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Abstract

Traditional discriminative classification method makes
little attempt to reveal the probabilistic structure and the
correlation within both input and output spaces. In the sce-
nario of multi-label classification, most of the classifiers
simply assume the predefined classes are independently dis-
tributed, which would definitely hinder the classification
performance when there are intrinsic correlations between
the classes. In this article, we propose a generative proba-
bilistic model, the Correlated Labeling Model (CoL Model),
to formulate the correlation between different classes. The
CoL model is presented to capture the correlation between
classes and the underlying structures via the latent random
variables in a supervised manner. We develop a varia-
tional procedure to approximate the posterior distribution
and employ the EM algorithm for the empirical Bayes pa-
rameter estimation. In our evaluations, the proposed model
achieved promising results on various data sets.

1. Introduction

1.1 Multi-label classification

In the traditional definition of classification, classes are
mutually exclusive:

Let X denote the domain of possible samples, and
Y be a finite set of class labels, the goal of the
classification is to find an optimal classifier H :
x → y, x ∈ X, y ∈ Y , which could minimize the
misclassification rate.

However, in most of the real situation, data may asso-
ciate with multi-classes simultaneously. For example, in
the text classification task, a scientific article might be also
concerning about the economy and in the scene categoriza-
tion domain, an image may belong to the semantic concept

beach and sunset together, yielding multiple labels [20].
In that case, a suitable definition for this kind of classifi-
cation should be the multi-label classification, by modify-
ing y in the original definition to be a subset of Y rather
than a single one, and thus the optimal classifier should be
H : x → y, x ∈ X,y ⊆ Y to optimize some specific eval-
uation metric. We should note that, in most cases, there are
intrinsic latent correlations between the classes. For exam-
ple, a document concerning about politics is more likely to
be also talking about the economy (positive correlation) but
less likely talking about the pop stars (negative correlation).
Unfortunately, most of the classification algorithms for the
multi-labeling problem simply assume the classes are inde-
pendently distributed, so that they failed to directly model
the correlation between the classes.

A straightforward solution for the multi-label classifica-
tion is to map the problem to a one-versus-the rest man-
ner [15], which constructs a set of binary classifiers ob-
tained by training on each possible class versus all the rest
and assigns a real value for each class to indicate the class
membership. But the deficiency of this simple mapping is
obvious: the rough separation strategy ignores the correla-
tion between the classes; moreover, the traditional discrim-
inative classifiers make little attempt to uncover the proba-
bilistic structure within both input and output spaces.

Researchers have noticed this problem and tried to solve
it from different perspectives. Matthew et al. suggested
several ways to utilize the multi-label samples for train-
ing with binary classifiers and different strategies to predict
the class membership [20]. Zhang adapted the traditional
KNN lazy learning algorithm for multi-label data by utiliz-
ing the statistical information gained from the unseen sam-
ple’s neighborhood [25]. Schapire et al. advanced BoosT-
exter [21], an extended AdaBoost algorithm, to address the
multi-label text classification problem. In their work, they
transformed the multi-labeling issue into a document-class
pair ranking problem. BoosTexter employed various base
classifiers to evaluate every document-class pair and ranked
the separate predictions according to the weight settings.
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However, they noted that it was an open issue to control
the model complexity to avoid over-fitting. McCallum pro-
posed a Bayesian mixture model to select the most proba-
ble set of classes from the power set of all the classes and
used some heuristics to reduce the associated computational
complexity [19]. The proposed model tried to capture the
relationship between the classes and word occurrences, but
it did not consider the correlation within the classes.

1.2 Generative topic model

Nowadays, in the machine learning community, the gen-
erative topic model is receiving more and more attentions.
Latent Dirichlet Allocation (LDA) [11] is one of the most
typical models. It reduces the complex process of produc-
ing a document into a small number of simple probabilistic
steps and thus specifies a probability distribution over all
possible documents. Using standard statistical techniques,
one can invert the process and infer the set of latent topics
responsible for generating a given set of documents [22].
An important contribution of LDA is that, it explicitly mod-
els the heterogeneity in the grouped data that exhibits mul-
tiple latent patterns.

Recent work has employed LDA as a building block to
address particular modeling problems. Fei-Fei Li advanced
a hierarchical generative model to classify natural scene in
an unsupervised manner [17]; Blei proposed an image-
caption model to capture the correlation between image re-
gions and caption words [9]; Griffiths modeled the docu-
ments with both short-range syntactic and long-range se-
mantic dependencies [14].

