrix Au,

R(Au) =
1

2

K∑
k=1

(au
k − 1)2 +

σ

2

K∑
k=1

buk
2 (5)

where we penalize the transformation which increases the
discrepancy between the adapted model and the global model,
and σ is a parameter that controls the balance between the
penalty on shifting and scaling operations.
As a result, the gradient with respect to the scaling pa-

rameter au
k can be calculated as,

∂LadaptRankNet(A
u)

∂au
k

(6)

=
∑

qi∈Qu

∑
yij>yil

[P (yij > yil)− 1]
∂(Auw̃s)T∆xijl

∂au
k

+ λ
∂R(Au)

∂au
k

=
∑

qi∈Qu

∑
yij>yil

[P (yij > yil)− 1]
∑

g(v)=k

ws
v∆xijlv + λ(au

k − 1)

where ∆xijl is a V -dimensional vector defined as ∆xijl =
xij − xil. Accordingly, the gradient with respect to buk is,

∂LadaptRankNet(A
u)

∂buk
(7)

=
∑

qi∈Qu

∑
yij>yil

[P (yij > yil)− 1]
∑

g(v)=k

∆xijlv + λσbuk

The above gradients induce a new neural network defined
over the linear transformations, where the connection among
neurons is specified by the grouping function g(·): the term
P (yij > yil) − 1 in Eq (6) and Eq (7) represents the pre-
diction error of the global ranking model on the adaptation
data; and based on this error, the gradients specify the di-
rection in which the adaptation should take. We can note
that the gradients for au

k and buk are estimated based on all
the observations of ranking features in the same group; as a
result, the parameters for the unseen features can also get
updated, by sharing such jointly estimated transformations.

To generalize this procedure to RankNet with multiple
hidden layers, we only need to replace the error term defined
by P (yij > yil)−1 with the corresponding back-propagation
error in each hidden layer in Eq (6) and Eq (7), and the
original optimization procedure for RankNet can be directly
applied to the adapted problem. One thing we should note
is that since one can set different number of neurons in each
hidden layer, to apply the proposed adaptation in a RankNet
with multiple layers, we need to specify the grouping func-
tion g(·) for each neuron in the hidden layers. This can be
achieved via the clustering method proposed in Section 3.4.

Based on the discussion of adapting RankNet within the
proposed framework, it is straightforward to adapt Lamb-
daRank [22] in a similar manner. As a listwise learning-
to-rank algorithm, LambdaRank modifies the error term in
RankNet by adding an additional correction term and names
such modified error as lambda function,

λijl = [P (yij > yil)− 1]|∆IR-Metric| (8)

where |∆IR-Metric| is the change of any specific ranking met-
ric, e.g., MAP or NDCG, given by swapping the rank posi-
tions of document xij and xil while leaving the rank posi-
tions of all other documents unchanged.

Therefore, to adapt LambdaRank within our framework,
we only need to replace the error function of the output layer
in RankNet with the lambda function defined in Eq (8), and
all the other procedures remain the same as in RankNet.

3.3 Adapting RankSVM
RankSVM [16] is a classic pairwise learning-to-rank algo-

rithm, in which the learning problem is formalized as,

min
w,ξijl

1

2
||w||2 + C

∑
qi

∑
j,l

ξijl (9)

s.t. wT∆xijl ≥ 1− ξijl,∀qi, xij , xil

ξijl ≥ 0

where yij > yij and ∆xijl = xij − xil

where C is a trade-off parameter to control the balance be-
tween model complexity and empirical hinge loss over the
identified preference pairs from the training data.

To adapt RankSVM, we keep the hinge loss defined in
Eq (9) as our adaptation objective, and use the same regu-
larization function for Au defined in Eq (5). By taking the
linear transformation wu = Auw̃s into Eq (9), we get the

adapted problem for RankSVM as,

min
au,bu,ξij

1

2

K∑
k=1

(au
k − 1)2 +

σ

2

K∑
k=1

(buk)
2 + C

∑
qi

∑
j,l

ξijl (10)

s.t. wuT∆xijl ≥ 1− ξijl, ∀qi, xij , xil

ξijl ≥ 0

where wu = Auw̃s, yij > yil, and ∆xijl = xij − xil

Since the input for RankSVM training is document pairs,
in the following discussion, we briefly denote ∆xijl as x⃗t, in
which the subscript t ranges over all the preference pairs in
the adaptation set, to simplify the notations. Following the
conventional derivation of RankSVM, we get the dual prob-
lem of Eq (9) by introducing a set of Lagrange multipliers
α,

max
α

∑
t

[
1−fs(x⃗t)

]
αt−

1

2
αT

[
K1(x⃗, x⃗)+K2(x⃗, x⃗)

]
α (11)

s.t. 0 ≤ αt ≤ C, ∀t

where K1(x⃗t, x⃗r) =

K∑
k=1

(
∑

g(v)=k

ws
vx⃗tv)(

∑
g(v)=k

ws
vx⃗rv)

