
Exam Review

CS 2130: Computer Systems and Organization 1
September 28, 2022



Announcements

• Exam 1 Friday (in class)
• Closed book, closed notes, closed neighbor, closed internet, closed
smart-watch

• Please bring pen or pencil, we will have scratch paper if needed
• For SDAC accommodations, please schedule a time with their testing center
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Topics

So far, we have discussed

• Logic: Operations, Gates, Truth tables
• Numbers: Binary, Octal, Decimal, Hexadecimal
• Bitwise Operations: and, or, bitwise not, logical not, xor, ...
• Binary Arithmetic: addition, subtraction
• Binary Representations: biased integers, two’s complement,
floating point (8-bit)

• Circuits: adder, subtractor, incrementer, registers, clocks
• High-level how these pieces fit together to form a computer
• Instruction Set Architectures (ISAs) and how to write instructions
with our ISA
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1-bit Logic Gates

• and, or, not
• nand, nor, xor
• Transistors and how to make these gates (high level)

Trinary operator - Mux

• Python: x = b if a else c
• Java: x = a ? b : c
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Numbers

From our oldest cultures, how do we mark numbers?

• Arabic numerals
• Positional numbering system
• The 10 is significant:

• 10 symbols, using 10 as base of exponent

• The 10 is arbitrary
• We can use other bases! π, 2130, 2, ...
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Base-8 Example

Try to turn 1348 into base-10:
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Long Numbers in Binary

Making binary more readable

• Typical to group by 3 or 4 bits
• No need for commas Why?
• We can use a separate symbol per group
• How many do we need for groups of 3?
• Turn each group into decimal representation
• Converts binary to octal

100001010010
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Long Numbers in Binary

Making binary more readable

• Groups of 4 more common
• How many symbols do we need for groups of 4?
• Converts binary to hexadecimal
• Base-16 is very common in computing

100001010010

7



Negative Integers

Representing negative integers

• Computers store numbers in fixed number of wires
• Ex: consider 4-digit decimal numbers
• Throw away the last borrow:

• 0000 - 0001 = 9999
• 9999 - 0001 = 9998
• Normal subtraction/addition still works

• This works the same in binary
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Two’s Complement

This scheme is called Two’s Complement

• More generically, a signed
integer

• There is a break as far away
from 0 as possible

• First bit acts vaguely like a
minus sign

• Works as long as we do not
pass number too large to
represent
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Values of Two’s Complement Numbers

Consider the following 8-bit two’s complement binary number:

11010011

What is its value in decimal?

1. Flip all bits
2. Add 1
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Biased Integers

Similar to Two’s Complement, but add bias

• Two’s Complement: Define 0
as 00...0

• Biased: Define 0 as 0111...1
• Biased wraps from
000...0 to 111...1
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Biased Integers

Two’s Complement Biased
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Non-Integer Numbers

Floating point numbers

• Decimal: 3.14159
• Binary: 11.10110
• With integers, the point is always fixed after all digits
• With floating point numbers, the point can move!

Challenge! only 2 symbols in binary
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Floating Point in Binary

We must store 3 components

• sign (1-bit): 1 if negative, 0 if positive
• fraction or mantissa: (?-bits): bits after binary point
• exponent (?-bits): how far to move binary point

We do not need to store the value before the binary point. Why?
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Floating Point in Binary

How do we store them?

• Originally many different systems
• IEEE standardized system (IEEE 754 and IEEE 854)
• Agreed-upon order, format, and number of bits for each

1.01101× 25
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Exponent

How do we store the exponent?