However, the LDA model failed to directly formulate
the correlation between topics because of the dependence
assumption implicit in the Dirichlet distribution on the
topic proportions, which are nearly independent. Several
other generative topic models have been recently proposed
to capture the correlation between topics, such as Hier-
archical Dirichlet Process Model (HDP) [23], Correlated
Topic Model (CTM) [10] and Pachinko Allocation Model
(PAM) [18].

The advantages of the generative topic model are obvi-
ous: 1) it would be easy to postulate complex latent struc-
tures responsible for a set of observations; 2) the correlation
between the different factors could be easily exploited by
introducing the latent variables.

In this paper, to capture the correlations within differ-
ent classes and words in the multi-label classification, we
propose a hierachical generative probabilistic model to for-
mulate the generation of the multi-labeled documents. We
model these documents as a finite mixture over the classes
and words: different classes exhibit different proportions
of latent topics, which are represented by distributions of
words over a fixed vocabulary, and the observed words are

governed by the latent topic factors accordingly. By this
model, we would be able to model the correlations within
the classes and words simultaneously.

We should emphasize that the reason we use the lan-
guage of text classification in the following expatiation is
just for intuitive understanding and interpretation about the
notions. It is important to note that the proposed model
is not narrowly restricted to the text classification field: it
could be feasibly applied to any multi-label classification or
annotation problem such as scene categorization in image
processing and gene function annotation in bioinformatics.

The paper is organized as follows: in Section 2, detailed
descriptions for the proposed model are presented and we
will discuss the inference and parameter estimation proce-
dures for the proposed model in Section 3; in Section 4,
extensive experiments are performed in different perspec-
tives to validate the model; we would conclude the work in
this paper and demonstrate our contributions in Section 5.

2. Correlated Labeling Model

We present the novel Correlated Labeling Model (CoL
Model) to address the multi-label classification issue. The
graphical representation of the CoL model is depicted in
Figure 1. Following the standard graphical model formal-
ism [12], nodes represent the random variables, edges in-
dicate the possible dependence and boxes with number N
means the unit in this box is repeated N times. Shaded
nodes are observed random variables, unshaded nodes are
latent random variables. The joint distribution can be ob-
tained from the graph by taking the product of the condi-
tional distribution of nodes given their parents, see Eq(2).

The CoL Model can be viewed in the terms of generative
process that, to generate a document, we should first select
a set of classes (e.g. themes of a document), then select
different topics under the classes (e.g. aspects about the
themes), and finally employ specific words to build up the
contents of the document.

c

zw y

Figure 1. Graphical model representation for
the CoL Model.

Formally, we define a corpus consists of D documents,
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C classes and V words, and a given document consists
of M classes and N words. To simplify the model, we
have assumed the topic size k is known and fixed on the
whole corpus. In the given document d, we denote ϕ as the
document-specific distribution of classes; θ as the distribu-
tion of topics under each class; z = {z1, z2, z3, . . . , zN} as
the particular discrete topic assignment for each word and
y = {y1, y2, y3, . . . , yN} as an indexing variable to indi-
cate which class generates the corresponding topic. These
are the latent variables. c is a C-dimensional vector with
ci = 1 to imply document d is associating with class i
and w = {w1, w2, w3, . . . , wN} are the observed words in
d. Besides, μ and Σ are the mean and covariance parame-
ters of a multivariate Normal distribution to formulate the
class distribution; α are C k-dimensional Dirichlet param-
eters to characterize the topic prior distribution under each
class; and β are k V-dimensional Multinomial parameters
to represent the word distribution under topics. These are
the model parameters.

Conditioned on the model parameters (μ,Σ, α, β), the
CoL model assumes the following generative process of the
classes and words in the document:

1. Sample ϕ from the Normal distribution: ϕ ∼ N(μ,Σ)

2. For each class cm, m ∈ {1,2,3,. . . ,M} :

a. Sample cm from the Multinomial distribu-
tion : cm ∼ Mul(l(ϕ))

b. Sample θm from the Dirichlet distribution condi-
tioned on cm : θm ∼ Dir(α|cm)