K2(x⃗t, x⃗r) =
1

σ

K∑
k=1

(
∑

g(v)=k

x⃗tv)(
∑

g(v)=k

x⃗rv)

By solving the above dual problem, we can get the optimal
transformations as,

au
k = 1 +

∑
t

αt

∑
g(v)=k

ws
vx⃗tv

buk =
1

σ

∑
t

αt

∑
g(v)=k

x⃗tv

The effect of the proposed adaptation on RankSVM is
clearly depicted in its dual form. First, as we know that the
linear coefficients in front of the Lagrange multipliers α in
Eq (11) correspond to the separation margin for each train-
ing instance in SVM. In the adapted problem, the margin
is rescaled according to the global model fs(x⃗t)’s prediction
on the adaptation data: if the global model can well sep-
arate the adaptation pair x⃗t, i.e., fs(x⃗t) > 0, the margin
decreases, indicating this case is not crucial for adaptation;
if the global model fails to correctly predict the order for this
pair, i.e., fs(x⃗t) ≤ 0, the margin increases, and x⃗t becomes
a more important instance in adaptation for this particu-
lar user. This precisely interprets the effect of model-based
adaptation: we only update the global model when it makes
a mistake on the adaptation data; otherwise keep it intact.
Second, the proposed linear transformations induce two new
kernels in a compressed space: K1(x⃗t, x⃗s), corresponding to
the scaling operation, defines a compound polynomial ker-
nel over the ranking features projected by the global rank-
ing model ws; and K2(x⃗t, x⃗s), corresponding to the shift-
ing operation, defines another compound polynomial kernel
over the original ranking features. Both kernels work in a
compressed K-dimensional space determined by the feature
group mapping function g(·), and are interpolated by the
balance parameter σ between the regularizations for shift-
ing and scaling operations. As a result, non-linearity is in-
troduced to the original linear RankSVM model, and such
non-linearity helps the model to leverage the observations
from seen features to the unseen ones in the same group.

3.4 Feature Grouping
In the proposed framework, a feature grouping function

g(·) is used to organize the ranking features so that shared
transformation is performed on the parameters of features
in the same group. This grouping can be given a priori
according to the design of ranking features, or be determined
by data-driven approaches based on a given set of queries
and documents. In this work, we proposed and compared
three possible ways of creating such feature groups.

The first grouping method is based on the name of ranking
features. Ranking features are usually described by the way
they are generated, e.g., BM25 of Body, BM25 of Title [20],
such that the name of a ranking feature provides informative
indication of its functionality. Given the naming scheme of
features in a collection, we can manually define patterns to
cluster the features into groups. We denote this grouping
method Name.

The second method is based on the co-clustering algo-
rithms in document analysis. Similar to [8], we first project
the document-feature matrix into a lower dimensional space
by singular value decomposition (SVD), and then perform k -
means clustering to group the features into K clusters based
on this low dimensional representation. We name this group-
ing method SVD.

The third method groups features by the corresponding
learned parameters in the ranking models. We first evenly
split the training collection into N non-overlapping folds,
and train a single ranking model, e.g., RankSVM, on each
fold. Then, we create a V ×N matrix by putting the learned
parameters from those N independent models together, on
which k -means clustering is applied to extract K feature
groups. We name this grouping method Cross.

The Name method requires the collection to have a rea-
sonable feature naming scheme; if the ranking features are
arbitrarily named, e.g., named by ID, such method cannot
be used. The SVD method is generally applicable since
it only requires a collection of query-document pairs repre-
sented by the ranking features. In the Cross method, besides
a set of documents, a relevance judgment for each document
with respect to a given query is also needed to estimate the
grouping of features. In particular, for RankNet with mul-
tiple layers, the Cross method can be used to estimate the
grouping function for each neuron in the network based on
the learned weights of connections.

3.5 Discussion
There are four advantages of the proposed adaptation

framework. First, it is a general framework for ranking
model adaptation, which is applicable to a majority of ex-
isting learning-to-rank algorithms [19]. Second, since the
proposed adaptation framework is model-based, unlike the
instance-based or feature-based adaptation methods, it does
not need to operate on the numerous data from the source
domain, which makes the per-user basis ranking model adap-
tation feasible. Third, the same optimization technique for
the original learning algorithm can be directly applied with
little change, so that it does not increase the complexity
of solving the adaptation problem. And in the adaptation
phase, we only need to solve the optimization problem over
a small amount of adaptation data, which ensures the com-
putational efficiency for performing the adaptation on the
scale of all search engine users. Fourth, and most impor-
tantly, transformation is shared across features in the pro-
posed adaptation framework. According to Eq (2), the same

transformation is applied onto the parameters of features in
the same group, which renders several important properties
in the adapted ranking models: in RankNet, the gradients
for scaling (in Eq (6)) and shifting (in Eq (7)) operations are
estimated based on all the observations in the same group;
while in RankSVM, two new non-linear kernels are induced
over the original linear function space. As a result, even
though we might not observe a specific feature occurring in
the adaptation data, we can still propagate the information
from other features in the same group to update it properly.

