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ABSTRACT
Commercial and industrial buildings account for a consid-
erable portion of all energy consumed in the U.S., and thus
reducing this energy consumption is a national grand chal-
lenge. Based on the large deployment of sensors in modern
commercial buildings, many organizations are applying data
analytic solutions to the thousands of sensing and control
points to detect wasteful and incorrect operations for energy
savings. Scaling this approach is challenging, however, be-
cause the metadata about these sensing and control points is
inconsistent between buildings, or even missing altogether.
Moreover, normalizing the metadata requires significant in-
tegration effort.
In this work, we demonstrate a first step towards an auto-

matic metadata normalization solution that requires mini-
mal human intervention. We propose a clustering-based ac-
tive learning algorithm to differentiate sensors in buildings
by type, e.g., temperature v.s. humidity. Our algorithm
exploits data clustering structure and propagates labels to
their nearby unlabeled neighbors to accelerate the learning
process. We perform a comprehensive study on metadata
collected from over 20 different sensor types and 2,500 sen-
sor streams in three commercial buildings. Our approach
is able to achieve more than 92% accuracy for type classifi-
cation with much less labeled examples than baselines. As
a proof-of-concept, we also demonstrate a typical analytic
application enabled by the normalized metadata.
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1. INTRODUCTION
According to recent reports from U.S. Department of En-

ergy [27, 17], commercial and industrial buildings in the U.S.
account for almost 20 percent of the country’s total energy
use and a good 30 percent of that energy is used“inefficiently
or unnecessarily.” Reducing this energy usage is a national
grand challenge: in 2011, the U.S. government launched the
Better Buildings Challenge to make these buildings at least
20 percent more efficient by 2020 [10]. To achieve this goal,
many organizations are applying data analytics to the thou-
sands of sensing and control points in a typical commercial
building to detect wasteful and incorrect operations.

The analytic-based approach is highly effective but very
difficult to scale because the metadata about the type, lo-
cation, and relationships between the sensing and control
units are inconsistent between buildings, or even missing
altogether. Generally, the sensing and control points in a
building are intended to be used for manual inspection or
by handcrafted control loops in a building automation sys-
tem (BAS); they are not designed for automatic extraction
and consumption by external software. As a result, map-
ping the sensor streams to the inputs of a data analytic
engine requires significant integration effort and anecdotally
takes about a week or longer for each commercial building.
For large organizations that are applying this approach to
hundreds or more buildings, such as Microsoft’s 88 Acres
project [28], this process can take years. Even if this highly
manual process is performed once, the need for additional
mapping is not necessarily eliminated. New types of meta-
data will be required as the building is modified or reno-
vated, as the equipment is upgraded, or as new conditions
and algorithms are added to the analytics engine.

Building Point Name

A
Zone Temp 2 RMI204

spaceTemperature 1st Floor Area1

B
SDH_SF1_R282_RMT

SDH_S1-01_ROOM_TEMP

C
SODA1R300__ART

SODA1R410B_ART

Table 1: Example point names for temperature sensors from
three different buildings.

In modern commercial buildings, a sensing or control“point”
is a sensor measurement, a controller, or a software value,
e.g., a temperature sensor installed in an office room. The
metadata about the point indicates the physical location,
the type of sensor or controller, how the sensor or con-



troller relates to the mechanical systems, and other impor-
tant contextual information. Most of the time, the meta-
data is encoded as a “point name”, which is usually a short
text string with several concatenated abbreviations. Ta-
ble 1 lists a few point names of sensors in three differ-
ent building management systems contracted by Trane1,
Siemens2 and Barrington Controls3. For example, the point
name SDH_SF1_R282_RMT is constructed as a concatenation
of the name of the building (SDH), the supply fan unit iden-
tifier (SF1), the room number (R282) and the sensor type
(RMT, room temperature). As the name indicates, this sensor
stream measures the temperature in a specific room; and it
also reveals the control unit that can affect the temperature
in this room. Unfortunately, different naming conventions
are used in most buildings due to different equipment, ven-
dors, manufacturers, and contractors being used. As shown
in the table, the notion of room temperature is encoded with
different abbreviations in these three buildings: Temp, RMT
and ART. Similar variation exists between buildings on a sin-
gle commercial campus and even between buildings with the
same contractor.
We envision a system that will allow an advanced analytic

engine to quickly connect to and analyze the data from a
commercial building. It would extract or infer metadata val-
ues about sensing and control points to a normalized meta-
data standard. Such a tool would not only save time but also
allow building managers to experiment with many different
kinds of analytic engines. Nevertheless, there is limited work
on this topic. Bhattarcharya et al. [4] exploit a programming
language based solution, where they derive a set of regular
expressions from a handful of labeled examples to normalize
the point name of sensors. This approach assumes a consis-
tent format for all point names and one single pattern for
each type, which is not the case in practice, as shown in
Table 1. Schumann et al. [22] develop a probabilistic frame-
work to classify sensor types based on the similarity of a raw
point name to the entries in a manually constructed dictio-
nary. However, the performance of this method is limited by
the coverage and diversity of entries in the dictionary, and
the dictionary size becomes intractable when there exist a
lot of variations of the same type, or conflicting definitions
of a dictionary entry in different buildings.
In this work, we demonstrate a first step towards an au-

tomatic metadata normalization solution that requires min-
imal human intervention. We focus on a key category of
metadata: the type of sensor associated with a sensing point.
In contrast to the aforementioned methods, where the an-
notation process is isolated from model training, we develop
a novel active learning based solution to integrate these
two processes so as to minimize the manual labeling effort
throughout the metadata normalization process. Beyond
the traditional active learning solutions [24, 6, 5], we further
accelerate the learning process by exploiting the clustering
structure of point names. We should note that although the
naming schemata vary significantly across buildings, there
will be definite variants within the same building, given
there are only finite types of sensors deployed in a build-
ing. As a result, during active learning, unlabeled examples
can be clustered; those in the same cluster are more likely