3. For each word wn, n ∈ {1,2,3,. . . ,N}:

a. Sample yn from the Uniform distribution condi-
tioned on M:
yn ∼ Unif(1, 2, 3, . . . ,M )

b. Sample zn from the Multinomial distribution
conditioned on yn: zn ∼ Mul(θ|yn)

c. Sample wn from the Multinomial distribution
conditioned on zn : wn ∼ p(wn|β, zn)

where l(ϕ) maps the natural parameter of the class propor-
tions to the mean parameter by logistic Normal [6]:

l(ϕ) =
exp(ϕ)

1 +
∑

i exp (ϕi)
(1)

Note that, the CoL model employs a multivariate Nor-
mal distribution N(μ,Σ) to capture the correlation between
the classes: for each document, it draws a real valued ran-
dom vector from N(μ,Σ) and then maps it to a C-1 dimen-
sional simplex to obtain a Multinomial parameter for the
document-specific distribution of classes. The mapping is
implemented by the logistic Normal l(ϕ), see Eq(1). The

covariance matrix Σ induces the dependencies between the
components, allowing for a general pattern of variability be-
tween its components. Following the general settings of
LDA model, we assume the topic proportion θ is drawn
from the Dirichlet distribution and each topic is represented
by a Multinomial distribution of words on a fixed vocab-
ulary. Furthermore, we assume such proportion varies be-
tween different classes observed in the documents. Besides,
since the relationship between the classes and topics is un-
derlying, we use the indexing variable y to indicate the la-
tent structure between them.

The joint probability on the words, classes and the latent
variables in one document is thus given by:

p(ϕ, θ,y, z, c,w|μ,Σ, α, β) = (2)

p(ϕ|μ,Σ)
M∏

m=1

p(cm|ϕ)p(θm|α, cm)

N∏
n=1

p(yn|M)p(zn|θyn
)p(wn|β, zn)

From the notion behind the proposed model, we can find
obvious distinction between the proposed CoL model and
the LDA model: the CoL model is supervised while the LDA
model is unsupervised. CoL model aims to capture the in-
formation conveyed in the class membership, to exploit the
in-depth relation between the classes and words, and to pre-
dict the potential classes in an unseen document. The LDA
model is not capable to directly formulate such class mem-
bership, so that some other regression or classification tech-
niques have to be employed to perform the prediction [11].
Besides, the LDA model assumes the proportion of topics is
identical in the whole corpus, while in the CoL model the
mixture is depending on the classes which the document
belongs to. In this sense, the CoL model can overcome the
deficiency in the LDA model stems from the strong inde-
pendence assumptions.

An intuitive interpretation for the proposed CoL model
is illustrated in Figure 2. In the traditional approach for the
multi-label classification (the left panel in Figure 2), the em-
ployed classifiers simply assume the predefined classes are
independent between each other. When one class conveys
information about another, the traditional classifiers would
fail to capture this. Furthermore, those classification algo-
rithms assume all the words are independent when given the
observed classes, thus it would ignore to model the latent
patterns among the different words under particular classes
either.

On the contrary, the CoL model (the right panel in
Figure 2) formulates the relationship between words and
classes within a more throughout consideration: in each
document, the classes are drawn from a correlated prior
distribution, in our case the multivariate Normal distribu-
tion with a non-diagonal covariance, each class exhibits
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Figure 2. Comparison between the traditional
multi-labeling approach and the CoL model.
In the above representation, c denotes the
class labels associating with the document,
w denotes the observed words and t in the
right panel denotes the latent topic factors.

different proportion of the topics, and different topics gov-
ern dissimilar word occurrences, embedding the correlation
among different words.

In the above intuitive representation of the CoL model,
it is obvious that the correlation between the classes and
words is not modeled as an one-to-one mapping, but in a
more general manner: via the latent topic factors, words
are treated as finite mixtures under a set of classes, so that
they are not restricted to any particular classes and multiple
words could contribute to the same class. Efficient dimen-
sional decomposition could be explicitly implemented: V-
dimensional word space is mapped into the k-dimensional
topic space, in which it will be easier to reveal the latent
correlations between the classes and the variant word distri-
butions.