4. EXPERIMENT
In order to evaluate the proposed adaptation framework,

we performed a series of experiments on large-scale search
query logs sampled from Bing.com. A set of state-of-the-art
ranking model adaptation methods were included as base-
lines to validate the effectiveness of the proposed method.

4.1 Dataset and Settings
We extracted five days’ search logs from May 27, 2012

to May 31, 2012 from Bing.com for our experiments. Dur-
ing this period, a subset of users were randomly selected
and all their search activities were collected, including the
anonymized user ID, query string, timestamp, top 10 re-
turned document lists and the corresponding clicks. The
queries were ordered by their timestamp in each user, and
the documents were sorted by their original order returned
by the search engine under each query.
To apply the proposed adaptation method and compare

with the baselines according to user click feedback, we can
only use the queries with clicks. Therefore, in our experi-
ment, we filtered out the queries without clicks and required
each user to have at least two queries with clicks, i.e., one
for adaptation and one for testing.
We also sampled a large set of manually annotated query

logs from our existing data collection as the user-independent
training set for adaptation. Each query-document pair in
this annotation set is labeled with a five-grade relevance
score, i.e., from 0 for “bad” to 4 for “perfect.” Documents
in both the selected user data set and annotation data set
are represented by a set of 1,830 ranking features selected
from their overlapped feature set, including frequently used
ranking features such as BM25, language model score and
PageRank. Using the language of domain adaptation, we
treat the collection of annotated queries as our source do-
main and each user’s queries with clicks as target domain.
This setting provides a good simulation for real Web search
scenario, where the generic rankers in use are usually trained
on offline annotated data, and thus it helps us compare the
effectiveness of different ranking model adaptation methods.
The basic statistics of the annotation set and selected user
set are summarized in Table 1.
Preference pairs are extracted from user’s clicks to reflect

their unique search requirements. In order to ameliorate
the positional biases inherent in click data [1], we followed
Joachims et al.’s method to extract the click preference pairs
[17]. In particular, we employed two click heuristics: for a
given query q with a ranked document list

{
(x1, y1), (x2, y2),

. . . , (xn, yn)
}
returned by the search engine,

1. “Click ≻ Skip Above”: extract preference pair xi ≻ xj

for all pairs 1 ≤ j < i with yi > yj .

2. “Click ≻ Skip Next”: extract preference pair xi ≻ xi+1

for all yi > yi+1.

Table 1: Statistics of annotation and user data set.

Users # Queries # Documents

Annotation Set - 49,782 2,320,711
User Set 34,827 187,484 1,744,969

In order to avoid defining different feature grouping func-
tions for different ranking algorithms we selected to adapt,
e.g., in RankNet each neuron in the hidden layers needs a
possibly different grouping function but in RankSVM only
one grouping function is needed for the original features, we
decided not to use hidden layers in the neuron networks for
RankNet and LambdaRank in our experiment. As a result,
the same grouping function defined on the original ranking
features can be directly used in RankNet, LambdaRank and
RankSVM. A LambdaRank model optimizing NDCG@10 is
trained on the annotation set and used as the global ranking
model for adaptation in the following experiments (denoted
as Source-Only)1. The trade-off parameter λ (in Eq (3))
and σ (in Eq (5)) in our method are selected by 5-fold cross
validation on the whole user set in advance.

To quantitatively compare different adaptation methods’
performance, we employed a set of standard IR evaluation
metrics: by treating all the clicked documents as relevant,
we calculated Mean Average Precision (MAP), Precision at
1 (P@1), Precision at 3 (P@3) and Mean Reciprocal Rank
(MRR). Definitions of these metrics can be found in [2].

4.2 Analysis of Feature Grouping
The grouping of features has a substantial impact on the

adaptation performance in our method, since transforma-
tions will be shared for the parameters of features in the
same group. Ideally, we should put parameters that need
to be updated synchronously in the same group. In this ex-
periment, we evaluated the three feature grouping methods,
i.e., Name, SVD, and Cross, proposed in Section 3.4. For
comparison purposes, we also included two trivial grouping
methods: 1) “Full,” which creates a group for every single
feature, i.e., no transformation is shared across features; 2)
“RND,” which randomly allocates features into K groups.

In our data set, according to the naming scheme of fea-
tures, i.e., featureType source seqID, 413 feature groups are
extracted by the Name method. The two data-driven ap-
proaches, SVD and Cross, were performed on the annotation
set, but we have to specify the group size K for them in ad-
vance. To analyze the effect of group size K in our proposed
adaptation framework, we evaluated the adaptation perfor-
mance of RankNet by varying the setting of K. To control
the number of adaptation queries in each user, which influ-
ences the adaptation performance, we selected a subset of
users, where each user has at least six queries with clicks
(close to the average number of queries with clicks per user
in our collection), and used the first three queries for adap-
tation and last three queries for testing in each user. This
leads to a collection of 8,879 users with 112,069 queries.

