ISA + Arrays

CS 2130: Computer Systems and Organization 1
September 23, 2022

Announcements

- Homework 3 due Monday at 11pm on Gradescope
- Please remember that homeworks are individual assignments if not stated
otherwise on the assignment
- Your code should be space-separated bytes as hex values
- Exam 1 next Friday (in class)
- For SDAC accommodations, please schedule a time with their testing center

High-level Instructions

In general, 3 kinds of instructions

- moves - move values around without doing “work”
- math - broadly doing “work”
- jumps - jump to a new place in the code

- Moves and math are large portion of our code
- We also need control constructs

- Change what we are going to do next
- 1f,while, for, functions, ...

- Jumps provide mechanism to perform these control constructs
- We jump by assigning a new value to the program counter PC

For example, consider an if
/
[F RIS

Z&_ﬁ(f
L

Example 3-bit icode

icode | meaning

7 | Compare rA as 8-bit 2's-complement to 0
ifrA <= Osetpc = rB
else increment pc as normal

Instruction icode 7 provides a conditional jump

- Real code will also provide an unconditional jump, but a
conditional jump Is sufficient

Writing Code

We can now write any* program!

- When you run code, it is being turned into instructions like ours

- Modern computers use a larger pool of instructions than we have
(we will get there)

*we do have some limitations, since we can only represent 8-bit values and some operations may be
tedious.

Our code to this machine code

How do we turn our control constructs into jump statements?

if/else to jump

//—\> Choe=o

NEEAPE ey e

ol SEN
\

while to jump

— > O(ﬁ\—-—l- Df""v\ 2
e (LI € i —5@"“:\1_32&_.\ Foir s

R T UB

e o |
g (o 2 |

Function Calls

T\ ca
L\

‘/\ (.\KJ' —_—
P y S fC

€ 9_(- f>_ £

|
i

© T

<

Encoding Instructions

Example 3: 1f r® < 9 jump to 0Ox42

1

Instructions

icode b | meaning l[. [rD < O_> JMY - O),‘_H_?_'_.-
0 rA = rB - T

rA += TB f'aT.:

rA &= rB o q L= 02

rA = read from memory at address rB é) \ ?’

write rA to memory at address rB

rA = ~rA

rA = -rA 0O < Q{

rA = IrA

rA = pc - -

rA = read from memory at pc + 1 O -8 &7]

| rA +=read from memory at pc + 1 Lol N

rA &= read from memory at pc + 1 (o J_ .’4? Lo - %

rA = read from memory at the address stored at pc + 1 —

For icode 6, increase pc by 2 at end of instruction

7 Compare rA as 8-bit 2's-complement to 0

if rA(<=) 0 set pc = rB

else increment pc as normal

g~ W N -

@)}
W Nk Ojw N - O

Questions on Multiply

02 4\ o s o oK% 04

X

\L_JE)L_JL\Z/_EL_._{ Y O |

EYDEYS)

a@ recd Pl
[Jmre ek

13

What kinds of things do we put in memory?

- Code: binary code like instructions in our example ISA

- Intel/AMD compatible: x86_64

- Apple Mx and Ax, ARM: ARM

- And others!
- Variables: we may have more variables that will fit in registers
- Data Structures: organized data, collection of data

- Arrays, lists, heaps, stacks, queues, ...

14

Dealing with Variables and Memory

What if we have many variables? Compute: X += vy

15