3. Inference and parameter estimation

3.1 Variational inference

In order to utilize the CoL model, the key inferential
problem is to compute the posterior distribution of the
classes in a given document, that is:

p(c, ϕ, θ,y, z|w, μ,Σ, α, β) =
p(c,w, ϕ, θ,y, z|μ,Σ, α, β)

p(w|μ,Σ, α, β)

Unfortunately, this posterior distribution is intractable:
the couples between ϕ and α, θ and β induce a combi-
natorial number of terms and make it impossible to effi-
ciently get the exact inference result. Different from the
LDA model, where the conjugacy between the Dirichlet and
Multinomial distribution provides nice computational con-
venience; in the CoL model, a non-conjugate Normal dis-

tribution is employed to capture the correlations between
the classes, which does not enjoy the same convenience.
Thus we cannot analytically compute the integrals of each
term. And the non-conjugacy further precludes most of
the Markov chain Monte Carlo (MCMC) [7] sampling tech-
niques, especially for the Gibbs Sampling, which makes use
of the conjugacy to compute the analytical coordinate-wise
posteriors. In this case, we develop a variational proce-
dure [8] (in particular, the mean filed approximation) to ap-
proximate the desired posterior distribution, which provides
nice computational convenience and intuitive interpretation
about the middle results.

In particular, we define the following fully factorized dis-
tribution on the latent factors:

q(ϕ, θ,y, z|λ, δ, γ, φ, σ) = (3)

q(ϕ|λ, δ)
M∏

m=1

q(θm|γm)
N∏

n=1

q(yn|σn)q(zn|φn)

In the above variational distribution, the document-
specific class distribution ϕ is governed by a C dimensional
multivariate Normal distribution N(λ, δ). Since the vari-
ational parameters are fit within a single document, there
is no advantage to introduce a non-diagonal covariance.
The variational topic distribution θ is specified by M k -
dimensional Dirichlet parameters γ, the class-topic indica-
tor y is conditioned on N M-dimensional Multinomial pa-
rameters σ and the discrete topic assignment z is controlled
by N k-dimensional Multinomial parameters φ.

The meaning of this variational distribution is obvious:
we release the dependence among the latent variables by
assuming they are independently drawn from the respective
distribution. Thus the aim of the variational inference is to
find the optimal variational parameters which would maxi-
mize the likelihood on the given documents.

By Jensen’s inequality, we could estimate the lower
bound of the log likelihood as follows (we omit the param-
eters for simplicity):

log p(c,w)

= log
∫∫ ∑

yn

∑
zn

p(ϕ, θ, yn, zn, c,w)
q(φ, θ, yn, zn)

q(φ, θ, yn, zn)dϕdθ

≥
∫∫ ∑

yn

∑
zn

q(φ, θ, yn, zn) log p(ϕ, θ, yn, zn, c,w)dϕdθ

−
∫∫ ∑

yn

∑
zn

q(φ, θ, yn, zn) log q(φ, θ, yn, zn)dϕdθ

= Eq[log p(ϕ, θ,y, z, c,w)] − Eq[log q(φ, θ,y, z)]

It is easy to verify that the difference between two
sides of the above inequality is the Kullback-Leibler di-
vergence between the variational posterior probability and
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the true posterior probability. We denote the right side of
the above inequality as L(λ, δ, γ, φ, σ;μ,Σ, α, β) to repre-
sent the lower bound of log likelihood. Thus, to maximize
L(λ, δ, γ, φ, σ;μ,Σ, α, β) is equivalent to minimize the KL
divergence between the variational posterior probability and
the true posterior probability.

Following the general recipe for variational approxima-
tion, we take derivatives of the expectation likelihood func-
tion L(λ, δ, γ, φ, σ;μ,Σ, α, β) with respect to the varia-
tional parameters and obtain the following iterative varia-
tional parameter estimation equations:

1. Dirichlet parameter γ:

γij = αij +
N∑

n=1

M∑
m=1

cimσnmφnj (4)

where cim means the mth class label in the document
belongs to class i.

2. Multinomial parameter φ:

log φnj ∝ws
nβjs+

M∑
m=1

cimσnm

[
ψ(γij)−ψ(

k∑
s=1

γis)
]

(5)

where ws
n means the nth word in the document is the

sth one in the vocabulary.

3. Multinomial parameter σ:

log σnm ∝
k∑

j=1

φnjc
i
m

[
ψ(γij) − ψ(

k∑
s=1

γis)
]

(6)

4. Optimize the Normal parameter λ and δ2 by the
Conjugate Gradient algorithm:

∂L(λ)
∂λ

= −Σ−1(λ−μ)+C−M

ε
exp{λ+δ2/2} (7)

∂L(δ2)
∂δ2

= −1
2
Tr(Σ−1)+

1
2δ2

−M

2ε
exp{λ+δ2/2} (8)

where ε =
∑C

i=1 exp(λi + δ2i /2), and C is the class
vector observed in the given document.

