\qquad

COA1 Exam 2 - Fall 2019

Name: \qquad Computing ID: \qquad
Write Letters clearly: if we are unsure of what you wrote you will get a zero on that problem.
Bubble and Pledge the exam or you will lose points.
Assume unless otherwise specified:

- all necessary \#includes have been used
- char, short, int, and long are 8 -, 16-, 32 -, and 64 -bits long, respectively
- the compiler pads pointers where it is allowed to do so such that
\triangleright an X-pointer is a multiple of sizeof(X) for all types X
\triangleright sizeof(struct X)
- an even multiple of the size of its largest field
- the smallest such multiple big enough to store all its fields
- compilation happens using clang on a Linux system

Single-select by default: Multiple select are all clearly marked; answer them by putting 1 or more letters in the box, or writing "none" if none should be selected.
Page-at-a-time Grading: We scan your exam and grade each page separately. Do not refer to other pages, scrratch paper, etc., in your answer.
Mark clarifications: If you need to clarify an answer, do so, and also add a \star to the top right corner of your answer box.

Information for questions 1-2

Suppose the assembly given in each subquestion was inserted at random between two instructions of a function, with all jump targets and other code addresses updated accordingly. Either state that this has no functional impact by writing "nop" or describe a scenario where such an insertion could change the behavior of the function.

Question $1[\mathbf{2 ~ p t}]$: (see above) What if we insert leaq (\%rbx), \%rbx?
Answer: \qquad
\qquad

Question 2 [$\mathbf{2 ~ p t] : ~ (s e e ~ a b o v e) ~ W h a t ~ i f ~ w e ~ i n s e r t ~ x o r q ~ \$ 0 , ~ \% r 9 ? ~}$
Answer: \qquad
\qquad

Information for questions 3-6

For each of the following questions, assume the first eight registers have the following values prior to the assembly being run:

Register	RAX	RCX	RDX	RBX	RSP	RBP	RSI	RDI
Value (hex)	1234	11111111	0	FF	30	3	FFFF	FFFFFFFF

The questions below are independent. Do not use the result of one as the input for the next.
Answer by writing a changed register and its new value, like "RDI $=24 F 2$ ", leaving one or more lines blank if fewer registers change than there are lines.

Question 3 [$\mathbf{2} \mathbf{~ p t] : ~ (s e e ~ a b o v e) ~ W h i c h ~ p r o g r a m ~ r e g i s t e r s ~ a r e ~ m o d i f i e d , ~ a n d ~ t o ~ w h a t ~ v a l u e s , ~ b y ~}$ leaq $0 \times 4(\% r d i, \% r b p, 2)$, $\% r d x$?

Question 4 [2 pt]: (see above) Which program registers are modified, and to what values, by pushq \%rcx?
\qquad
\qquad

Question 5 [$\mathbf{2} \mathbf{~ p t}$]: (see above) Which program registers are modified, and to what values, by cmp \%rsi, \%rbx?

Question 6 [$\mathbf{2} \mathbf{~ p t}]$: (see above) Which program registers are modified, and to what values, by addw \%cx, \%si?
\qquad

Question 7 [$\mathbf{2} \mathbf{~ p t] : ~ C o n s i d e r ~ t h e ~ f o l l o w i n g ~ a s s e m b l y : ~}$

```
quux:
        movq flub,%rsp
        retq
flub:
```

Functionally (ignoring time taken to execute), what would callq quux do?
A it depends on the contents of \%rsp before the callq
B it depends on the contents of (\%rsp) before the callq
C it depends on what bytes follow flub:
D nothing; it's a no-op
E overwrite the top of the stack with 8 bytes of function flub
F push 8 bytes of function flub
G the same thing as retq, except \%rsp is different
H the same thing as jmp flub, except \%rsp is different
I the same thing as call flub, except \%rsp is different

Question 8 [$\mathbf{2 ~ p t}]$: What value is placed in x ?

```
#define THING(x) 2 * x
int y = THING(1 + 2);
```

Question 9 [2 pt]: Assume we have defined $x y x x y$ as typedef struct \{ int x; char[2] y; \} xyxxy;. What is sizeof($x y x x y[2]$)?
See the assumptions on page 1 to compute an exact number.