1http://www.trane.com/
2http://www.siemens.com/
3The company is no longer in business.

to share the same label and hence do not need to be queried
repeatedly. Moreover, the acquired labels can be further
propagated to the unlabeled neighbors in the same cluster
to expedite classifier training. In our solution, the examples
selected for labeling are chosen based on both their repre-
sentativeness in the cluster and the informativeness of the
cluster itself. A Gaussian Mixture Model with Dirichlet Pro-
cess Prior [20] is used to cluster the instances on the fly to
accommodate the dynamic nature of active learning. Label
propagation is performed with respect to the connectivity of
labeled examples’ neighborhood in an adaptive manner.

To investigate the effectiveness of the proposed solution
for sensor type classification, we performed extensive ex-
perimental comparisons against the state-of-the-art active
learning algorithms on a large collection of real sensor stream
data, which includes over 20 different sensor types and 2,500
sensors in three different commercial buildings. Our method
achieved increased classification performance with reduced
amount of manual labels.

Our main contributions in this paper can be summarized
as follows:

• We propose a novel, effective yet general active learn-
ing approach by exploiting the clustering structure of
instances and label propagation to unlabeled neigh-
bors, in order to achieve better convergence rate.

• We evaluate our proposed solution in sensor type clas-
sification based on real metadata containing 20 differ-
ent sensor types and 2,500 sensors in three different
commercial buildings; and our solution achieved more
than 92% accuracy with at least 16% less manual labels
than the state-of-the-art active learning algorithms.

• We also illustrate how data analytics can be performed
on top of the automatically normalized building meta-
data with an example of keyword-based search.

2. RELATED WORK
To the best of our knowledge, there is few existing work

addressing the sensor metadata normalization problem stud-
ied in this paper. Besides [4, 22] discussed before, there are
two major bodies of related work to ours, i.e., active learning
in machine learning and schema matching in database.

The main idea behind active learning is that a machine
learning algorithm can achieve greater accuracy with fewer
labeled training instances if it is allowed to choose the data
from which it learns [24]. Therefore, the key research ques-
tion in active learning is evaluating the informativeness of
unlabeled instances for querying. Various solutions have
been proposed from different perspectives, including uncer-
tainty reduction [6], query by committee [12], and expected
error reduction [2]. In particular, Nguyen and Smeulders
also incorporated clustering idea into active learning to se-
lect the most informative examples [16]. Their proposed
query strategy gives priority to instances that are close to
both classification boundary and cluster centroid. Dasgupta
and Hsu utilized a hierarchical clustering structure to allevi-
ate sampling bias and improve learning efficiency [7]. They
present an algorithm that is statistically consistent and guar-
antees to have better label complexity than supervised learn-
ing. However, in those two methods clustering is performed
in an ad-hoc manner, e.g., with predefined cluster size; and
neither of them considers the label proximity between adja-

http://www.trane.com/
http://www.siemens.com/


cent examples or propagates labels to reduce the amount of
labels required for model training.
Automatic schema matching [19] is a classical problem in

the database community where correspondences between el-
ements of two schemata are identified as part of the data
integration process. Many techniques have been proposed
to achieve a partial automation of the match operation for
specific application domains. Doan et al. ask a user to pro-
vide semantic mappings for a small set of data sources and
then train a set of learners with existing machine learning
approaches to find the mappings for new data sources [9].
Dhamankar et al. extend [9] to a semi-supervised setting,
where domain-specific knowledge is introduced for complex
expressions learning [8]. Madhavan et al. exploit a large col-
lection of schemata with known mappings to learn a prior
distribution of the elements and their properties [14]. The
learned prior distribution is then used as constraints to help
a suite of base learners to complete the matching. Though
adapting learning techniques, these works mostly focus on
offline supervised settings and do not emphasize the effi-
ciency of learning methods, i.e., to reduce manual efforts
throughout the learning procedure.

3. METHODOLOGY
In this work, we develop a novel active learning based

solution to perform automated sensor type classification in
commercial buildings. Because in practice one can get direct
access to all point names in a target building, our approach
adopts the pool-based sampling setting, which selects the
most informative instances from the entire collection of unla-
beled data points. The data clustering structure is exploited
to aid manual labeling of instances and to avoid repeated se-
lection of similar instances. In addition, the acquired labels
are propagated to their unlabeled neighbors to accelerate
the training process. To accommodate the dynamic nature
of active learning, we appeal to a non-parametric Bayesian
approach to identify the clustering structure, and perform
label propagation in an adaptive manner.

