Writing Code

CS 2130: Computer Systems and Organization 1
September 21, 2022

Announcements

- Homework 3 due Monday at 11pm on Gradescope
- Exam 1 next Friday (in class)

Our CS2130 Machine

(ko 0o [N 2=

7) e MLJ
@)7 [?Cf_j

ke

1
E
3

High-level Instructions

In general, 3 kinds of instructions

- moves - move values around without doing “work”
- math - broadly doing “work”
- jumps - jump to a new place in the code

Moves

Few forms
' . . rDi f’g
- Register to register (icode 0), x = vy

- Register to/from memory (icodes 3—4),)5 = Mr[_b_],M[b] = X

Memory

- Address: an index into memory.
- Addresses are just (large) numbers
- Usually we will not look at the number and trust it exists and is stored in a
register

Example 3-bit icode

icode b | action
0 rA = rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 3|rA = pc
6 0] rA-=read from memory at pc + 1
A 3 | rA = read from memory at the address stored at pc + 1

— mmedialy

Broadly doing work @T ’:’] GL |
Example 3-bit icode L{
icode b | meaning

1 rA += rB

2 rA &= rB

5 0|rA = ~rA lo =1

| 1|rA = -rA / I— -6

2 A = (DrA

6 1| rA +=read from memory at pc + 1

2 | rA &= read from memory at pc + 1

Note: We can implement other operations using these things! 6

icodes 5and 6

Special property of icodes 5-6: only one register used

icode a b

Example 3-bit icode

icode | b | action
5 O|rA = ~rA
1/ rA = -rA
2| rA = IrA
3| rA = pc

icodes 5and 6

Special property of 5-6: only one register used

0

7 6 5 4 3 2 1 0

icode a b

- Side effect: all bytes between 0 and 127 are valid instructions!
- As long as high-order bitis 0
- No syntax errors, any instruction given is valid

Immediate values
¢0 =23

icode 6 provides literals, immediate values X=17
Example 3-bit icode

action

rA = read from memory at pc + 1

rA +=read from memory at pc + 1

rA &= read from memory at pc + 1

rA = read from memory at the address stored at pc + 1
For icode 6, Increase pc by 2 at end of instruction

y icode a b d____ | M (i"_,-Ck/‘v1 N ‘]’U 1

icode
6

W N = \O|T

Encoding Instructions

Example 1: r1 += 19

Instructions

icode

+
meaning L

rA = rB v
rA += rB 0 {a 0
rA &= rB -

rA = read from memory at address rB

write rA to memory at address rB

g~ W N

rA = ~rA
rA = -rA

s 05 13

Vo

w I\I(H;O w N - O

rA = read from memory at pc + 1

rA ;read from memory at pc + 1

TA &= read from memory at pc + 1

rA = read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction

Compare rA as 8-bit 2's-complement to 0
if rA <= Osetpc = rB
else increment pc as normal

1

Encoding Instructions

Example 2: M[0x82] += r3

Read memory at address 0x82, add r3, write back to memory at same address

Instructions

mox32l =73

icode b | meaning S
0 rA = rB /’l = M [vo A
= 1 rA += TB o= Ol &
2 rA &= rB r += 07
— 3 rA = read from memory at address rB
4 vv_r_it_e rA to memory at address rB M E o } = },.l
5 0| rA = ~rA
1| rA=-rA
= 1 O 0
2 | rA = IrA r_ﬂ_:n%q L 2 °
3 | rA = pc Lo g2
6 0 | rA =read from memory at pc + 1
1 | rA +=read from memory at pc + 1 _ M [es) __3_ 1 O
2 | rA &=read from memory at pc + 1 = k____o__l_i*-:’;
3 | rA =read from memory at the address stored at pc + 1 2 4
For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2's-complement to 0 2
. = \ |
if rA <= @setpc = rB CrT — T
else increment pc as normal Q[———_—?——J
A Ao~
g o
(90%2 3'_1 H-d] %L{ MLVQ}(_“ ' _o'LLE] 13

LA
™ J U oou

- Moves and math are large portion of our code
- We also need control constructs

- Change what we are going to do next
- 1f,while, for, functions, ...

- Jumps provide mechanism to perform these control constructs
- We jump by assigning a new value to the program counter PC

14

For example, consider an if

NI

15

Example 3-bit icode

icode | meaning

7 | Compare rA as 8-bit 2's-complement to 0
if rA <= O@setpc = rB
else increment pc as normal

Instruction icode 7 provides a conditional jump

- Real code will also provide an unconditional jump, but a
conditional jump Is sufficient

16

Writing Code

We can now write any* program!

- When you run code, it is being turned into instructions like ours

- Modern computers use a larger pool of instructions than we have
(we will get there)

*we do have some limitations, since we can only represent 8-bit values and some operations may be
tedious.

7

Our code to this machine code

How do we turn our control constructs into jump statements?

18

if/else to jump

19

while to jump

20

Function Calls

21

Encoding Instructions

Example 3: 1f r® < 9 jump to 0Ox42

22

Instructions

icode b | meaning

0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 rA = ~rA
rA = -rA
rA = IrA
rA = pc

rA = read from memory at pc + 1

rA += read from memory at pc + 1

rA &= read from memory at pc + 1

rA = read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction

7 Compare rA as 8-bit 2's-complement to 0

if rA <= Osetpc = rB

else increment pc as normal

@)}
W NP OlwNBE- O

23

Questions on Multiply

2%

Encoding Instructions

Example 4:a <<= Db

25