The MAP ranking performance of adapted RankNet with
different feature grouping methods is shown in Figure 1 (a).
First, it is clear that a properly set K is crucial for both
SVD and Cross methods. The more groups we set, the more
adaptation parameters need to estimate based on the limited
adaptation data; but if we set too few feature groups, the

1Since we only used a subset of annotated queries and fea-
tures, the results here do not reflect the actual performance
of the search engine.

50 100 200 400 600 800 1000
0.68

0.685

0.69

0.695

0.7

0.705

0.71

0.715

of feature groups

M
A

P

Name

SVD

Cross

Full

RND

50 100 200 400 600 800 1000
200

400

600

800

1000

1200

1400

1600

1800

of feature groups

#
 o

f
u
p
d
a
te

d
 p

a
ra

m
e
te

rs

Name

SVD

Cross

Full

RND

(a) Adaptation performance with different K (b) Number of updated parameters with different K

Figure 1: Analysis of feature grouping in RankNet adaptation.

discriminations among the features will be lost due to inac-
curate parameter updating by adaptation sharing. Besides,
Figure 1 (a) also shows that the adaptation performance is
less sensitive to K around its optimal value, i.e., the perfor-
mance as indicated by MAP is stable in a wide range of K
from 400 to 800, for both SVD and Cross.
Another observation in Figure 1 (a) is that Cross per-

formed consistently better than the other grouping methods
under the same setting of K. Because in the Cross method
features with similar contributions (i.e., linear coefficients)
to document ranking are grouped together, and they tend
to update synchronously. Sharing transformations among
such features is more desirable. In contrast, other grouping
methods cannot exploit such relationship among the fea-
tures, e.g., SVD only exploits the co-occurrence relationship
between features, and thus they achieved worse results.
In order to understand the in-depth effect of feature group-

ing in our adaptation framework, we computed the aver-
age number of updated parameters in the adapted ranking
model for each user with respect to different group size K
and illustrated the results in Figure 1 (b). We can note that
on average only 316 features (with a standard deviation of
214) can be observed in the adaptation data according to
the result of Full method. However, because of adaptation
transformation sharing across features in our framework, the
number of parameters that have been actually adjusted is
much larger. For example, with 800 groups, about 870 pa-
rameters (with a standard deviation of 220) on average are
effectively updated by the Cross method, indicating that
more than 60% of updated parameters are adapted with-
out actual observations. On the other hand, when K be-
comes smaller, the number of updated parameters increases
rapidly. Consequently, using too fewer groups forces less rel-
evant features get updated by the shared transformations,
which in turn degrades the overall adaptation performance.
Similar adaptation results with respect to group size K

were also observed in LambdaRank and RankSVM. In the
following experiments, to avoid selecting K for each individ-
ual user and the variation of performance introduced by this
factor, we fix K to be 800 for both SVD and Cross.

4.3 Comparison of Adaptation Performance

4.3.1 Baselines
To make a thorough evaluation of the proposed adaptation

method, we included several state-of-the-art ranking model
adaptation methods as baselines, covering instance-based,
feature-based and model-based methods, for comparisons.
We describe the employed baselines briefly in text below.

TransRank [6] is an instance-based ranking model adapta-
tion method, in which a utility function is defined to select
the top k important queries from the source domain into
target domain for model training. IW-RankSVM [13] is an-
other instance-based adaptation method, which re-weights
the instances in source domain by measuring its distance to
the classification hyperplane between source and target do-
main, and only uses those re-weighted instances from source
domain for target-domain model training. CLRank [5] is a
feature-based adaptation method, which constructs a new
joint feature representation for both source and target do-
mains to reduce the distributional difference between them.

However, it would be prohibitively expensive if we directly
applied these baselines for every user, because such methods
need to access all the offline training data during adapta-
tion. To make these methods applicable in our application
scenario, we pooled all the user’s adaptation data together
to form a combined user collection, on which the above base-
line methods are applied. In addition, we also trained a new
LambdaRank model optimizing MAP on this integrated user
collection as a baseline, and named it Target-Only.

RA-RankSVM [14] is a model-based adaptation method,
which treats the source-domain ranking model as an addi-
tional regularization for model training in the target domain.
Based on RA-RankSVM, we used the same regularization
idea in RankNet and LambdaRank to get the correspond-
ing RA-RankNet and RA-LambdaRank baselines. Besides,
without knowledge about the global model, we estimated a
ranking model only based on each individual user’s adap-
tation data, and denoted such method as Tar, e.g., Tar-
RankSVM, accordingly.

All baseline methods’ hyper-parameters, e.g., trade-off pa-
rameter C in RA-RankSVM, are tuned by 5-fold cross vali-
dation on the full user data set in advance.