3.1 Clustering-based Active Learning
Formally, the problem of using active learning for auto-

mated sensor type classification can be described as fol-
lows. For a given collection of unlabeled point names D =
{x1, x2, . . . , xn}, in which the text string of point name xi

is represented as a d dimensional feature vector, we aim at
learning a classifier f : f(x) → y, with respect to a set of
labeled instances Dl = {(x1, y1), (x2, y2), . . . , (xn, yn)} ac-
quired during classifier training. In particular, yi is the true
sensor type for the point name xi and takes value from a
set of predefined labels. Our goal of learning is to maximize
f(x)’s classification accuracy on the future testing data while
minimizing the size of Dl. We should note that our proposed
solution has no assumption about the classifier f(x); any su-
pervised multi-class classifier can be used in our method.
Conventional active learning methods mostly focus on effi-

cient search through the hypothesis space. Each time a new
label is added to Dl, the set of hypothesis space shrinks,
e.g., filters the classifiers that are inconsistent with the la-
bels seen so far. Great research attention has been devoted
onto designing effective query strategies for label acquisi-
tion. Typical solutions include uncertainty-based sampling
[6], query by committee [12], and expected model change [2].

However, such solutions implicitly assume unlabeled in-
stances are independent, and thus fail to exploit any infor-
mation conveyed in the density of data, i.e., the marginal dis-
tribution of p(x) is assumed to be uniform. However, if the
unlabeled instances in D form clusters, i.e., their clustering
membership is consistent with the underlying class labels,
one will only need one label from each cluster to estimate a
perfect classifier. Although this example is overly optimistic,
the clustering structure can still unveil the representative-
ness of instances with respect to their neighborhood. Hence
special emphasis should be given to those most represen-
tative instances while labeling them. In addition, because
instances in the same cluster are more likely to share the
same label [31], one can accelerate active learning by avoid-
ing labeling instances from the same cluster and propagating
labels to the nearby unlabeled instances.

In our solution, the density of unlabeled instances, i.e.,
p(x), is exploited via its clustering structure. In particular,
we use a probabilistic mixture model to identify the latent
clusters, e.g., p(x) =

∑
c p(x|c)p(c), where c denotes a clus-

ter label. The detailed instantiation of this mixture model,
e.g., how to decide the cluster size and the specification of
cluster conditional likelihood, will be discussed in Section
3.3. With the identified clustering structure at hand, we
devise a divide-and-conquer strategy for selecting the query
instances: 1) it should come from the most informative clus-
ter; and 2) it should be representative in that cluster. This
query strategy focuses on the entire input space; comparing
to those individual instance based selection methods, it can
thus help to avoid querying outliers or repeatedly querying
similar instances.

To quantify the “informativeness” of a cluster, we exploit
an information theoretic metric - class entropy H(c). For
every cluster c, we apply f(x) to predict the labels for all
the unlabeled instances in it. Then based on these predicted
labels, we compute the class entropy for this cluster as,

H(ci) = −
∑

y∈Yci

p(y) log p(y) (1)

where Yci is the set of unique labels in cluster ci predicted
by classifier f(x).

A cluster with larger class entropy indicates increased dis-
crepancy between the current classifier’s prediction and clus-
tering structure inferred from the density of unlabeled in-
stances. Therefore instances from such a cluster are consid-
ered potentially more helpful in introducing new informa-
tion to classifier training. In addition, the size of a cluster
is also an important criterion for measuring its informative-
ness. When multiple clusters have similar class entropy, a
larger cluster will indicate more uncertainty of class labels
in it. Hence acquiring a label for such a cluster can mostly
reduce the classifier’s uncertainty on a larger portion of in-
stances. Combining these two aspects, we locate the cluster
of choice by the product of cluster proportion p(c) and class
entropy H(c) as follows,

ĉ = argmax
c

p(c)H(c) (2)

Once we locate the candidate cluster ĉ, we need to choose
the most “representative” instance from it for labeling. We
use the conditional likelihood p(x|ĉ) over all the unlabeled
instances to select such an instance. The intuition behind
this choice is that the instance with the maximum condi-



tional likelihood best captures the homogeneity of instances
in the selected cluster, such that knowing its label will pro-
vide a substantial boost for the classifier to predict the class
labels within this cluster.
In addition, we also view high class entropy in the selected

cluster as an indication of low resolution of clustering results
in that local region: classification boundary goes inside the
cluster. To reduce this divergence between predicted classes
and clustering results, we need to further separate this clus-
ter into finer clusters. The benefit of this sub-clustering is
that the class distribution estimated by the classifier is intro-
duced into clustering; this helps generate more homogeneous
clusters for later instance selection.

3.2 Label Propagation
The basic assumption in our clustering-based active learn-

ing solution is that instances in the same cluster tend to
share the same class label. The query strategy described
in the previous section exploits this assumption to avoid re-
peated selection of similar instances. In this section, we will
further capitalize on this assumption to propagate the ac-
quired labels to their nearby unlabeled neighbors to reinforce
our current knowledge about the underlying class distribu-
tion.
The idea of label propagation is popularized in trans-

ductive learning [31, 30, 3], where class labels are propa-
gated from the labeled instances to their unlabeled neigh-
bors based on the structure of data manifold. In practice,
the data manifold is approximated by the nearest neighbors
of each instance derived from data features. To empirically
validate the feasibility of applying label propagation in our
problem, we randomly selected a small portion of labeled
sensor point names in our evaluation corpus, computed the
Euclidean distance between all pairs of instances based on
their feature vectors, and grouped them into pairs from the
same class and different classes. We plot the cumulative
distributions of those three types of distances in Figure 1.

Figure 1: Distribution of pairwise distance between in-
stances from the same class and different classes.

As we can clearly notice from the results, there is a clear
gap between the cumulative distribution of distances be-
tween instances from the same class and those from different
classes. This result also confirms our assumption in the pro-
posed clustering-based active learning that nearby instances
tend to share the same class label. Therefore, with proper
choice in constructing the data manifold, we can confidently
propagate the labels to their closest unlabeled neighbors and

use them to update the classifier. This label propagation will
amplify the importance of acquired labels and better avoid
repeatedly querying of similar instances.