Answer:

Question 10 [$\mathbf{2} \mathbf{~ p t}]$: What does the following code print? Recall that puts prints a string argument.

```
const char *s = "four";
const char *t = s + 1;
puts(t);
```

Answer:

If it has an error, write "error"
\qquad

Information for questions 11-13

Consider the following code, shown with line numbers which are not part of the code itself:

1. int numbers[5] $=\{2,3,5,7,0\}$;
2.
3. /// determine if two numbers are co-prime
4. int coprime(int a, int b) \{
5. while(b > 0) \{ int tmp = $\mathrm{a} \% \mathrm{~b} ; \mathrm{a}=\mathrm{b} ; \mathrm{b}=\mathrm{tmp} ;\}$
6. return a == 1;
7. \}
8.
9. /// Replace the first 0 in the array with a number
10. /// coprime to all other numbers in the array
11. int *add_coprime(int *array) \{
12. int *ans $=$ malloc(sizeof(array));
13. for(int i=0; array[i]; i+=1) ans[i] = array[i];
14. while(*array) array += 1;
15. int found $=0$;
16. for (int $i=1$; !found; $i+=1$) \{ found = 1; for (int $\mathrm{j}=0$; ans[j]; $\mathrm{j}+=1$)
if (!coprime(i, ans[j]))
found = 0;
if (found) *ans = i;
\}
return array;
\}
Question 11 [$\mathbf{2} \mathbf{~ p t}]:$ (see above) The code has one memory leak. After which line should we add a free? For example, if a free should be added between return a == 1; and the subsequent \}, answer " 10 ".

Question 12 [$\mathbf{2} \mathbf{~ p t}]$: (see above) The code has one memory leak. What should be freeed? For example an answer "i" means we need to insert free (i) into the code.

Answer:

Answer:

Question 13 [$6 \mathbf{~ p t}]$: (see above) For each of the following memory error types, enter either a line number exhibiting the error, or "none" if the error does not occur. If there is more than one line with a given error, pick just one in your answer.

Line \qquad accesses uninitialized memory

Line \qquad accidentally casts to a pointer

Line \qquad could overflow a buffer

Line \qquad uses after free

Line \qquad uses after return

Line \qquad fails to use sizeof/uses sizeof incorrectly
\qquad

Question $14[8 \mathrm{pt}]:$ Convert this C code into equivalent code using goto and if, but no else, loops, or switches. Your code should work the same as the C code for all values of n (including negative values).

```
for(int i=0; i<n; i+=1) {
    if (i % x == 0) y *= i;
    else z += 1;
}
```

\qquad

Question 15 [$\mathbf{2} \mathbf{~ p t}]$: In the following code, comment out the frees which should not be present by adding // in front of those lines

```
int a[5];
int x;
int *f(int b[3]) {
    int *c = (int *)calloc(7, sizeof(int));
    int d[4] = {1, 2, 4, 8};
    a[0] = b[0]; b[1] = c[1]; c[2] = d[2]; d[3] = a[3];
    x = a[0] + b[1] + c[2] + d[3];
    free(a);
    free(b);
    free(c);
    free(d);
    return &x;
}
```


Information for questions 16-18

For each of the following, answer " C " if there's a compile-time error, " R " if there's a run-time error, and " L " if there's a logic error (runs but does the wrong thing).

Question 16 [2 pt$]$: (see above) int $\mathrm{y}=\mathrm{x}[6]$; when x is defined as int $x[2]=\{1,2\} ;$

Question 17 [2 pt]: (see above) int $y=k x$; when x is defined as int *x = NULL;

Question 18 [$\mathbf{2} \mathbf{~ p t] : ~ (s e e ~ a b o v e) ~ i n t ~} y=* x$; when x is defined as int $\mathrm{x}=2501$;

Pledge:

On my honor as a student, I have neither given nor received aid on this exam. I will not discuss the content of this exam, even in vague terms, with anyone other than current course staff, until Friday 8 November 2019.