These estimations have appealing intuitive interpreta-
tions. Because the Multinomial distribution is conjugated
with the Dirichlet distribution , estimations (4) – (6) are the
posterior updating given the expected observations (suffi-
cient statistics) taken under the variational distribution. But
the non-conjugacy between the Multinomial and Normal
distribution prevents us to analytically get the update equa-
tions, therefore we employ the Conjugate Gradient algo-
rithm to find the optimal parameters in (7) and (8).

The only problem left for the inference procedure is that,
when we are in the testing phase, we could not know ex-
actly which classes are assigned to the given document in
advance. Without the specific classes, we are not able to
tell where the words and topics come from. To solve this
problem, we appeal to the maximum a posteriori (MAP) cri-
terion to retrieval the most probable classes associating with
the given document:

ĉ = max
i
p(ci, θ, ϕ,y, z|w, μ,Σ, α, β) (9)

where ci is the subset from the power set of all the possible
classes.

Unfortunately, it is unfeasible when the number of
classes is large. To simplify the computation complexity,
we simply estimate the posterior probability of every single
class in the given document and use a pre-estimated thresh-
old to retrieve the most probable ones.

3.2. Parameter estimation

Following the same procedure in the variational infer-
ence, in this section, we utilize an empirical Bayesian
method to estimate the parameters of the CoL model. To
maximize the likelihood on the training data, we look
for the optimal parameters to tighten the lower bound of
L(λ, δ, γ, φ;μ,Σ, α, β) estimated by the variational infer-
ence. By taking derivatives of L(λ, δ, γ, φ;μ,Σ, α, β) with
respect to the model parameters (μ,Σ, α, β), we obtain the
following update equations:

1. Update the mean parameter μ and covariance matrix
Σ:

μ =
1
D

D∑
d=1

λd (10)

Σ =
1
D

D∑
d=1

{
Iδ2d + (λd − μ)(λd − μ)T

}
(11)

2. Update the Dirichlet parameter α by the Newton-
Raphson algorithm:

∂L(α)
∂αij

=
D∑

d=1

Md∑
m=1

cidm

{[ k∑
s=1

ψ(αis) − ψ(αij)
]

+
[
ψ(γdij) −

k∑
s=1

ψ(γdis)
]}

(12)

∂2L(α)
∂αij∂αik

=
D∑

d=1

Md∑
m=1

cidm

[
ψ′(

k∑
s=1

αis) − δ(j, k)ψ′(αij)
]

(13)

where δ(j, k) = 1 when j = k, otherwise 0.
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3. Update the Multinomial parameter β:

βjs ∝
D∑

d=1

Nd∑
n=1

ws
dnφdnj (14)

These update equations correspond to find the maximum
likelihood estimation with the expected sufficient statistics
for each document taken under the variational posterior. We
employed an alternating EM procedure to find the optimal
parameters as follows:

1. (E-Step) For each document in the training corpus, op-
timizing the variational parameters (λ, δ, γ, φ) accord-
ing to equations (4) – (8);

2. (M-Step) Maximizing the resulting lower bound on the
variational likelihood with respect to the model param-
eters (μ,Σ, α, β) according to equations (10) – (14).

4. Experiment results

We collect two different types of data with multi-label
annotations from: scientific publications and news reports
to evaluate the capability of the proposed model in man-
aging various applications. The macro-precision, macro-
recall and macro-fscore [13] are employed to evaluate the
performance in average.

4.1. Test corpora

Biological literature. In the molecular biology domain,
biologists would employ various experiment methods to
confirm their findings; and a single document may con-
tain multiple methods simultaneously. It is important to
annotate these experiment methods since each method has
an implicit degree of reliability. We collect 5319 full text
documents from the public biological database PubMed [5]
with method annotations from another public annotation
databases MINT [3] and IntAct [1]. One thing we should
emphasize is that, this collection is heavily unbalanced: the
whole corpus consists of 115 unique methods, and each
document is labeled with 1.99 different methods in aver-
age; unfortunately, there are 5 dominate methods taking up
nearly 59.3% occurrences and 86.1% (99 out of 115) of the
methods are observed in less than 10% training data.

