
COA1 Fall 2018 Exam 3 Variant P page 1 of 4 CompID:

COA1 Exam 3 – Fall 2018

Name: Computing ID:

Write Letters clearly: if we are unsure of what you wrote you will get a zero on that problem.
Bubble and Pledge the exam or you will lose points.
Assume unless otherwise specified:
• all necessary #includes have been used
• char, short, int, and long are 8-, 16-, 32-, and 64-bits long, respectively
• compilation happens using clang on a Linux system

Single-select by default: Multiple select are all clearly marked; answer them by putting 1 or
more letters in the box, or writing “none” if none should be selected.
Mark clarifications: If you need to clarify an answer, do so, and also add a * to the top right
corner of your answer box.
. .

Information for questions 1–3
For each of the following, identify the bug in the code and how to fix it. Assume that all used
variables have been defined.

Question 1 [2 pt]: (see above)
int *array = malloc(n);
for (int i=0; i<n; i+=1) array[i] = i*i;

Question 2 [2 pt]: (see above)
char word[64];
scanf("%s", word);

Question 3 [2 pt]: (see above)
foo *x = calloc(1, sizeof(foo));
x.y = 3;

COA1 Fall 2018 Exam 3 Variant P page 2 of 4 CompID:

Information for questions 4–5
The following code exercises undefined behavior
int main(int argc, const char *argv[]) {

char *all;
int space = 0;
int got = 0;
for(int i=1; i<argc; i+=1) {

const char *arg = argv[i];
while (*arg) {

if (got == space) {
space = (space + 4)*2;
all = realloc(all, space);

}
all[got] = *arg;
got += 1;
arg += 1;

}
}
puts(all);

}

Question 4 [2 pt]: (see above) What is the undefined behavior and what problem does it cause
if it does not behave the way the program writer intended?

Question 5 [2 pt]: (see above) What does this program do if the undefined behavior does not
cause a problem? Include both an example and a description, such as might go in the description
and examples sections of a manual page.

COA1 Fall 2018 Exam 3 Variant P page 3 of 4 CompID:

Question 6 [2 pt]: Write an implementation of getline using only read and the following
implmentation of a FILE:

typedef struct {
int fd; // the file descriptor of an open file
char buffer[128]; // for buffered input
int i, len, flags; // to be used, or not, as you please

} FILE;

Your implementation must read a full buffer at a time if there is sufficient data, must work correctly
if lines are larger than the buffer or multiple lines fit in a single buffer. You must meet the
specification given in the manual page excerpt at the end of this exams.

You may assume that on its first call, getline gets a valid fd of a newly-opened file and the
rest of its FILE argument’s bytes are set to 0. Subsequent calls for the same FILE should retrieve
subsequent lines.

ssize_t getline(char **lineptr, size_t *n, FILE *stream) {

COA1 Fall 2018 Exam 3 Variant P page 4 of 4 CompID:

Question 7 [2 pt]: Garbage collectors are able to reclaim
A all garbage on the heap and stack
B all garbage on the heap
C all garbage on the stack
D all unreachable memory on the heap and stack
E all unreachable memory on the heap
F all unreachable memory on the stack

Answer:

Question 8 [2 pt]: If a function returns a char * and its manual page does not specify where
in memory the data it points to lives or anything else about its memory, it is likely to be

Select all that are likely by putting 0 or more letters in the box.
A a pointer into data you passed it
B a pointer to heap-allocated memory
C a pointer to global memory
D a pointer to stack memory

Answer:

Information for questions 9–10
Consider the following program:
int main() {

char data[8];
ssize_t got = read(0, data, 8);

}

Question 9 [2 pt]: (see above) If you run this program and immediately
type Ctrl+D, what value will be in the variable got? Answer as a decimal
integer, like 23.

Answer:

Question 10 [2 pt]: (see above) What are the char values in data if you run this program,
typing 23 then the enter key, then Ctrl+D? Write a “?” if the value of some byte is undefined.

Index: 0 1 2 3 4 5 6 7
Char:

. .
Pledge:
On my honor as a student, I have neither given nor received aid on this exam.