A typical approach to construct the data manifold for la-
bel propagation in transductive learning is to look for the k
nearest neighbors of each instance. However, in our solution
it is challenging to find a universal setting of k. To accommo-
date the clustering structure, label propagation should only
be performed within the same cluster. However, since the
resulting clusters vary and change across iterations, a fixed
setting of k might lead to inconsistency between the data
manifold and clustering results. To address this issue, we
introduce a distance threshold r to define the data manifold
for label propagation in our active learning process. When
the label y is acquired for instance x, all the unlabeled in-
stances located within the distance r to x will be assigned
the same label y. Those instances will be then removed from
D and added to a collection of propagated label set Dp for
later classifier training.

The optimal threshold r should be the minimum inter-
class distance between any pair of instances. However, it
is impossible to calculate without knowing the true class
labels. In our solution, we keep an estimation of r from all
the labeled instances in Dl during active learning,

r = argmin
(xi,yi),(xj ,yj)∈Dl

d(xi, xj)

2
, with yi ̸= yj (3)

d(xi, xj) is the Euclidean distance between xi and xj .
We divide the minimum distance by 2 to avoid possible

overlapping of label propagation between two labeled in-
stances. The adaptive estimation of distance threshold de-
fined in Eq (3) will shrink during active learning and there-
fore refines the propagated labels. Accordingly, we need to
correct previously propagated labels where the estimation
of r was less accurate. In particular, when we have a new
estimation of r, we will remove instances from Dp that fall
outside the region defined by the latest r to any closest la-
beled neighbors with the same label, and put them back into
the unlabeled set D. This correction happens before the new
round of classifier training.

3.3 Clustering with Non-parametric Bayesian
In our proposed clustering-based active learning, data den-

sity is exploited via its latent clustering structure. Since we
assume instances in the same cluster tend to share the same
class label, we choose Gaussian Mixture Model (GMM) [32],
a partitional clustering algorithm, to perform the clustering.

In GMM, the cluster label for every instance is treated as
a latent variable, which is drawn from a multinomial distri-
bution p(c), i.e., p(c) ∝ αc, where ∀c, αc ≥ 0 and

∑
c αc = 1.

In any given cluster c, the conditional data likelihood of an
instance x is specified by a multivariate Gaussian distribu-
tion. To reduce the number of parameters to be estimated,
we choose the isotropic Gaussian in our solution,

p(x|c) = (2πσ2)−d/2 exp− (x− µc)
T(x− µc)

2σ2
(4)

where the variance σ2 is shared by all the clusters. {αc, µc}kc=1

and σ are considered as model parameters in GMM.
However, in GMM, we need to manually specify the num-

ber of clusters for a given input data set; and the cluster-
ing result of GMM is very sensitive to such setting. More



importantly, in our solution, we also need to perform sub-
clustering whenever we encounter a cluster contradicting
with the current classifier’s prediction. It is impossible for
us to predefine the size of those sub-clusters during active
learning. To make clustering feasible in our solution, we ap-
peal to a non-parametric Bayesian solution: we assume the
model parameters (α, µ) in each cluster are random vari-
ables, which are drawn from a Dirichlet Process prior [11].
A Dirichlet Process DP (G0, η) with a base distribution

G0 and a scaling parameter η is a distribution over distri-
butions [11]. The base distribution G0 specifies the prior
distribution of model parameters, e.g., mean parameter µ in
each cluster, and the scaling parameter η specifies the con-
centration of samples drawn from DP, e.g., cluster propor-
tion p(c). An important property of the DP is that though
the draws from a DP have countably infinite size, they are
discrete with probability one, which leads to a probability
distribution on partitions of data. The number of unique
draws, i.e.,the number of clusters, varies with respect to the
data and therefore is random, instead of being pre-specified.
As a result, with the introduced DP (G0, η) prior, data

density in a given collection of instances can be expressed
using a stick-breaking representation [23]:

p(x) =

∞∑
c=1

αcN (x|µc, σ)p(µc|G0) (5)

where α = α∞
c=1 ∼ Stick(η) represents the proportion of

clusters in the whole collection. The stick-breaking process
Stick(η) for the cluster proportion parameter α is defined as:
α′
c ∼ Beta(1, η), αc = α′

c

∏c−1
i=1 (1 − α′

i). Since the variance
σ2 is fixed in all clusters, we use a conjugate prior for µ in
G0, i.e., for ∀c, µci ∼ N (a, b), with the assumption that each
dimension in µc is independently drawn from a univariate
Gaussian. This will greatly simplify the later on inference
procedure.
Because the data density distribution defined in Eq (5)

only has finite support at the points of {αc, µc}kc=1, we can
calculate the posterior distribution of latent cluster labels in
each unlabeled instance to discover the clustering structure
for active learning. Following the sampling scheme proposed
in [15], we appeal to a Gibbs sampling method to infer the
posterior of cluster membership. Detailed specifications of
this sampling algorithm can be found in [15]. In particular,
we use the same hyper-parameter setting of (a, b) in G0 and
η for initial clustering and subsequent sub-clustering during
our cluster-based active learning process.
Putting it all together: Algorithm 1 summarizes our

clustering-based active learning solution for the sensor type
classification problem. In each iteration, we select the most
“informative” cluster measured by the class entropy of pre-
dicted labels by the classifier. We acquire a label for the
instance centered in the selected cluster, and propagate the
newly obtained label to its unlabeled neighbors within an
estimated distance. At the end of this iteration, we per-
form sub-clustering on the selected cluster to refine its local
clustering structure for later instance selection.