Reuters-21578. Documents in this collection are col-
lected from the Reuters financial newswire service in
1987 [16]. It is a well-studied benchmark corpus for many
text classification algorithms. There are 90 classes and
10,788 documents in the original corpus and the collection
is pre-partitioned into a training set of 7769 documents and
a testing set of 3019 documents. To get a more balanced
data set, we remove the minor classes with less than 50 doc-
uments and build up a collection consisting of 36 classes

and 10449 documents with 7543 training documents and
2906 testing documents. In this collection, each document
is associated with 1.3 classes in average and about 13.9%
documents contain multiple labels.

These two data sets are quite different from each other
and represent the typical sources in the real text processing
task. We perform simple pre-processions on each data set:
1) remove a standard list of 400 stop words, punctuations,
and the terms occur less than 50 times; 2) stems the words
to original form.

4.2. Effect of topic factors

We first use the perplexity as the criterion to evaluate
the effect of the number of topic factors, which is the only
arbitrary parameter in the CoL model. The perplexity on a
set of testing samples is calculated as follows:

perplexity = exp
{−∑D

d=1

∑Md

m=1 log p(cm|wd)∑D
d=1Md

}
(15)

Eq(15) is equivalent algebraically to the inverse of the
geometric mean per-class likelihood and the better gener-
alization capability is indicated by a lower perplexity over
the held-out testing samples. We evaluate the perplexity on
both data sets respectively. In the Bio-Literature data set,
we held out 20% of collection for the test purpose and used
the remaining 80% to train the model, in accordance with
5-fold cross-validation.
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Figure 3. Class perplexity on the number of
topics. The left panel illustrates the perplex-
ity on the Bio-Literature data set and the right
panel illustrates the perplexity on the Reuters
data set.

Figure 3 demonstrates that the generalization power of
the CoL model gets improved with more topic factors. Since
with more topic factors the documents could be partitioned
into finer segments, more precise correlations between the
classes and words could be captured. But as the number
of topics exceeds a limit, the model becomes too specific
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(higher perplexity). Therefore we could conclude that the
topic factors could be treated as the discriminate granular-
ity of the model and it operates as a tradeoff between the
generality and specificity. Besides, as the number of topic
factors increase, there will be more parameters to be esti-
mated (linearly increase with the number of topics), so that
more training data is needed to obtain the reliable parame-
ters. In this sense, when the number of topic factors exceeds
a limit, the quality of the estimated parameters decreases
and hampers the prediction power.

Besides understanding the impact of the number of topic
factors on the generalization capability, we would be more
interested in their explicit effect on the classification perfor-
mance. Here, we evaluate the precision and recall perfor-
mances under different number of topic factors on the two
data sets. We use the same corpus partition as in Figure 3.
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Figure 4. Classification performance on the
number of topics.

Figure 4 demonstrates that, both the precision and recall
performances get improved as the number of topic factors
increase. We could discover that the classification perfor-
mance peaks close to the place where the perplexity reaches
the minimum. And from the results on the Reuters data set
(since the Bio-Literature data set is unbalanced), we can see
that with a smaller number of topics the model behaves with
nice recall performance; while with more topics, the preci-
sion performance improves fast. This is consistent with the
foregoing perplexity result.

4.3. Comparison with other models

We employ Naı̈ve Bayes, KNN and SVM models as
the baseline methods to evaluate the capability of the CoL
model. We choose Naı̈ve Bayes because it is the sim-
plest generative model with complete independence as-
sumptions, and KNN model could exploit the correlation
between classes among similar documents. These are the
two basic notions in the CoL model. Besides, SVM model
is one of the most powerful discriminative model for classi-
fication task [15]. All the baseline models are operating on
the same feature set as the CoL model employs.

In Naı̈ve Bayes model, we estimate the posterior prob-
ability of the classes in a given document by Eq(16). We
use a pre-estimated threshold to retrieval the most probable
classes.

p(c|w) ∝
∏
n

p(wn|c)p(c) (16)

In KNN model, we make the prediction by ranking the
candidate classes in the union of the unlabeled sample’s k-
nearest labeled neighbors, and weight the candidate labels
by the similarity between the desired unlabeled sample and
its neighbors. This strategy is similar with the ML-kNN pro-
posed by Zhang in [25].

In SVM model, we follow Boutell’s strategy [20] to
train a set of binary classifiers for each class and predict
the unknown classes by the classifiers’ output. We use
SVM light [24] toolkit to implement a linear kernel SVM
model with the default parameters.

