Writing Code

CS 2130: Computer Systems and Organization 1
September 21, 2022

Announcements

- Homework 3 due Monday at 11pm on Gradescope
- Exam 1 next Friday (in class)

Our CS2130 Machine

[bk be Rpan Ff
|o]mi.[B) Ec,,g,_ —_— = Jar Julo j
Mme D
. e
rC —
N 0
[
2

L=

High-level Instructions

In general, 3 kinds of instructions

- moves - move values around without doing “work”
- math - broadly doing “work”
- jumps - jump to a new place in the code

Moves

Few forms D -l
(b=

- Register to register (icode 0), x = vy
- Register to/from memory (icodes 3-4), x = M[b], M[b] = x

Memory

- Address: an index into memory.
- Addresses are just (large) numbers
- Usually we will not look at the number and trust it exists and is stored in a
register

Moves

Example 3-bit icode

icode b | action

0 rA = rB

3 rA = read from memory at address rB 4~ M (82
4 write rA to memory at address rB M(B8Y = v
5 3|rA = pc

6 0| rA=read from memory atpc + 1

3 | rA = read from memory at the address stored at pc + 1

Broadly doing work
Example 3-bit icode

icode b | meaning

1 rA += rB

2 rA &= rB

5 O] rA = ~rA
1/ rA = -rA
2| rA = IrA

6 1| rA +=read from memory at pc + 1
2 | rA &= read from memory at pc + 1

Note: We can implement other operations using these things! 6
oEl

icodes 5and 6

Special property of icodes 5-6: only one register used

J./ icode a b
Ol o1 | A0

7 6 5 4

Example 3-bit icode

icode | b | action
5 [0|rA = ~rA
1/ rA = -rA
2| rA = IrA
3| rA = pc

icodes 5and 6

Special property of 5-6: only one register used

y

7 6 5 4 3 2 1 0

icode a b

- Side effect: all bytes between 0 and 127 are valid instructions!
- As long as high-order bitis 0
- No syntax errors, any instruction given is valid

Immediate values

icode 6 provides literals, immediate values X= 13

Example 3-bit icode

icode

action

6

W NN P O T

rA = read from memory at pc + 1

rA +=read from memory at pc + 1

rA &= read from memory at pc + 1

rA = read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction

y . N irmddiade wle TV

icode

Encoding Instructions

Example 1: r1 += 19

Instructions

icode b | meaning \S \ T —
0 rA = rB \-__-W \/
1 rA += rB v
2 rA &= rB 0 or Y Ox 13
3 rA = read from memory at address rB - wede A G
4 write rA to memory at address rB Rf}
5

rA = ~rA

rA = -rA Q) 5
rA = IrA

rA = pc

rA = read from memory at pc + 1

rA += read from memory at pc + 1

rA &= read from memory at pc + 1 é}g | 3
rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction

7 Compare rA as 8-bit 2's-complement to 0

if rA <= Osetpc = rB

else increment pc as normal

o
w NPk Oflw N - O

1

Encoding Instructions

Example 2: M[0x82] += r3

Read memory at address 0x82, add r3, write back to memory at same address

Instructions

icode b | meaning
0 rA = rB 2
1 YA += rB 602, rs = Ox ﬁ%
2 rA &= rB to 82
3 rA = read from memory at address rB
5 ol o - r
—> 4 write rA to memory at address rB 3 2 .:a '(-1_ - M E ° ‘]
5 0] rA = ~rA 34 .
1| rA=-rA 4oLy cox s 3
2 | rA = 1rA L’L e = T =
3 | rA = pc -
r ——
6 _Q | rA=readfrom memoryatpc + 1 Y 2t M ﬁ °) L
1 | rA +=read from memory atpc + 1 el
2 | rA &=read from memory at pc + 1
—+3 | rA-=read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2's-complement to 0
if rA <= Osetpc = rB
else increment pc as normal 4 ad
GO JL 34 1t

13

- Moves and math are large portion of our code
- We also need control constructs

- Change what we are going to do next
- 1f,while, for, functions, ...

- Jumps provide mechanism to perform these control constructs
- We jump by assigning a new value to the program counter PC

14

For example, consider an if

| ——

K

e

15

Example 3-bit icode

icode | meaning

7 | Compare rA as 8-bit 2's-complement to 0
ifrA <= Osetpc = rB
else increment pc as normal

Instruction icode 7 provides a conditional jump

- Real code will also provide an unconditional jump, but a
conditional jump Is sufficient

16

Writing Code

We can now write any* program!

- When you run code, it is being turned into instructions like ours

- Modern computers use a larger pool of instructions than we have
(we will get there)

*we do have some limitations, since we can only represent 8-bit values and some operations may be
tedious.

7

Our code to this machine code

How do we turn our control constructs into jump statements?

m [nﬁ - 4&\)“-

-
_[;([M =0 Ry) L ﬁ\rt; D) L— %{ B oo o)

M) - e do O

J =%

—

5 18

if/else to jump

D) { I [y o 2

rn o)

3 el

while to jump

20

Function Calls

21

Encoding Instructions

Example 3: 1f r® < 9 jump to 0Ox42

22

Instructions

icode b | meaning

0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 rA = ~rA
rA = -rA
rA = IrA
rA = pc

rA = read from memory at pc + 1

rA += read from memory at pc + 1

rA &= read from memory at pc + 1

rA = read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction

7 Compare rA as 8-bit 2's-complement to 0

if rA <= Osetpc = rB

else increment pc as normal

@)}
W NP OlwNBE- O

23

Questions on Multiply

2%

Encoding Instructions

Example 4:a <<= Db

25