3.4 Discussion
Comparing to the existing solutions for the sensor type

classification, our proposed algorithm addresses the prob-
lem from a totally different perspective. As we discussed
before, because existing solutions [4, 22] isolated the anno-
tation process from model training, it likely leads to wasted

Algorithm 1: Clustering-based Active Learning

Input: point names D = {x1, x2, . . . , xn}, and label
budget B
Output: predicted labels of the point names Y
Initialize: Generate clusters with DP (G0, η) on D, reset
the labeled instance set Dl and propagated label set Dp

to empty
while B > 0 do

Train the classifier f(x) → y based on Dl and Dp;
Apply f(x) to all instances in D;
Compute class entropy H(c) defined in Eq (2) for
each cluster c;
Retrieve a cluster by ĉ = argmaxc p(c)H(c);
Acquire label ŷ for example x̂ given by
argmaxx∈D Pr(x|ĉ), and move (x̂, ŷ) from D to Dl;
Update the distance threshold r by Eq (3);
Update all previous propagated label in Dp with
new threshold r;
Assign ŷ to all unlabeled examples xu, where xu ∈ ĉ
and d(xu, x̂) < r;
Move (xu, y) from D to Dp;
Perform sub-clustering with DP (G0, η) in ĉ;

end

effort in data annotation. With active learning, we can re-
strict our effort to a smaller set of instances that are the
most helpful for classifier training. A practical benefit of
this learning approach is that we can rapidly bootstrap the
building analytic software across different sites. Instead of
going back and forth for several rounds of blind annotation,
a building manager only needs to interact with the system
for several iterations on the fly to achieve immediate satis-
factory results.

Comparing to the other active learning algorithms, our
proposed method focuses on exploiting information conveyed
in the data clustering structure. Based on the assumption
that nearby instances are more likely to share the same class
label, we select the instances for labeling based on the iden-
tified latent clustering structure of instances and propagate
the labels to their adjacent unlabeled neighbors. This helps
us avoid repeatedly querying similar instances and enhance
the importance of labeled instances. In addition, the clus-
tering structure and label propagation strategy are adapted
in an online fashion. In Nguyen and Smeulders’s work [16],
clustering is also exploited for active learning; but their clus-
tering structure is static and no label propagation is per-
formed. In Dasgupta and Hsu’s work [7], hierarchical clus-
tering is used to provide a more flexible and dynamic cluster-
ing structure, but no label propagation is performed as well.
We should note this proposed active learning algorithm is
general, it only assumes the proximity of label distribution
in nearby instances. Therefore, this algorithm can also be
applied in a broader context, e.g., document categorization
[26] and image retrieval [25].

4. EVALUATION
To demonstrate the effectiveness of our proposed solu-

tion in addressing sensor type classification, we evaluate our
clustering-based active learning algorithm on point names
collected from three distinct buildings. Extensive experi-
mental comparisons confirm that our method achieved the
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Figure 2: A typical HVAC system consisting of an air han-
dler unit (AHU), several variable air volume boxes (VAV),
water-based heating/cooling pipes and air circulation ducts.
(Figure used with permission from the authors of [1].)

same classification accuracy with much fewer labeled exam-
ples than all the baseline methods. We also demonstrate how
metadata normalization can enable meaningful analytic ap-
plications with the raw sensor streams under the context of
commercial building energy control and comfort assessment.

4.1 Background & Building Sensor Taxonomy
Figure 2 illustrates a typical heating, ventilation, and air

conditioning (HVAC) system deployed in modern commer-
cial buildings. An HVAC system usually uses a combination
of hot and cold water pipes in conjunction with air han-
dler units (AHU) to maintain the appropriate thermal en-
vironment within the building. An HVAC system usually
consists of several AHUs and each AHU is responsible for a
physical zone in the building. An AHU consists of variable
speed drives that supply cold air (cooled by the supplied
cold water) using ducts to VAV boxes distributed through-
out the building. The hot water loop is also connected to
these VAV boxes using separate pipes. Each VAV box con-
trols the amount of air to be let into an HVAC zone using
dampers, whose opening angle can be programmed. A re-
heat coil, which uses supplied hot water, is used to heat the
air to meet the appropriate HVAC settings for each zone.
Our evaluation data set is collected from sensor streams

from over 2,500 sensors of more than 20 different types
deployed in three commercial buildings. Specially, Build-
ing A uses a building management system contracted with
Trane and building B comprises deployment by KETI4 and
Siemens, while building C uses an archaic system by Bar-
rington Controls.
Table 2 summarizes all the types of sensors evaluated in

these three buildings and the number of sensors of each type.
For example, “room temperature”measures the temperature
in room and for a better understanding, all the other temper-
ature measurements on water circulation and air ventilation
are illustrated in Figure 2. For setpoints, we assign only one
general type which includes all set points for every actuator
configured in the building.

4http://www.keti.re.kr/e-keti/

Building
Type A B C

CO2 16 52 0
Humidity 54 52 0
Air Pressure 142 216 215
Room Temp 159 231 208
Facility Operation Status 59 72 41
Facility Control 0 138 403
Setpoint 140 486 229
Air Flow Volume 14 172 9
Damper Position 0 290 10
Fan Speed 0 25 15
HW Supply Temp 27 1 0
HW Return Temp 15 1 0
CW Supply Temp 18 2 11
CW Return Temp 15 3 10
Supply Air Temp 20 17 3
Return Air Temp 6 2 4
Mixed Air Temp 5 2 3
Ice Tank Entering Temp 1 2 0
Ice Tank Leaving Temp 1 4 0
Occupancy 25 52 0
Timer 0 0 15
Sum 575 1124 1166

Table 2: Number of points by type for the 3 test buildings.
“Temp” stands for “temperature”, “HW” for “hot water” and
“CW” for “cold water”.