Your signature here

COA1 Fall 2018 Exam 3 Variant P page 5 of 4 CompID:

NAME — malloc, free, calloc, realloc

SYNOPSIS

#include <stdlib.h>

void *malloc(size_t size);
void free(void *ptr);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);

DESCRIPTION

The malloc() function allocates size bytes and returns a pointer to the allocated memory. The
memory is not initialized. If size is 0, then malloc() returns either NULL, or a unique pointer
value that can later be successfully passed to free().

The free() function frees the memory space pointed to by ptr, which must have been returned
by a previous call to malloc(), calloc(), or realloc(). Otherwise, or if free(ptr) has already been
called before, undefined behavior occurs. If ptr is NULL, no operation is performed.

The calloc() function allocates memory for an array of nmemb elements of size bytes each and
returns a pointer to the allocated memory. The memory is set to zero. If nmemb or size is 0, then
calloc() returns either NULL, or a unique pointer value that can later be successfully passed to
free().

The realloc() function changes the size of the memory block pointed to by ptr to size bytes.
The contents will be unchanged in the range from the start of the region up to the minimum of
the old and new sizes. If the new size is larger than the old size, the added memory will not be
initialized. If ptr is NULL, then the call is equivalent to malloc(size), for all values of size; if size is
equal to zero, and ptr is not NULL, then the call is equivalent to free(ptr). Unless ptr is NULL, it
must have been returned by an earlier call to malloc(), calloc(), or realloc(). If the area pointed
to was moved, a free(ptr) is done.

RETURN VALUE

The malloc() and calloc() functions return a pointer to the allocated memory, which is suitably
aligned for any built-in type. On error, these functions return NULL. NULL may also be returned
by a successful call to malloc() with a size of zero, or by a successful call to calloc() with nmemb
or size equal to zero.

The free() function returns no value.
The realloc() function returns a pointer to the newly allocated memory, which is suitably aligned

for any built-in type and may be different from ptr, or NULL if the request fails. If size was equal
to 0, either NULL or a pointer suitable to be passed to free() is returned. If realloc() fails, the
original block is left untouched; it is not freed or moved.

COA1 Fall 2018 Exam 3 Variant P page 6 of 4 CompID:

NAME — read

SYNOPSIS

#include <unistd.h>
ssize_t read(int fildes, void *buf, size_t nbyte);

DESCRIPTION

The read() function shall attempt to read nbyte bytes from the file associated with the open file
descriptor, fildes, into the buffer pointed to by buf.

On a regular file, the read() shall start at a position in the file given by the file offset associated
with fildes. The file offset shall be incremented by the number of bytes actually read.

No data transfer shall occur past the current end-of-file. If the starting position is at or after
the end-of-file, 0 shall be returned. If the file refers to a device special file, the result of subsequent
read() requests is implementation-defined.

RETURN VALUE

Upon successful completion, this function shall return a non-negative integer indicating the number
of bytes actually read. Otherwise, the functions shall return −1 and set errno to indicate the error.

NAME — getline

SYNOPSIS

#include <stdio.h>

ssize_t getline(char **lineptr, size_t *n, FILE *stream);

DESCRIPTION

getline() reads an entire line from stream, storing the address of the buffer containing the text into
*lineptr. The buffer is null-terminated and includes the newline character, if one was found.

If *lineptr is set to NULL and *n is set 0 before the call, then getline() will allocate a buffer for
storing the line. This buffer should be freed by the user program even if getline() failed.

Alternatively, before calling getline(), *lineptr can contain a pointer to a malloc(3)-allocated
buffer *n bytes in size. If the buffer is not large enough to hold the line, getline() resizes it with
realloc(3), updating *lineptr and *n as necessary.

In either case, on a successful call, *lineptr and *n will be updated to reflect the buffer address
and allocated size respectively.

RETURN VALUE

On success, getline() returns the number of characters read, including the delimiter character, but
not including the terminating null byte (’\0’). This value can be used to handle embedded null
bytes in the line read.

This function returns -1 on failure to read a line (including end-of-file condition). In the event
of an error, errno is set to indicate the cause.