• Exponents can be negative

2−3 =
1
23 =

1
8

• Need positive and negative ints (but no minus sign)
• Don’t we always use Two’s Complement? Unfortunately Not
• Biased integers

• Make comparison operations run more smoothly
• Hardware more efficient to build
• Other valid reasons
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Floating Point Numbers

Four cases:

• Normalized: What we have seen today

seeeeffff = ±1.ffff× 2eeee−bias

• Denormalized: Exponent bits all 0

seeeeffff = ±0.ffff× 21−bias

• Infinity: Exponent bits all 1, fraction bits all 0
• Not a Number (NaN): Exponent bits all 1, fraction bits not all 0
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Operations So Far

So far, we have discussed:

• Addition: x+ y
• Can get multiplication

• Subtraction: x− y
• Can get division, but more difficult

• Unary minus (negative): −x
• Flip the bits and add 1
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Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)

• Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector

• Bitwise not: ∼ x - flips all bits (unary)
• Bitwise and: x&y - set bit to 1 if x, y have 1 in same bit
• Bitwise or: x|y - set bit to 1 if either x or y have 1
• Bitwise xor: xˆy - set bit to 1 if x, y bit differs
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Example: Bitwise AND

11001010
& 01111100
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Example: Bitwise OR

11001010
| 01111100
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Example: Bitwise XOR

11001010
^ 01111100
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Your Turn!

What is: 0x1a ^ 0x72
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Operations (on Integers)

• Logical not: !x
• !0 = 1 and !x = 0, ∀x ̸= 0
• Useful in C, no booleans
• Some languages name this one differently

• Left shift: x << y - move bits to the left
• Effectively multiply by powers of 2

• Right shift: x >> y - move bits to the right
• Effectively divide by powers of 2
• Signed (extend sign bit) vs unsigned (extend 0)
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Right Bit-shift Example 2

For signed integers, extend the sign bit (1)

• Keeps negative value (if applicable)
• Approximates divide by powers of 2

11001010 >> 1
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Ripple-Carry Adder
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Ripple-Carry Adder
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Ripple-Carry Adder
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Increment Circuit
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1-bit Register Circuit
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Another Circuit

+
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Code to Build Circuits from Gates

Write code to build circuits from gates

• Gates we already know: &, |, ^, ~
• Operations we can build from gates: +, -
• Others we can build:
• Ternary operator: ? :
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Equals

Equals: =
• Attach with a wire (i.e., connect things)
• Ex: z = x * y
• What about the following?
x = 1
x = 0

• Single assignment: each variable can only be assigned a value
once
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Indexing

Indexing with square brackets: [ ]
• Register bank (or register file) - an array of registers

• Can programmatically pick one based on index
• I.e., can determine which register while running

• Two important operations:
x = R[i] - Read from a register
R[j] = y - Write to a register
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Reading

x = R[i] - connect output of registers to x based on index i

R

0

1

2

3
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Writing

R[j] = y - connect y to input of registers based on index j

R

0

1

2

3
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Memory and Storage

Registers ≈ KiB

• 6 gates each, ≈ 24 transistors
• Efficient, fast
• Expensive!
• Ex: local variables

Memory ≈ GiB

• Two main types: SRAM, DRAM
• DRAM: 1 transistor, 1 capacitor per bit
• DRAM is cheaper, simpler to build
• Ex: data structures, local variables

These do not persist between power cycles 37



Memory and Storage

Disk ≈ GiB-TiB

• Two main types: flash (solid state), magnetic disk
• Magnetic drive

• Platter with physical arm above and below
• Cheap to build
• Very slow! Physically move arm while disk spins

• Ex: files

Data on disk does persist between power cycles
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Bookkeeping

What do we need to keep track of?

• Code - the program we are running
• RAM (Random Access Memory)

• State - things that may change value (i.e., variables)
• Register file - can read and write values each cycle

• Program Counter (PC) - were we are in our code
• Single register - byte number in memory for next instruction
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Building a Computer

Random Access Memory

Code

Register
File
(RF)
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Building a Computer

+1

Random Access MemoryCode

Register
File
(RF)

0

1

3

2

    icode          dest         src
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Our Instruction Set Architecture
icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

    icode                       a                    b

7           6          5          4           3          2           1          0
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High-level Instructions

In general, 3 kinds of instructions

• moves - move values around without doing “work”
• math - broadly doing “work”
• jumps - jump to a new place in the code
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Moves