4.2 Feature Construction
The sensor point names are the input of our active learning

algorithm. As shown in our motivating example in Table 1,
the point names are short text strings with several con-
catenated abbreviations. To represent the primitive point
names as feature vectors for classifier training, we first con-
vert all point names to lower cases and trim out the numeri-
cal characters, resulting in a series of words, e.g., Zone Temp

2 RMI204 becomes {zone, temp, rmi}. To capture possi-
ble variants of abbreviations in point names, e.g., “tmp”and
“temp” for temperature, we adopt k-mers [13] as our fea-
tures. The term k-mer refers to all the possible substrings
of length k, which are contained in a string. This feature
is popularly used in protein and gene sequence analysis in
bioinformatics. And it helps measure sequence similarity
without alignment. In our case, we limit the k-mers com-
putation only within a word boundary. In general, having
too small a k will increase the chance of overlapping k-mers,
making the points less differentiable. Therefore, we compute
k-mers of length 3 and 4 for all point names. For exam-
ple, {zone, temp, rmi} will yield a set {zon, one, tem,

emp, rmi} with k=3. A dictionary of k-mers is constructed
with all the k-mers generated from each point name. Each
point name is then converted into a feature vector based
on the frequency of k-mers in it. For example, a set of k-
mers {zon, tem, emp, zon} will be transformed into a vec-
tor of (2,0,1,1,0) with the dictionary {zon, one, tem,

emp, rmi}. This feature representation will be used in our
later evaluations.

4.3 Baselines
To evaluate the performance of our proposed algorithm,

we adopt four active learning algorithms as baselines.

http://www.keti.re.kr/e-keti/
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Figure 3: Classification accuracy on three different buildings: comparing to the baselines, our method (AL+CP) is able to
achieve better accuracy on all buildings with less labeled examples.

Building A Building B Building C
Labeled Percentage 1% 5% 10% 1% 5% 10% 1% 5% 10%

RAND 0.204 0.582 0.696 0.711 0.933 0.970 0.795 0.915 0.937
LM 0.222 0.572 0.769 0.736 0.995 0.995 0.835 0.980 0.988
PC 0.232 0.515 0.581 0.752 0.958 0.968 0.762 0.862 0.987
HC 0.326 0.516 0.669 0.829 0.993 0.996 0.867 0.977 0.987

AL+CP 0.416∗ 0.765∗ 0.819∗ 0.919∗ 1.000∗ 1.000∗ 0.890∗ 1.000∗ 1.000∗

∗p-value<0.01

Table 3: Weighted macro F1 score of classification on three buildings with different labeling budgets. Our method (AL+CP)
converges with less than 5% examples being labeled in Building B and C. It consistently outperforms the baselines in all cases.

Random (RAND): this method selects an example at ran-
dom uniformly from the unlabeled set in each iteration.
Least Margin (LM) [21]: this method adopts the a simple

yet effective sampling strategy, which queries the instances
for labeling with least confidence measured by the difference
of posterior probability of the first and second most probable
class labels predicted by the classifier:

x∗
M = argmin

x
p(ŷ1|x)− p(ŷ2|x),

where ŷ1 and ŷ2 are the first and second most probable pre-
dicted class labels, respectively. We compute the class pre-
diction probability by SVM based on the method proposed
in [18].
Pre-clustering (PC) [16]: this method pre-clusters the in-

stances and selects the example for querying satisfying two
criteria: 1) locate at the classification boundary and 2) rep-
resentative of dense clusters. The clusters are constructed
by the same Gaussian Mixture Model with Dirichlet Process
prior as used in our method.
Hierarchical Clustering (HC) [7]: this method leverages a

hierarchical clustering structure, which is represented as a
binary tree, and estimates the purity of labels for each clus-
ter node. The algorithm iteratively selects examples from a
subtree whose size is significantly large or the impurity of
labels is high.
In all baselines, and our method, a linear SVM model is

used as the classifier.
We measure the overall classification accuracy of each ac-

tive learning algorithm with different amount of manual la-
bels, and examine how many examples are needed by each
method to reach a required accuracy level. Besides classi-
fication accuracy, we also compute the weighted macro F1
score of each method given different labeling budgets (e.g.,
5%, 10%, etc of the entire unlabeled set) in each building.

In our experiments, to reduce possible bias introduced by
training/testing split, we perform 10-fold cross validation
for each active learning method, and repeat it 10 times with
different random seeds. The average performance of 10 runs
from each method is reported.

4.4 Classification Results
In Figure 3, we illustrate the comparison results of sen-

sor type classification accuracy from all three buildings over
all methods. In all three buildings, our method performed
the best against all the baselines. In particular, our method
consistently requires the least amount of manual labels to
achieve a satisfactory and converged accuracy. In building
A, to achieve the accuracy of 90%, our clustering based ac-
tive learning method (denoted as AL+CP) requires 105 la-
beled examples while HC needs 110, which is the best among
all baselines. LM takes 127 labeled examples and the other
two baselines take a hundred more labeled examples to ob-
tain the same accuracy. In building B, both our method
and LM reach the accuracy of 99% with 26 examples, while
it takes 51, 61 and more than 200 examples, respectively,
for the HC, PC and RAND baselines. In building C, our
method achieves 99% accuracy with 35 labels while HC and
LM requires 101 and 135 labels, respectively, for the same
accuracy. Again, PC and RAND require much more labeled
examples to get the same performance.

