
COA1 Fall 2019 Exam 2 Variant A page 1 of 6 CompID:

COA1 Exam 2 – Fall 2019

Name: Computing ID:

Write Letters clearly: if we are unsure of what you wrote you will get a zero on that problem.
Bubble and Pledge the exam or you will lose points.
Assume unless otherwise specified:
• all necessary #includes have been used
• char, short, int, and long are 8-, 16-, 32-, and 64-bits long, respectively
• the compiler pads pointers where it is allowed to do so such that

. an X-pointer is a multiple of sizeof(X) for all types X

. sizeof(struct X)
– an even multiple of the size of its largest field
– the smallest such multiple big enough to store all its fields

• compilation happens using clang on a Linux system
Single-select by default: Multiple select are all clearly marked; answer them by putting 1 or
more letters in the box, or writing “none” if none should be selected.
Page-at-a-time Grading: We scan your exam and grade each page separately. Do not refer to
other pages, scrratch paper, etc., in your answer.
Mark clarifications: If you need to clarify an answer, do so, and also add a * to the top right
corner of your answer box.
. .

Information for questions 1–2
Suppose the assembly given in each subquestion was inserted at random between two instructions
of a function, with all jump targets and other code addresses updated accordingly. Either state
that this has no functional impact by writing “nop” or describe a scenario where such an insertion
could change the behavior of the function.

Question 1 [2 pt]: (see above) What if we insert leaq (%rbx), %rbx?

Answer:

Question 2 [2 pt]: (see above) What if we insert xorq $0, %r9?

Answer:

COA1 Fall 2019 Exam 2 Variant A page 2 of 6 CompID:

Information for questions 3–6
For each of the following questions, assume the first eight registers have the following values prior
to the assembly being run:

Register RAX RCX RDX RBX RSP RBP RSI RDI
Value (hex) 1234 11111111 0 FF 30 3 FFFF FFFFFFFF

The questions below are independent. Do not use the result of one as the input for the next.
Answer by writing a changed register and its new value, like “RDI = 24F2”, leaving one or more

lines blank if fewer registers change than there are lines.

Question 3 [2 pt]: (see above) Which program registers are modified, and to what values, by
leaq 0x4(%rdi,%rbp,2), %rdx?

Question 4 [2 pt]: (see above) Which program registers are modified, and to what values, by
pushq %rcx?

Question 5 [2 pt]: (see above) Which program registers are modified, and to what values, by
cmp %rsi, %rbx?

Question 6 [2 pt]: (see above) Which program registers are modified, and to what values, by
addw %cx, %si?

COA1 Fall 2019 Exam 2 Variant A page 3 of 6 CompID:

Question 7 [2 pt]: Consider the following assembly:

quux:
movq flub, %rsp
retq

flub:

Functionally (ignoring time taken to execute), what would callq quux do?
A it depends on the contents of %rsp before the callq
B it depends on the contents of (%rsp) before the callq
C it depends on what bytes follow flub:
D nothing; it’s a no-op
E overwrite the top of the stack with 8 bytes of function flub
F push 8 bytes of function flub
G the same thing as retq, except %rsp is different
H the same thing as jmp flub, except %rsp is different
I the same thing as call flub, except %rsp is different

Answer:

Question 8 [2 pt]: What value is placed in x?

#define THING(x) 2 * x
int y = THING(1 + 2);

Answer:

Question 9 [2 pt]: Assume we have defined xyxxy as
typedef struct { int x; char[2] y; } xyxxy;.
What is sizeof(xyxxy[2])?
See the assumptions on page 1 to compute an exact number.

Answer:

Question 10 [2 pt]: What does the following code print? Recall that puts
prints a string argument.

const char *s = "four";
const char *t = s + 1;
puts(t);

If it has an error, write ”error”

Answer:

COA1 Fall 2019 Exam 2 Variant A page 4 of 6 CompID:

Information for questions 11–13
Consider the following code, shown with line numbers which are not part of the code itself:
1. int numbers[5] = {2, 3, 5, 7, 0};
2.
3. /// determine if two numbers are co-prime
4. int coprime(int a, int b) {
5. while(b > 0) { int tmp = a % b; a = b; b = tmp; }
6. return a == 1;
7. }
8.
9. /// Replace the first 0 in the array with a number
10. /// coprime to all other numbers in the array
11. int *add_coprime(int *array) {
12. int *ans = malloc(sizeof(array));
13. for(int i=0; array[i]; i+=1) ans[i] = array[i];
14. while(*array) array += 1;
15. int found = 0;
16. for(int i=1; !found; i+=1) {
17. found = 1;
18. for(int j=0; ans[j]; j+=1)
19. if (!coprime(i, ans[j]))
20. found = 0;
21. if (found) *ans = i;
22. }
23. return array;
24. }

Question 11 [2 pt]: (see above) The code has one memory leak. After which
line should we add a free? For example, if a free should be added between
return a == 1; and the subsequent }, answer “10”.

Answer:

Question 12 [2 pt]: (see above) The code has one memory leak. What should
be freeed? For example an answer “i” means we need to insert free(i) into
the code.

Answer:

Question 13 [6 pt]: (see above) For each of the following memory error types, enter either a
line number exhibiting the error, or “none” if the error does not occur. If there is more than one
line with a given error, pick just one in your answer.

Line accesses uninitialized memory

Line accidentally casts to a pointer

Line could overflow a buffer

Line uses after free

Line uses after return

Line fails to use sizeof/uses sizeof incorrectly

COA1 Fall 2019 Exam 2 Variant A page 5 of 6 CompID:

Question 14 [8 pt]: Convert this C code into equivalent code using goto and if, but no else,
loops, or switches. Your code should work the same as the C code for all values of n (including
negative values).

for(int i=0; i<n; i+=1) {
if (i % x == 0) y *= i;
else z += 1;

}

COA1 Fall 2019 Exam 2 Variant A page 6 of 6 CompID:

Question 15 [2 pt]: In the following code, comment out the frees which should not be present
by adding // in front of those lines

int a[5];
int x;
int *f(int b[3]) {

int *c = (int *)calloc(7, sizeof(int));
int d[4] = {1, 2, 4, 8};
a[0] = b[0]; b[1] = c[1]; c[2] = d[2]; d[3] = a[3];
x = a[0] + b[1] + c[2] + d[3];

free(a);

free(b);

free(c);

free(d);

return &x;
}

Information for questions 16–18
For each of the following, answer “C” if there’s a compile-time error, “R” if there’s a run-time error,
and “L” if there’s a logic error (runs but does the wrong thing).

Question 16 [2 pt]: (see above) int y = x[6]; when x is defined as
int x[2] = {1,2};

Answer:

Question 17 [2 pt]: (see above) int y = *x; when x is defined as
int *x = NULL;

Answer:

Question 18 [2 pt]: (see above) int y = *x; when x is defined as
int x = 2501;

Answer:

. .
Pledge:
On my honor as a student, I have neither given nor received aid on this exam. I will not discuss
the content of this exam, even in vague terms, with anyone other than current course staff, until
Friday 8 November 2019.

Your signature here