Few forms

• Register to register (icode 0), x = y
• Register to/from memory (icodes 3-4), x = M[b], M[b] = x

Memory

• Address: an index into memory.
• Addresses are just (large) numbers
• Usually we will not look at the number and trust it exists and is stored in a
register
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Math

Broadly doing work
Example 3-bit icode

icode b meaning
1 rA += rB
2 rA &= rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA

6 1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1

Note: I can implement other operations using these things! 45



Jumps

• Moves and math are large portion of our code
• We also need control constructs

• Change what we are going to do next
• if, while, for, functions, ...

• Jumps provide mechanism to perform these control constructs
• We jump by assigning a new value to the program counter PC
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Immediate values

icode 6 provides literals, immediate values
Example 3-bit icode
icode b action
6 0 rA = read from memory at pc + 1

1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction

    icode                       a                    b

7           6          5          4           3          2           1          0 7           6          5          4           3          2           1          0
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Jumps

Example 3-bit icode
icode meaning
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Instruction icode 7 provides a conditional jump

• Real code will also provide an unconditional jump, but a
conditional jump is sufficient
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Writing Code

We can now write any∗ program!

• When you run code, it is being turned into instructions like ours
• Modern computers use a larger pool of instructions than we have
(we will get there)

∗we do have some limitations, since we can only represent 8-bit values and some operations may be
tedious.
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Arrays

Array: a sequence of values (collection of variables)

In Java, arrays have the following properties:

• Fixed number of values
• Not resizable
• All values are the same type

How do we store them in memory?

50



Storing Arrays

In memory, store array sequentially

• Pick address to store array
• Subsequent elements stored at following addresses
• Access elements with math

Example: Store array arr at 0x90

• Access arr[3] as 0x90 + 3 assuming 1-byte values
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What’s Missing?

What are we missing?

• Nothing says “this is an array” in memory
• Nothing says how long the array is
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Continuing from last time
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Instruction Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer
defining how the CPU is controlled by software

• Provides an abstraction layer between:
• Everything computer is really doing (hardware)
• What programmer using the computer needs to know (software)

• Hardware and Software engineers have freedom of design, if
conforming to ISA

• Can change the machine without breaking any programs

CSO: covering many of the times we’ll need to think across this barrier
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Instruction Set Architecture

Backwards compatibility

• Include flexibility to add additional instructions later
• Original instructions will still work
• Same program can be run on PC from 10+ years ago and new PC
today

Most manufacturers choose an ISA and stick with it

• Notable Exception: Apple
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Our Instruction Set Architecture

What about our ISA?

• Enough instructions to compute what we need
• As is, lot of things that are painful to do

• This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)
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Our Instruction Set Architecture

What about our ISA?

• Enough instructions to compute what we need
• As is, lot of things that are painful to do

• This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)
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Our Instruction Set Architecture

icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal
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What about real ISAs?
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Our Instruction Set Architecture

What about our ISA?

• Enough instructions to compute what we need
• As is, lot of things that are painful to do

• This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)
• Missing something important: Help to put variables in memory
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Storing Variables in Memory

So far... we/compiler chose location for variable

Consider the following example:

f(x):
a = x
if (x <= 0) return 0
else return f(x-1) + a

Recursion

• The formal study of a function that calls itself
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Storing Variables in Memory

f(x):
a = x
if (x <= 0) return 0
else return f(x-1) + a

Where do we store a?
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The Stack

Stack - a last-in-first-out (LIFO) data structure

• The solution for solving this problem

rsp - Special register - the stack pointer

• Points to a special location in memory
• Two operations most ISAs support:

• push - put a new value on the stack
• pop - return the top value off the stack
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The Stack: Push and Pop

push r0

• Add a value onto the stack
M[rsp] = r0
rsp += 1

pop r2

• Read top value, save to register
rsp -= 1
r2 = M[rsp]
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The Stack: Push and Pop
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The Stack: Push and Pop
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