4.3.2 Adaptation Accuracy
We performed the experiment on all user data in our col-

lection, in which the first 50% of queries from each user are
used for adaptation and the rest are used for testing.
• Comparison in per-user basis adaptation: we first
compared the ranking performance of our proposed adapta-
tion methods (under all the three grouping methods) with
the model-based adaptation baseline methods, e.g., RA-Ran-
kSVM, RA-RankNet and RA-LambdaRank, and the base-
line methods solely depend on the adaptation data, i.e., Tar-
RankSVM, Tar-RankNet and Tar-LambdaRank. These are
the only baselines applicable in the scenario of per-user ba-
sis ranking model adaptation. In particular, MAP metric is
chosen to be optimized in the adapted LambdaRank model.

Table 2: Comparison of per-user basis ranking
model adaptation performance.

MAP P@1 P@3 MRR

Tar-RankSVM 0.6240 0.4905 0.2335 0.6282
RA-RankSVM 0.6366 0.4809 0.2510 0.6410

Name-RankSVM 0.6544 0.5078 0.2546 0.6585
SVD-RankSVM 0.6643 0.5209 0.2579 0.6687
Cross-RankSVM 0.6638 0.5200 0.2574 0.6681

Tar-RankNet 0.6342 0.5051 0.2360 0.6384
RA-RankNet 0.6577 0.5267 0.2481 0.6619

Name-RankNet 0.6709 0.5425 0.2535 0.6750
SVD-RankNet 0.6751 0.5412 0.2581 0.6796
Cross-RankNet 0.6781 0.5450 0.2593 0.6826

Tar-LambdaRank 0.6436 0.5182 0.2384 0.6477
RA-LambdaRank 0.6616 0.5341 0.2479 0.6657

Name-LambdaRank 0.6814 0.5556 0.2569 0.6859
SVD-LambdaRank 0.6878 0.5590 0.2616 0.6925
Cross-LambdaRank 0.6922 0.5662 0.2629 0.6969

In Table 2, we can observe significant improvements in
ranking performance from the model-based adaptation meth-
ods, i.e., our methods and RA methods, against the methods
solely depending on the adaptation data, i.e., Tar methods.
As discussed before, sparsity is a serious problem in the per-
user basis model estimation. Tar methods cannot estimate
the parameters for the unseen features, and thus their rank-
ing capability is limited. RA methods alleviate such defi-
ciency by using the global model as back-off: for features
not observed in the adaptation data, the parameters from
the global model would be used. In our proposed method,
besides back-off to the global model when no observation is
available (as shown in Eq (5)), we also propagate the obser-
vations from seen features to unseen features by transforma-
tion sharing to help the model better estimate the param-
eters of those unseen features. As a result, our adaptation
methods, under all grouping methods, outperformed the cor-
responding RA adaptation methods (all the improvements
are significant with p-value<0.01 under paired t-test).
Another observation in Table 2 is that the adapted Lamb-

daRank performed consistently better than the adapted Ran-
kNet and RankSVM within our framework. In LambdaRank
the lambda function helps the model directly optimize the
IR-related metrics, e.g., MAP in our case, while RankNet
and RankSVM can only minimize pairwise loss. Lamb-
daRank has shown better performance than those pairwise
learning-to-rank algorithms in many classical ranking tasks
[22]. In our adaptation framework, such advantage of Lamb-
daRank is preserved since the same lambda function and
optimization procedure are applied as in the original Lamb-
daRank. This demonstrates the flexibility of our adaptation
framework, in which we can choose to adapt any specific
ranking algorithm according to the property of the task.
• Comparison with integrated adaptation: according
to the results in Table 2, we compared our best perform-
ing method Cross-LambdaRank with the instance-based and
feature-based ranking model adaptation methods, and list
the results in Table 3.
First of all, we can notice that in Table 3 the global

ranking model trained on the annotation set (i.e., Source-
Only) did not perform well on the user testing set; while
the model trained on the integrated user data improved
most of the ranking metrics over 10%. This indicates ev-
ident distributional difference between the generic annota-
tion set and user click set. Through instance re-weighting,
i.e., IW-RankSVM and TransRank, or feature construction,
i.e., CLRank, all baseline adaptation methods achieved im-

Table 3: Comparison of adaptation performance.

MAP P@1 P@3 MRR

Source-Only 0.5637 0.3356 0.2503 0.5679
Target-Only 0.6258 0.4667 0.2468 0.6298

IW-RankSVM 0.6427 0.4865 0.2506 0.6470
TransRank 0.6468 0.5202 0.2400 0.6512

CLRank 0.6590 0.5090 0.2561 0.6594
Cross-LambdaRank 0.6922 0.5662 0.2629 0.6969

proved results against the global model. For these baseline
methods, since we have pooled all the users’ adaptation data
together, sparsity is no longer a serious problem. However,
individual user’s specific ranking preferences will be over-
whelmed once we pooled different users’ clicks together. In
our adaptation method, e.g., Cross-LambdaRank, the global
model is adapted for each individual user towards maximiz-
ing the search utility based on their own adaptation data. As
a result, Cross-LambdaRank outperformed all these base-
line adaptation methods, which are originally designed for
domain adaptation, in this user-oriented evaluation.
• Query-/User-level improvement analysis: the re-
sults shown in Table 2 and Table 3 are averaged over all the
users’ testing queries. It is necessary to further investigate
to what extent and what types of users/queries can benefit
from the proposed adaptation method. We analyzed the de-
tailed ranking results given by Cross-LambdaRank against
those from the global ranking model and RA-LambdaRank,
which is the best baseline according to Table 2 and Table 3.

