$\qquad$

## COA1 Exam 1 - Fall 2018

Name: $\qquad$ Computing ID: $\qquad$
Letters go in the boxes unless otherwise specified (e.g., for C 8 write "C" not " 8 ").
Write Letters clearly: if we are unsure of what you wrote you will get a zero on that problem.
Bubble and Pledge the exam or you will lose points.
Single-select by default: Multiple select are all clearly marked; answer them by putting 1 or more letters in the box, or writing "none" if none should be selected.
Mark clarifications: If you need to clarify an answer, do so, and also add a $\star$ to the top right corner of your answer box.

Question $1[\mathbf{2 p t}]$ : What is 0 xC 2 in decimal?


Information for questions 2-5
The following assume 8 -bit 2's-complement numbers. For each number, bit 0 is the low-order bit, bit 7 is the high-order bit.

Question 2 [ $\mathbf{2 ~ p t}]$ : (see above) Complete the following sum, showing your work (carry bits, etc)

```
    0 0 0 1 1 1 0 0
+ 0 0 1 1 1 1 1 0
```

Question 3 [ $\mathbf{2} \mathbf{~ p t}]$ : (see above) If you add two negative numbers, you have experienced overflow if
A the carry resulting from adding bit 7 is 0

| Answer: |
| :--- |
|  |

$\qquad$

## Information for questions 4-5

The following ask about biassed signed integers.
Question $4[\mathbf{2 ~ p t}]$ : (see above) If the high-order bit of a biassed number is 1 , then the value it represents is
A < 0
B $<=0$
C == 0
D $!=0$
E >= 0
F > 0


Question 5 [ $\mathbf{2} \mathbf{~ p t}$ ]: (see above) If the high-order bit of a biassed number is 0 , then the value it represents is
A < 0
B $<=0$
C == 0
D $!=0$
E $>=0$
F > 0


Information for questions 6-11
Each question gives two expressions of 32 -bit two's-compliment integers $x$ and $y$. If the two are equivalent for all x and y , write "same"; otherwise, write an example x (and y if used in the expressions) for which the two are different.

- add example

Question 6 [2 pt]: (see above)
$\mathrm{x}+\mathrm{y}$ and $\sim((-\mathrm{x})+(\sim \mathrm{y})) \quad$ (note that's two $\sim$ and one - )
$\qquad$
$\qquad$

Question 7 [2 pt]: (see above)
$x+x+x$ and $(x \ll 1)+x$

Question 8 [2 pt]: (see above)
$!x$ and $1 \& \sim((x \gg 16)|(x \gg 8)|(x \gg 4)|(x \gg 2)|(x \gg 1) \mid x)$
$\qquad$

Question 9 [ $\mathbf{2} \mathbf{~ p t}$ ]: The register type we discussed in class (the positive-edge-triggered D flipflop) has inputs D and clock and output Q. What signals need to be provided to D and clock to change Q from 1 to 0 ? Assume $\mathrm{D}, \mathrm{clock}$, and Q are all 1 before your description is used.

Answer: $\qquad$

Question $10[\mathbf{2 ~ p t}]:$ Draw a 4 -bit decrement circuit: that is, a set of logic gates with 4 input wires ( $x_{0}$ though $x_{3}$ ) and four output wires ( $z_{0}$ through $z_{3}$ ) such that the output is numerically 1 less than the input ( $z=x+-1$ ).

## Information for questions 11-12

Suppose we extended the ISA simulator you wrote in Lab 04 and PA 03 with the following code:

```
if (reserved == 1 && icode == 1) {
        M[oldPC + 1] = M[oldPC + 2];
        return oldPC + ____;
    }
```

Question 11 [ $\mathbf{2} \mathbf{~ p t}]$ : (see above) What number should be placed in the
Answer: return statement where the code above has ____?

Question $12[2 \mathrm{pt}]$ : (see above) Using the new instruction, write a program that moves a value from address $0 \times 12$ to address $0 \times 34$. Answer in hexadecimal bytes, separated by spaces.

Answer: $\qquad$
$\qquad$

## Information for questions 13-14

Suppose we extended the ISA simulator you wrote in Lab 04 and PA 03 with the following code:

```
    if (reserved == 1 && icode == 2) {
        R[a] = M[M[oldPC + 1] + R[b]];
        return oldPC +
```

$\qquad$

```
}
```

Question 13 [ $\mathbf{2} \mathbf{~ p t}$ ]: (see above) What number should be placed in the return statement where the code above has ____?

Question 14 [ $\mathbf{2 ~ p t}$ ]: (see above) Suppose there is an array of bytes starting at address $0 \times 40$. Using the new instruction, write a program that reads into $R_{3}$ the byte at index $R_{0}$ of that array. Answer in hexadecimal bytes, separated by spaces.

Answer: $\qquad$

Question 15 [2 pt]: If the 32 -bit number $0 \times 12345678$ is stored in big-
Answer: endian at address $0 \times 20$, what is the value of the byte at address $0 \times 22$ ? Answer in hexadecimal.

Question 16 [ $\mathbf{2 ~ p t}]$ : If you read the bytes [ba, 98] as an unsigned little-
Answer: endian 16-bit number, what is that number? Answer in hexadecimal.

Question 17 [ 2 pt$]$ : Which of the following are true statements about back doors?
Select all that apply by putting 1 or more letters in the box. If none are true, write "none" in the box.
A They can allow others to control your computer without your knowledge.
B They can be added to a large project by one or two people with relatively little work.
C They can be hidden in a way that makes them very hard to find.
D They can be added in hardware.
E They can be added in compilers.
Answer:

F They can be added in software.

| Answer: |
| :--- |
|  |

$\qquad$

## Information for questions 18-19

We discussed in class about patenting an ISA. These questions are about that and related ideas.
Question 18 [ $\mathbf{2} \mathbf{~ p t}]$ : (see above) Why would copyrighting an ISA not be sufficient intellectual property protection to prevent clone products being created?

Answer: $\qquad$

Question 19 [ $\mathbf{2} \mathbf{~ p t ] : ~ ( s e e ~ a b o v e ) ~ M a n y ~ p e o p l e ~ c o n s i d e r ~ p a t e n t s ~ a n ~ i m p o r t a n t ~ w a y ~ t o ~ f u e l ~ i n v e n t i o n ~}$ and share knowledge. Why?

Answer: $\qquad$
$\qquad$

## Pledge:

On my honor as a student, I have neither given nor received aid on this exam.

Your signature here