On all three buildings, RAND performs reasonably on ini-
tial iterations (e.g., before 20) but becomes the worst later
on. This is because of imbalanced class distribution in our
three data sets. RAND selects more examples from larger
classes at the beginning and quickly gets a fraction of the
major classes correctly classified. However, in later itera-
tions, RAND has a lower chance in picking examples from
smaller classes and converges to a local optimal quickly.
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Figure 4: Comparison of margin-based active learning (LM), clustering-based active learning without label propagation
(AL+C), margin-based active learning with label propagation (LM+P), and clustering with label propagation based active
learning (AL+CP). The label propagation significantly improves the performance of learning with clustering only.

The PC baseline, which also exploits data clustering struc-
ture, performs significantly worse than other baselines for
Building A. PC gives priority to the examples that are: 1)
close to the decision boundary, and 2) representative in a
cluster. Such criteria are very similar to those in our method.
Further inspection reveals that examples selected by the PC
baseline were neither informative nor representative enough
to distinguish different types of instances. This stems from
the fact that for building A, the initial clusters from GMM
fairly overlap with each other. This biases the PC baseline
to select more examples with relatively high uncertainty but
less representative in a cluster.
The HC baseline is quite effective in avoiding querying

similar examples from dense areas. However, because HC
does not perform label propagation, after all clusters become
roughly equally pure with sufficient sampling, it will start
repeatedly querying previously sampled areas, which results
in a long plateau for building B and C. For building A, the
larger classes contain a few variations in their point names,
therefore when HC avoids sampling from the same dense
area at first, it misses important informative examples and
is only able to pick them up in later iterations.
Moreover, we notice that, for all methods, the conver-

gence rate on building B and building C is much better than
building A, despite the fact that there are more points in
those two buildings. The reason is that the point names in
these two buildings share stronger regularities - the last seg-
ment always indicates the sensor type. Recall the examples
shown in Table 1: SDH_SF1_R282_RMT from building B and
SODA1R410B_ART from building C. Both of them adhere to
the same order of segment categories - building name-air
handler/supply fan identifier-room number-sensor type,
only with a slightly different set of delimiters. Our string
feature captures such regularity and helps the learning algo-
rithm converge faster. However, the same rule doesn’t apply
to building A because there the type information can be en-
coded in any segment in a point name. For instance, a tem-
perature measurement can be named in many conventions,
such as averageSpaceTemperature 1st Floor Area1, East
Space Temperature scc2UIP33 or RM511A Zone Temp. With
such variety in the naming conventions, the learning algo-
rithms need to explore all possible variants of point names
for convergence in building A.
On such imbalanced data sets, investigation of accuracy

only is not enough. We also measure the weighted macro F1
score of classification for each method with different label-

ing budgets, i.e., different percentage of total instances that
can be labeled. We examine the F1 score at three different
labeling budgets, 1%, 5% and 10%. The weighted macro
F1 score is an altered version of macro F1 score [29], which
calculates the F1 score for each class, where “one-versus-all”
binary classification is performed, and weight the resulting
F1 of each class by support (the number of true instances
for each label). Paired two sample t-test is performed to
validate the statistical significance of improvement from our
method over the best-performing baseline. The results are
shown in Table 3. In general, more labeled examples leads
to better classification performance over all classes; and our
method performed the best in all cases. As we discussed ear-
lier, all methods converge much faster in building B and C
than in building A. In those two buildings, our method can
achieve an 100% classification accuracy with slightly more
than 1% of total examples being labeled.

In addition, to investigate the contributions of data clus-
tering and label propagation in our proposed active learning
algorithm, we also conduct experiments by disabling data
clustering and label propagation in our method. From the
results in Figure 4, we can observe that with clustering only,
the performance of our method is no better than margin-
based active learning; and beyond a certain point, the per-
formance plateaus because the classification boundary con-
verges to the clustering structure, and no more new exam-
ples could be selected for labeling. However, we do observe
some improvement from clustering only over margin-based
active learning for building B and building C in early itera-
tions. This is because the same type of points in these two
buildings contain few variations and these initial examples
at the center of relatively pure clusters are more represen-
tative for a dense region. Interestingly, after adding label
propagation, we clearly see a boost in the performance than
performing clustering only. We attribute the improvement
of our method to label propagation which considerably am-
plifies the amount of available labeled examples for classifier
training, and therefore helps to estimate a better classifier.

Besides, we also examine how the label propagation alone
can help active learning in general. We adopt the same
distance threshold estimation method as defined in Eq (3)
to introduce propagated labels in the margin-based baseline
and denote it as LM+P in Figure 4. On building A, the
inclusion of label propagation makes LM even worse, be-
cause in early stage the estimated threshold r in LM+P is
not accurate enough, and it mistakenly propagates the la-



bels. Only when more labels are acquired in later stages,
the estimation of distance threshold r improves and there-
fore LM receives propagated labels with improved quality.
In our method, because of data clustering, the labeled exam-
ples in the early stage are more representative; it in turns
helps better estimate the distance threshold r. As a con-
clusion, data clustering and label propagation complement
with each other in our proposed method, and help active
learning acquire more informative examples quickly.