Table 4: Ranking performance gain against the
global model from Cross-LambdaRank and RA-
LambdaRank on repeated and non-repeated queries.

Query Type Method ∆MAP ∆P@1 ∆P@3 ∆MRR

Repeated
RA 0.2329 0.4082 0.0249 0.2331

Cross 0.2375 0.4129 0.0273 0.2379

Non-repeated RA -0.0337 -0.0050 -0.0292 -0.0342
Cross 0.0204 0.0498 -0.0024 0.0206

Query repetition is a common phenomenon in user’s query
log, and it is crucial for many memory-based personalization
methods [9, 28]. First, we categorized the testing queries as
repeated queries, if it occurred in the corresponding user’s
adaptation query set, and the rest as non-repeated ones;
and then computed the improvement of ranking performance
against the global model from Cross-LambdaRank and RA-
LambdaRank on these two types of testing queries. As
shown in Table 4 (all the differences are significant with
p-value<0.01 under paired t-test), both methods achieved
notably improvements against the global model on the re-
peated queries, but only Cross-LambdaRank attained im-
proved results on the non-repeated queries. For the re-
peated queries, both methods can simply “memorize” and
“promote” the documents clicked by the user; while for the
non-repeated queries, because RA-LambdaRank did not get
any direct observations to adjust the relevant ranking fea-
tures, it could not generalize well from the adaptation data.
In Cross-LambdaRank, the unseen features can also be up-
dated via transformation sharing, which affords the model
a better ranking capability on those non-repeated queries.

In addition, we also applied a proprietary multi-label clas-
sifier to annotate the query intent into 63 categories, e.g.,
navigational, commerce and etc., and found that the major
improvement of our method against the global model comes
from the navigational queries. In detail, comparing to the
global model 44.9% navigational queries get improved MAP

results and only 10.2% of them become worse. “HowTo,”
“Health” and “Q&A” are the major categories of queries on
which our method failed to generate better ranking than the
global model. We investigated such kind of queries in the
user data set and found the users’ clicks are mostly for ex-
ploration purposes in these kinds of informational queries
(diverse clicked documents), since they might not have a
clear mind of answers for these queries yet. As a result,
such clicks are less reliable for updating the ranking model.
To understand what types of users can benefit from our

adaptation method, we categorized the users in our collec-
tion into three classes by the number of adaptation queries
they have: 1) heavy user, who has more than 10 adapta-
tion queries; 2) medium user, who has 5 to 10 adaptation
queries; and 3) light user, who has less than 5 adaptation
queries. We calculated the ranking performance gain from
Cross-LambdaRank against the global model averaged over
the users in these three classes in Table 5. Besides, we also
included the improvement from RA-LambdaRank against
the global model in the table for comparison.

Table 5: User-level ranking performance gain over
global model from Cross-LambdaRank and RA-
LambdaRank.
Method User Class ∆MAP ∆P@1 ∆P@3 ∆MRR

Heavy 0.1843 0.3309 0.0120 0.1832
RA Medium 0.1102 0.2129 0.0025 0.1103

Light 0.0042 0.0575 -0.0221 0.0041
Heavy 0.1998 0.3523 0.0182 0.1994

Cross Medium 0.1494 0.2561 0.0208 0.1500
Light 0.0403 0.0894 -0.0021 0.0406

All the differences in Table 5, except the Cross/Light/∆P@3
with the value of -0.0021, are significant with p-value<0.01
under paired t-test. We can observe that on the heavy
users, who only cover 6.8% population in our collection,
Cross-LambdaRank and RA-LambdaRank achieved simi-
lar improvements against the global model; while on the
medium and light users, who consist 14.9% and 78.3% of the
whole collection, Cross-LambdaRank achieved much more
remarkably improvement than RA-LambdaRank. On the
heavy users, both methods get relatively sufficient observa-
tions from each user to adapt the global model; while on
the medium and light users, the observations become scat-
tered and many features are not observed during adaptation.
RA-LambdaRank failed to adjust the unseen features prop-
erly and only achieved modest improvement over the global
model. By sharing transformation across features, Cross-
LambdaRank better exploited the information conveyed in
the limited adaptation data, and obtained better improve-
ment against the global model. Besides, we also found that
on the light users, both methods gave degraded P@3 results
(the degradation of the Cross-LambdaRank is insignificant).
We analyzed the results and found that with limited obser-
vations in this group of users, the adapted models tend to
overfit the original top ranked documents due to positional
biases. As a result, the diversity of user preferences might
not be properly captured in this type of users.