We first perform the comparison on different proportions
of data used for training on the Bio-Literature data set. In
this comparison, we set the size of topics in the CoL model
to be 250 and k in KNN model to be 37.
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Figure 5. Comparisons with the baseline
models on the Bio-Literature data set.

We could discover from the above results that, as the
training set increases, the performance of the CoL model
improves rapidly. The reason for this phenomenon is that in
the CoL model, there are C(C+1)+k(C+V ) parameters
to be estimated, when the training set is not large enough,
most of the parameters cannot be fully estimated, and it di-
rectly hinders the capability of the model.

One thing we should note is that, since the Bio-Literature
data set is unbalanced, we should attend the performance on
the minor classes as well. In the class-level evaluation, the
baseline models only retrieve most of the major classes (e.g.
the top 5 methods) but ignoring the other minor ones, while
the CoL model exhibits superior retrieve power. We demon-
strate the coverage performance of each model on the same
settings as in Figure 5 to compare their retrieve capability.
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Figure 6. Coverage comparison with baseline
models on the Bio-Literature data set.

Figure 6 demonstrates that the CoL model possesses bet-
ter retrieval capability than all the baseline methods when
the training set is large enough.

Next, we perform experiments on the well-studied
Reuters data set and compare the result with two reported
approaches on this data set [21, 19]. This time, we set the
size of topics in the CoL model to be 300 and k in the KNN
model to be 37.

Table 1. Classification performance on the
Reuters data set (36 classes).

Precision Recall F-Score
KNN 0.795 0.797 0.791

Naı̈ve Bayes 0.751 0.892 0.803
SVM 0.878 0.814 0.848

CoL Model 0.872 0.875 0.876

The results on Reuters data set with top 36 classes are
demonstrated in Table 1. We can see that the CoL model
achieved the best F-Score performance and both its preci-
sion and recall performances are promising.

Table 2. CoL model performance on different
class volume.

Precision Recall F-Score
McCallum’s EM [21] 0.839 - -

Top 10 Classes 0.901 0.923 0.898
AdaBoost.MH [19] - - 0.851

All Classes 0.867 0.873 0.866

McCallum operated his mixture model on the ten
largest classes and reported precision performance of 0.839.

Schapire classified the original data set with all the classes
and reported F-Score performance of 0.851. To compare
with their achieved performances, we run the CoL model
on the same training and testing data set as they did respec-
tively. As a result, the CoL model achieves competitive per-
formances, illustrated in Table 2.

From the detailed comparisons on these two data sets, we
can discover the proposed CoL model possesses nice preci-
sion and comparative recall performance. We contribute the
improvement to the information exploited from the correla-
tion between different classes: the model captures the rela-
tionship between the classes from the training set and filters
out the false positive combinations in the testing phrase.

4.4. Classes correlation analysis

With the CoL model, we formulate the correlation be-
tween different classes via the latent topic factors, which
enable us to analyze the relationship between the classes
in the latent space. Meanwhile, in the biological domain,
there is a well-defined language describing the relationship
among the biological concepts, named ontology and orga-
nized in a directed acyclic graph (DAG). The Molecular In-
teraction (MI) ontology [4] is such a concept hierarchy in
the molecular interaction domain, which includes the terms
describing the molecular interaction types and the experi-
ment detection methods.

Figure 7. Detection methods clustering tree.

To represent the given detection methods in the latent
topic space, we average the variational posterior Dirichlet
parameters over all documents associating with method i:

r(ci) =
∑

d∈D γdi/Z∑
d∈D 1

(17)

where Z is a normalization factor to normalize the varia-
tional parameter γ in each document, D is the document
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Table 3. Relevant terms for methods in the Bio-Literature data set
Method Terms

x-ray
crystal, trypsin, residue, structure, interface, surface, enzyme, substrate, struc-
tural, helix, helical, conformation, strand, segment, protease

two hybrid
yeast, pp, record, two-hybrid, site, assay, fusion, acid, amino, contact, saccha-
romyces, screen, plasmid, pcr, mole

pull down
pp, pull-down, yeast, interact, fusion, wash, sequence, buffer, expression, resin,
gst, window, transfect, luciferase, antibody

anti tag coip
pp, record, anti-flag, window, panel, strain, expression, sequence, yeast, stain,
extract, sds, lysate, tumor, domain

coip
antibody, pp, record, extract, yeast, sequence, expression, cdna, clone, lu-
ciferase, growth, sirna, domain, mmedta, link