4.5 Proof-of-Concept Study
As a first step towards automated metadata normaliza-

tion, our algorithm is able to classify and transform the type
information in the primitive metadata into a normalized
name space. It provides a better opportunity for running
uniform analysis on heterogeneous metadata across build-
ings with different management systems. As a proof-of-
concept, we demonstrate an illustrative example, in which
we search over the normalized metadata for different types
of sensors that are in the same room under the application
context of building comfort assessment and energy control.
Ideally, with the occupancy information of spaces consid-

ered, a properly configured building should automatically
stop conditioning unoccupied rooms and areas. However,
one typical problem plaguing buildings that incurs energy
waste is unoccupied room being conditioned. For a build-
ing manager to inspect the building and locate such spots
for better scheduling, he should be able to run simple key-
word based searches over the metadata to look for different
types of streams, such as room temperature and occupancy
streams. With the desired types of streams returned, he
can match different types of streams by room location to
perform further examination, e.g., which room is still com-
fortable during unoccupied periods.
To accomplish the task, we first classify the sensor streams

by type with both our method and the best baseline (LM).
Then based on the predicted sensor type for each stream,
we normalize each type of sensors into a common name
space, e.g., all the streams predicted as room temperature
are named as “room temperature”. With the type informa-
tion normalized, we can simply retrieve all the streams of a
certain type with one keyword, e.g, using “temperature” to
search for temperature streams. The next step is to match
different types of sensors by room location. In particular,
we derive a few regular expressions to find the segment in-
dicating room location in the point names of each sensor.
In this experiment, we search for four types of sensors

- occupancy, temperature, humidity and CO2 - by simply
using these type names as the keywords. Then we match
the room location of these four groups with regular expres-
sions on their original primitive point names. Specifically,
we examine the accuracy of three searches: 1) occupancy
and temperature in the same room; 2) occupancy, temper-
ature and humidity in the same room; and 3) occupancy,
temperature, humidity and CO2 in the same room, given
these combinations are usually used to assess the comfort of
a room or identify potential waste in unoccupied rooms.
Table 4 illustrates the performance of basic searches on

building A for occupancy (O), temperature (T), humidity
(H) and CO2 (C). Our method can return better results
with both higher recall and precision because of better pre-
dictions on type class for the streams. Given the four re-
turned groups of streams, we further run regular expression

AL+CP LM
Precision Recall Precision Recall

O 0.930 1.000 1.000 0.688
T 0.892 0.935 0.635 0.975
H 0.962 1.000 0.778 0.519
C 0.556 0.833 0.222 0.286

Table 4: The performance of searches over the normalized
metadata with our method (AL+CP) and the best base-
line (margin based active learning, LM). We search for four
specific types of streams: occupancy (O), temperature (T),
humidity (H) and CO2 (C).

AL+CP LM
Precision Recall Precision Recall

O+T 0.832 1.000 1.000 0.900
O+T+H 0.926 1.000 1.000 0.400

O+T+H+C 0.375 0.833 1.000 0.125

Table 5: The performance of searches for different types of
streams that are in the same room. We consider the pair
of occupancy and temperature (O+T), the combination of
occupancy, temperature and humidity (O+T+H), and also
the combination of occupancy, temperature, humidity along
with CO2 (O+T+H+C).

based matching on the primitive metadata to find the pairs
in the same room. For instance, we first identify the room
location of each returned occupancy stream with regular ex-
pressions, then we search for the temperature stream with
the same room number as each of these occupancy streams.
Similarly, we search for humidity and CO2 streams in the
same room. With these different types of streams grouped
into the same room, a building manager can compare the
actual data against some standards to decide if a room is
problematic or not. We summarize the search results in Ta-
ble 5. In general, the normalized metadata by our method
produces search results with higher recall and slightly lower
precision. Such results are expected considering the prac-
tical demand from building managers - it is acceptable to
return some unexpected results (false positives) while not
missing the expected ones (false negatives), where he can
manually examine a much smaller group of candidates and
filter out the incorrect ones. We conclude that with nor-
malized metadata for a building, people such as a building
manager can more easily retrieve expected streams and con-
duct meaningful analysis to identify problems in a building.

5. CONCLUSION & FUTURE WORK
In this paper, as a first step towards automated sensor

metadata normalization, we investigate the problem of build-
ing sensor type classification and introduce a novel, effective
yet general active learning method to address the problem.
Following the assumption that similar instances are more
likely to share the same class label, our solution exploits
the data clustering structure and propagates the labels to
their nearby unlabeled examples to accelerate the learning
process. Extensive experimental comparisons are performed
against several state-of-the-art active learning algorithms
with over 20 different sensor types and 2,500 sensor streams
collected from three buildings. Our proposed solution is able



to achieve satisfactory classification accuracy with much less
labeled examples than the baseline algorithms. In addition,
we also demonstrate that the normalized metadata can po-
tentially enable meaningful analytic applications with the
raw sensor streams under the context of commercial build-
ing comfort assessment and energy control.
Our proposed active learning algorithm is general, and

therefore it is applicable in a broader context, e.g., docu-
ment categorization [26] and image retrieval [25]. In our
current metadata normalization process, only the text fea-
tures from point names are utilized. However, another im-
portant aspect of the sensor streams is the actual data from
the sensor readings. Features constructed from such raw
signals can also be introduced to characterize the stream.
Such feature becomes vital when the point names are miss-
ing or corrupted. In addition, our current problem setting
is limited to one building; it is necessary for us to solve the
normalization problem across buildings, e.g., classification
model learned in one building can be used to bootstrap the
learning in another building.
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