4.3.3 Adaptation Efficiency
We have discussed different adaptation methods’ compu-

tation complexity in Section 4.3.1, from which we concluded
that the instance-based methods, e.g., TransRank and IW-
RankSVM, and feature-based methods, e.g., CLRank, can-
not be applied in the per-user basis adaptation scenario,

due to the need to frequently access source-domain data
during adaptation. Therefore, in this experiment, we will
only compare with the model-based adaptation method, i.e.,
RA method. Besides, we also included the ranking model
solely estimated on each user’s adaptation data as a base-
line. In particular, we will only illustrate the comparison
results based on LambdaRank due to its superior ranking
performance shown in Section 4.3.2. (Similar results also
obtained in RankNet and RankSVM, but due to space limit
we cannot include them.) Since all the three methods share
similar computational complexity, we evaluated their adap-
tation efficiency by varying the number of adaptation queries
and examining which method can adapt to a user’s prefer-
ences with fewer number of adaptation queries. To make
the results comparable across different settings of adapta-
tion queries, we selected a subset of users who have at least
15 queries in total, in which we fixed the last 5 queries in
each user as testing queries. This gives us a collection of
2,743 users with 42,595 queries.

First, we gradually increased the size of adaptation queries
from 1 to 10 in each user, and re-estimated the adapted
models every time accordingly. The relative improvement of
MAP metric for all the methods against the global ranking
model on the testing set are shown in Figure 2 (a).

As shown in Figure 2 (a), by leveraging knowledge from
the global model, the adapted ranking models outperformed
the model only estimated on the adaptation data; and, with
only a small amount of adaption data, e.g., 1 or 2 queries, the
adapted models can already achieve encouraging improve-
ment (over 15%) against the global model. Comparing with
the RA method, our proposed adaptation method achieved
more rapid improvement: Cross-LambdaRank achieved 25%
improvement by using three queries, while RA-LambdaRank
slowly climbed to 23% improvement only after 10 queries.
Such efficient adaptation credits to the transformation shar-
ing across features in our framework, which helps the model
better handle the sparsity problem during adaptation.

The settings in Figure 2 (a) simulate a situation in which
batch update is performed, i.e., update the models for each
user once we have collected sufficient adaptation data. How-
ever, in a more practical setting, we cannot wait too long to
collect sufficient adaptation data, so that online updating is
required. In this experiment, we used the same set of users
as in Figure 2 (a), but updated the ranking models for ev-
ery adaptation query we collected from the user in an online
manner, in which we treated the previously updated model
as the base model for the next iteration of model updating.
The results are shown in Figure 2 (b).

We can clearly notice the advantage of our adaptation
method against the baseline methods from the online adap-
tation results. Because Tar-LambdaRank cannot leverage
any knowledge from the global model about the unseen fea-
tures, its performance fluctuated due to the variance in the
adaptation queries. Although RA-LambdaRank appeals to
the global model for estimating the unseen features, in the
online setting, the knowledge from global model gets dimin-
ished rapidly as adaptation evolves, because it only treats
the model from last iteration as regularization. As a result,
its performance is worse than that in the batch mode (in
Figure 2 (a)). In our method, observations in the adapta-
tion data can be fully exploited via transformation sharing,
so that unseen features can also be properly updated during
online adaptation, which leads to consistent improvement of
ranking performance in both batch and online settings.

1 2 3 4 5 6 7 8 9 10
0%

5%

10%

15%

20%

25%

30%

of adaptation queries

M
A

P
 I

m
p
ro

v
e
m

e
n
t

Tar−LambdaRank

RA−LambdaRank

Name−LambdaRank

SVD−LambdaRank

Cross−LambdaRank

1 2 3 4 5 6 7 8 9 10
0%

5%

10%

15%

20%

25%

30%

Step of model update

M
A

P
 I

m
p
ro

v
e
m

e
n
t

Tar−LambdaRank

RA−LambdaRank

Name−LambdaRank

SVD−LambdaRank

Cross−LambdaRank

(a) Batch adaptation for LambdaRank (b) Online adaptation for LambdaRank

Figure 2: Adaptation efficiency comparisons.

5. CONCLUSIONS
In this work, we proposed a general ranking model adap-

tation framework for personalized search. A series of learned
linear transformations, e.g., scaling and shifting, were per-
formed on the parameters of a generic linear ranking model
in a per-user basis, such that the adapted model can better
fit each individual user’s search result ranking preferences.
By sharing transformations across features in a group-wise
manner, unseen features can also be properly updated given
only limited number of adaptation queries. We instantiated
the proposed framework with three frequently used learning-
to-rank algorithms, i.e., RankNet, LambdaRank and RankSVM,
and the adaptation method achieved significant improve-
ment in, not only adaptation efficiency, but also ranking
performance of the adapted ranking models, against several
state-of-the-art ranking model adaptation methods in exten-
sive experimentation.
In our current solution, the feature grouping function and

transformation matrix are estimated independently. It would
be meaningful to jointly estimate the two components for
better adaptation performance. Besides, the proposed linear
transformation based ranking model adaptation framework
opens an interesting new direction for personalization: rich
signals, e.g., user-specific profiles and features, could also
be included to affect the transformation in order to better
reflect users’ individual search interests.