Table 4. Relevant terms for classes in the Reuters data set
Class Terms

gas
gasoline, oil, crude, supply, contract, barrel, stock, price, sell, gas, rise, com-
pany, industry, energy, import

interest
pct, rate, bank, monetary, economist, market, money, prime, reserve, feed, in-
flation, deposit, bill, repurchase, federal

trade
trade, u.s, dlrs, deficit, japan, surplus, mln, export, japanese, currency, import,
february, bill, gatt, market

ship
u.s, gulf, ship, iran, strike, attack, oil, union, port, vessel, seaman, tanker, tonne,
missile, shipment

bop
mln, dlrs, trade, surplus, deficit, currency, export, pct, account, import, current,
economic, quarter, growth, u.s

set associating with category ci. Recall that, the variational
parameter γi is approximate to the posterior topic distribu-
tion under category ci in the given document. By averaging
it over all the relevant documents, we can approximate the
posterior distribution of classes over the latent topic factors.

Based on this approximate representation, we employ
the accumulative clustering algorithm to perform hierarchi-
cal clustering and utilize a visualization tool gCluto[2] to
demonstrate the captured ”pedigree” tree. (We only illus-
trate part of the clustering result because of the page limit.)

From the clustering result in Figure 7, we can discover
that most of the sibling nodes defined in the MI ontology
are successfully clustered with the correct hierarchy and
high confidence (red circles mean the correct clusters). The
promising result confirms that the correlation between dif-
ferent classes exploited by the CoL model is reasonable and
the model does capture the in-depth semantic relations.

4.5. Correlation between classes and words

It would be interesting to investigate the words poste-
rior distribution under the given classes. Especially in the
biological domain, particular terms and phrases convey cru-
cial domain dependent information. To mine relevant words

within a given class from the corpus, we utilize a class-
specific distribution over words by the conditional distribu-
tion p(w|c) to retrieval the most relevant terms under each
desired class by the following evaluation function:

s(w |c) =
∑

d∈D log p(wd|cd)∑
d∈D 1

(18)

where D is the document set associating with the desired
class c.

We collect top 15 terms for 5 different methods from the
Bio-Literature data set in Table 3 and top 15 terms for 5 dif-
ferent classes from the Reuters data set in Table 4. We can
see from Table 3, most of the terms are appropriately gath-
ered with the given classes. For example “crystal”, “he-
lix”, “structure” are gathered to x-ray, and “two-hybrid”,
“yeast”, “site” are gathered to two hybrid, which are the
informative phrases in the MI ontology definition of these
methods. And in Table 4, terms are also properly clustered
to the desired classes. For example, “gasoline”, “oil”, “en-
ergy” are gathered to gas, and “surplus”, “deficit”, “cur-
rency” are gathered to bop(balance of payments). The rea-
sonable word distribution under classes confirms that the
CoL model captures the proper correlation not only between
the different classes but also between classes and words.
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5. Conclusions

In this paper, we propose a generative probabilistic
model, the CoL model, to formulate the correlation between
the different classes, and exploit the in-depth semantic re-
lationship within the classes and word occurrences. By
applying the model on various data sets, we achieved en-
couraging results comparing to the traditional classification
algorithms. The experiment results confirm that it is nec-
essary to model the correlation among different classes in
the multi-label classification issue, and the proposed model
properly modeled the latent correlations which benefit the
classification performance.

One obvious distinction between the CoL model and the
LDA model is that, the CoL model performs supervised
learning while the LDA model is unsupervised. In this
sense, the CoL model is capable to capture the information
conveyed by the class labels while the LDA model fails to
do so. Besides, because the CoL model assumes the topic
proportion is governed by the classes the document belongs
to, it can overcome the deficiency in the LDA model stem-
ming from the strong independence assumption introduced
by the Dirichlet distribution.

It is important to note that the CoL model is not narrowly
restricted to the text classification task; instead, it could be
feasibly applied to various application areas such as scene
categorization, opinion mining and gene function annota-
tion.

Our contributions in this paper lie in: 1) properly model-
ing the correlation among classes for the multi-label clas-
sification problem, which is ignored by most of previ-
ous approaches; 2) proposing a generative probabilistic
model with proper underlying probabilistic semantics for
the multi-labeling issue, which can be feasibly adopted to
various applications.
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