
Arrays

CS 2130: Computer Systems and Organization 1
September 23, 2022



Announcements

• Homework 3 due tonight at 11pm on Gradescope
• Please remember that homeworks are individual assignments if not stated
otherwise on the assignment

• Your code should be space-separated bytes as hex values
• Exam 1 Friday (in class)

• Bring questions for Wednesday (review!)
• For SDAC accommodations, please schedule a time with their testing center

1



Quiz Review

2



Memory

What kinds of things do we put in memory?

• Variables: we may have more variables that will fit in registers
• Data Structures: organized data, collection of data

• Arrays, lists, heaps, stacks, queues, ...
• Code: binary code like instructions in our example machine

• Intel/AMD compatible: x86_64
• Apple Mx and Ax, ARM: ARM
• And others!

3



Quiz Question 8

x = 5
y = 2
i = -5
do {

x += y
i++

} while (i <= 0)

4



Quiz Question 8

x = 5
y = 2
i = -5
do {

x += y
i++

} while (i <= 0)

x = 5
y = 2
i = -5
tmp = pc
x += y
i++
if (i <= 0) goto tmp

4



Dealing with Variables and Memory

What if we have many variables?

5



Quiz Question 8

Var Mem Addr
x 0x90
y 0x91
i 0x92

tmp 0x93

x = 5

...
tmp = pc

6



Quiz Question 8

Var Mem Addr
x 0x90
y 0x91
i 0x92

tmp 0x93

...
x += y

...
if (i <= 0) goto tmp

7



Arrays

Array: a sequence of values (collection of variables)

In Java, arrays have the following properties:

• Fixed number of values
• Not resizable
• All values are the same type

8



Arrays

Array: a sequence of values (collection of variables)

In Java, arrays have the following properties:

• Fixed number of values
• Not resizable
• All values are the same type

How do we store them in memory?

8



Arrays

9



Storing Arrays

In memory, store array sequentially

• Pick address to store array
• Subsequent elements stored at following addresses
• Access elements with math

Example: Store array arr at 0x90

• Access arr[3] as 0x90 + 3 assuming 1-byte values

10



What’s Missing?

What are we missing?

• Nothing says “this is an array” in memory
• Nothing says how long the array is

11



Instructions

icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

12



Instruction Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer
defining how the CPU is controlled by software

• Conceptually, set of instructions that are possible and how they
should be encoded

• Results in many different machines to implement same ISA
• Example: How many machines implement our example ISA?

• Common in how we design hardware

13



Instruction Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer
defining how the CPU is controlled by software

• Provides an abstraction layer between:
• Everything computer is really doing (hardware)
• What programmer using the computer needs to know (software)

• Hardware and Software engineers have freedom of design, if
conforming to ISA

• Can change the machine without breaking any programs

CSO: covering many of the times we’ll need to think across this barrier

14



Instruction Set Architecture

Backwards compatibility

• Include flexibility to add additional instructions later
• Original instructions will still work
• Same program can be run on PC from 10+ years ago and new PC
today

Most manufacturers choose an ISA and stick with it

• Notable Exception: Apple

15



Our Instruction Set Architecture

What about our ISA?

• Enough instructions to compute what we need
• As is, lot of things that are painful to do

• This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

16



Our Instruction Set Architecture

What about our ISA?

• Enough instructions to compute what we need
• As is, lot of things that are painful to do

• This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

16



Our Instruction Set Architecture

icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

17



What about real ISAs?

17



Our Instruction Set Architecture

What about our ISA?

• Enough instructions to compute what we need
• As is, lot of things that are painful to do

• This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)
• Missing something important: Help to put variables in memory

18



Storing Variables in Memory

So far... we/compiler chose location for variable

Consider the following example:

f(x):
a = x
if (x <= 0) return 0
else return f(x-1) + a

Recursion

• The formal study of a function that calls itself

19



Storing Variables in Memory

f(x):
a = x
if (x <= 0) return 0
else return f(x-1) + a

Where do we store a?

20



The Stack

Stack - a last-in-first-out (LIFO) data structure

• The solution for solving this problem

rsp - Special register - the stack pointer

• Points to a special location in memory
• Two operations most ISAs support:

• push - put a new value on the stack
• pop - return the top value off the stack

21



The Stack: Push and Pop

push r0

• Add a value onto the stack
M[rsp] = r0
rsp += 1

pop r2

• Read top value, save to register
rsp -= 1
r2 = M[rsp]

22



The Stack: Push and Pop

23



The Stack: Push and Pop

24