6. REFERENCES
[1] E. Agichtein, E. Brill, S. Dumais, and R. Ragno. Learning user

interaction models for predicting web search result preferences.
In SIGIR’06, 2006.

[2] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information
retrieval, volume 463. ACM press New York, 1999.

[3] P. N. Bennett, R. W. White, W. Chu, S. T. Dumais, P. Bailey,
F. Borisyuk, and X. Cui. Modeling the impact of short- and
long-term behavior on search personalization. In SIGIR’12,
pages 185–194, 2012.

[4] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In ICML’05, pages 89–96. ACM, 2005.

[5] D. Chen, Y. Xiong, J. Yan, G. Xue, G. Wang, and Z. Chen.
Knowledge transfer for cross domain learning to rank.
Information Retrieval, 13(3):236–253, 2010.

[6] D. Chen, J. Yan, G. Wang, Y. Xiong, W. Fan, and Z. Chen.
Transrank: A novel algorithm for transfer of rank learning. In
ICDMW’08, pages 106–115. IEEE, 2008.

[7] P. Chirita, W. Nejdl, R. Paiu, and C. Kohlschütter. Using odp
metadata to personalize search. In SIGIR’05, pages 178–185.
ACM, 2005.

[8] I. Dhillon. Co-clustering documents and words using bipartite
spectral graph partitioning. In KDD’01, pages 269–274. ACM,
2001.

[9] Z. Dou, R. Song, and J. Wen. A large-scale evaluation and
analysis of personalized search strategies. In WWW’07, pages
581–590. ACM, 2007.

[10] K. Duh and K. Kirchhoff. Learning to rank with partially
labeled data. In SIGIR’08, pages 251–258. ACM, 2008.

[11] R. Fidel and M. Crandall. Users’ perception of the performance
of a filtering system. In SIGIR’97, volume 31, pages 198–205.
ACM, 1997.

[12] J. Gao, Q. Wu, C. Burges, K. Svore, Y. Su, N. Khan, S. Shah,
and H. Zhou. Model adaptation via model interpolation and
boosting for web search ranking. In EMNLP’09, pages 505–513,
2009.

[13] W. Gao, P. Cai, K. Wong, and A. Zhou. Learning to rank only
using training data from related domain. In SIGIR’10, pages
162–169. ACM, 2010.

[14] B. Geng, L. Yang, C. Xu, and X. Hua. Ranking model
adaptation for domain-specific search. Knowledge and Data
Engineering, IEEE Transactions on, 24(4):745–758, 2012.

[15] X. He and W. Chou. Minimum classification error linear
regression for acoustic model adaptation of continuous density
hmms. In ICME’03, pages I–397. IEEE, 2003.

[16] T. Joachims. Optimizing search engines using clickthrough
data. In KDD’02, pages 133–142, 2002.

[17] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay.
Accurately interpreting clickthrough data as implicit feedback.
In SIGIR’05, pages 154–161. ACM, 2005.

[18] C. Leggetter and P. Woodland. Maximum likelihood linear
regression for speaker adaptation of continuous density hidden
markov models. Computer speech and language, 9(2):171, 1995.

[19] T. Liu. Learning to rank for information retrieval. Foundations
and Trends in Information Retrieval, 3(3):225–331, 2009.

[20] T. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor: Benchmark
dataset for research on learning to rank for information
retrieval. In SIGIR’07 workshop on learning to rank for
information retrieval, pages 3–10, 2007.

[21] S. Pan and Q. Yang. A survey on transfer learning. Knowledge
and Data Engineering, IEEE Transactions on,
22(10):1345–1359, 2010.

[22] C. Quoc and V. Le. Learning to rank with nonsmooth cost
functions. In NIPS’07, volume 19, page 193, 2007.

[23] X. Shen, B. Tan, and C. Zhai. Context-sensitive information
retrieval using implicit feedback. In SIGIR’05, pages 43–50.
ACM, 2005.

[24] D. Sontag, K. Collins-Thompson, P. N. Bennett, R. W. White,
S. Dumais, and B. Billerbeck. Probabilistic models for
personalizing web search. In WSDM’12, pages 433–442, 2012.

[25] B. Tan, X. Shen, and C. Zhai. Mining long-term search history
to improve search accuracy. In KDD’06, pages 718–723, 2006.

[26] J. Teevan, S. Dumais, and E. Horvitz. Personalizing search via
automated analysis of interests and activities. In SIGIR’05,
pages 449–456. ACM, 2005.

[27] J. Teevan, S. Dumais, and D. Liebling. To personalize or not to
personalize: modeling queries with variation in user intent. In
SIGIR’08, pages 163–170. ACM, 2008.

[28] J. Teevan, D. J. Liebling, and G. Ravichandran Geetha.
Understanding and predicting personal navigation. In
WSDM’11, pages 85–94, 2011.

[29] R. W. White and S. M. Drucker. Investigating behavioral
variability in web search. In WWW’07, pages 21–30, 2007.

