
COA1 Fall 2018 Exam 2 Variant A page 1 of 6 CompID:

COA1 Exam 2 – Fall 2018

Name: Computing ID:

Letters go in the boxes unless otherwise specified (e.g., for C 8 write “C” not “8”).
Write Letters clearly: if we are unsure of what you wrote you will get a zero on that problem.
Bubble and Pledge the exam or you will lose points.
Assume unless otherwise specified:
• the following have been declared:

void *malloc(size_t); void free(void *);
int puts(const char *); int printf(const char *, ...);

• char, short, int, and long are 8-, 16-, 32-, and 64-bits long, respectively; and that float
is 32- and double is 64-bits long.
• the compiler pads pointers where it is allowed to do so such that

. an X-pointer is a multiple of sizeof(X) for all types X

. sizeof(struct X)
– an even multiple of the size of its largest field
– the smallest such multiple big enough to store all its fields

• compilation happens using clang on a Linux system
Single-select by default: Multiple select are all clearly marked; answer them by putting 1 or
more letters in the box, or writing “none” if none should be selected.
Mark clarifications: If you need to clarify an answer, do so, and also add a * to the top right
corner of your answer box.
. .

COA1 Fall 2018 Exam 2 Variant A page 2 of 6 CompID:

Information for questions 1–4
Suppose the assembly given in each subquestion was inserted at random between two instructions
of a function, with all jump targets and other code addresses updated accordingly. Either state
that this has no functional impact by writing “nop” or describe a scenario where such an insertion
could change the behavior of the function.

Question 1 [2 pt]: (see above) What if we insert addq $0,%rax?

Answer:

Question 2 [2 pt]: (see above) What if we insert movq %rax,%rax?

Answer:

COA1 Fall 2018 Exam 2 Variant A page 3 of 6 CompID:

Information for questions 3–11
For each of the following questions, assume the first eight registers have the following values prior
to the assembly being run:

Register RAX RCX RDX RBX RSP RBP RSI RDI
Value (hex) 0 1C3F5678 200400800 FFFF 200 240 20 100

Note: the questions are independant. Do not use the result of one as the input for the next.
Answer by writing a changed register and its new value, like “RDI = 24F2”, leaving one or more

lines blank if fewer registers change than there are lines.

Question 3 [2 pt]: (see above) Which program registers are modified, and to what values, by
leaq 0x10(%rdi,%rsi,4), %rax?

Question 4 [2 pt]: (see above) Which program registers are modified, and to what values, by
pushq %rcx?

Question 5 [2 pt]: (see above) Which program registers are modified, and to what values, by
retq?

Question 6 [2 pt]: (see above) Which program registers are modified, and to what values, by
addq %rsi, %rdi?

Question 7 [2 pt]: (see above) Which program registers are modified, and to what values, by
movl %ecx, %edx?

COA1 Fall 2018 Exam 2 Variant A page 4 of 6 CompID:

Question 8 [2 pt]: Consider the following assembly:

pushq (%rbp)
retq

Functionally (ignoring time taken to execute), what does this do?
A the same thing as retq without the preceding pushq
B the same thing as retq without the preceding pushq, but after
returning the stack is one item larger
C it jumps to an address stored in %rbp
D it jumps to an address stored in memory pointed to by %rbp
E it depends on the contents of %rbp
F it depends on the contents of (%rbp)

Answer:

Information for questions 9–17
For each of the following bugs, indicate the stage of compilation that would be find it. If it would
not be found until run-time, write “none”. The stages are

• Lexing – breaking input into words and related tokens
• Parsing – making an abstract syntax tree (AST)
• Type-checking – annotating the AST with data types, etc
• Code generation – creating assembly
• Assembling – turning assembly into machine code
• Linking – attaching library files to code

Question 9 [2 pt]: (see above)
Incorrect signature of library function

Answer:

Question 10 [2 pt]: (see above)
Using an undeclared variable

Answer:

Question 11 [2 pt]: (see above)
Having more “(” than “)” in your program

Answer:

Question 12 [2 pt]: (see above)
Invoking a function you’ve declared but never defined

Answer:

Question 13 [2 pt]: What value is placed in x?

#define THING 3 + 2
int x = THING * 2;

Answer:

COA1 Fall 2018 Exam 2 Variant A page 5 of 6 CompID:

Question 14 [2 pt]: What is sizeof(float[5])? See the assumptions
on page 1 to compute an exact number.

Answer:

Question 15 [2 pt]: What is the minimum number of bytes of read-only
memory needed for the compiler to store the following set of string literals:
"earing", "hearing", "wearing"?

Answer:

Question 16 [8 pt]: The following program both (a) contains a memory error and (b) has a
memory leak. Circle and describe the error, and insert any needed free invocations to fix the
memory leak.

typedef struct { int *data; int capacity; int size; } stack;

// add a value to the stack, increasing its size if necessary
void push(stack s, int val) {

if (s.size == s.capacity) {
// stack full; double the capacity of the array before continuing
int *tmp = (int *)malloc(s.capacity*2);

for(int i=0; i<s.capacity; i+=1) {

tmp[i] = s.data[i];

}

s.data = tmp;

s.capacity *= 2;

}
// put the data in the stack and increase it's used size

s.data[s.size] = val;

s.size += 1;

}

// remove an object from the stack (assume there is something to remove)
int pop(stack s) {

s.size -= 1;

return s.data[s.size];
}

COA1 Fall 2018 Exam 2 Variant A page 6 of 6 CompID:

Question 17 [6 pt]: Re-write the following snippet of C code to have the same behavior without
using goto or labels.

L0:
y += 1;
if (x&1) goto L1;
x >>= 1;
goto L2;

L1:
x *= 3;
x += 1;

L2:
if (x > 1) goto L0;

. .
Pledge:
On my honor as a student, I have neither given nor received aid on this exam.

Your signature here

