
Exam Review

CS 2130: Computer Systems and Organization 1
September 28, 2022

Announcements

• Exam 1 Friday (in class)
• Closed book, closed notes, closed neighbor, closed internet, closed
smart-watch

• Please bring pen or pencil, we will have scratch paper if needed
• For SDAC accommodations, please schedule a time with their testing center

1

Topics

So far, we have discussed

• Logic: Operations, Gates, Truth tables
• Numbers: Binary, Octal, Decimal, Hexadecimal
• Bitwise Operations: and, or, bitwise not, logical not, xor, ...
• Binary Arithmetic: addition, subtraction
• Binary Representations: biased integers, two’s complement,
floating point (8-bit)

• Circuits: adder, subtractor, incrementer, registers, clocks
• High-level how these pieces fit together to form a computer
• Instruction Set Architectures (ISAs) and how to write instructions
with our ISA

2

1-bit Logic Gates

• and, or, not
• nand, nor, xor
• Transistors and how to make these gates (high level)

Trinary operator - Mux

• Python: x = b if a else c
• Java: x = a ? b : c

3

Numbers

From our oldest cultures, how do we mark numbers?

• Arabic numerals
• Positional numbering system
• The 10 is significant:

• 10 symbols, using 10 as base of exponent

• The 10 is arbitrary
• We can use other bases! π, 2130, 2, ...

4

Base-8 Example

Try to turn 1348 into base-10:

5

Long Numbers in Binary

Making binary more readable

• Typical to group by 3 or 4 bits
• No need for commas Why?
• We can use a separate symbol per group
• How many do we need for groups of 3?
• Turn each group into decimal representation
• Converts binary to octal

100001010010

6

Long Numbers in Binary

Making binary more readable

• Groups of 4 more common
• How many symbols do we need for groups of 4?
• Converts binary to hexadecimal
• Base-16 is very common in computing

100001010010

7

Negative Integers

Representing negative integers

• Computers store numbers in fixed number of wires
• Ex: consider 4-digit decimal numbers
• Throw away the last borrow:

• 0000 - 0001 = 9999
• 9999 - 0001 = 9998
• Normal subtraction/addition still works

• This works the same in binary

8

Two’s Complement

This scheme is called Two’s Complement

• More generically, a signed
integer

• There is a break as far away
from 0 as possible

• First bit acts vaguely like a
minus sign

• Works as long as we do not
pass number too large to
represent

9

Values of Two’s Complement Numbers

Consider the following 8-bit two’s complement binary number:

11010011

What is its value in decimal?

1. Flip all bits
2. Add 1

10

Biased Integers

Similar to Two’s Complement, but add bias

• Two’s Complement: Define 0
as 00...0

• Biased: Define 0 as 0111...1
• Biased wraps from
000...0 to 111...1

11

Biased Integers

Two’s Complement Biased

12

Non-Integer Numbers

Floating point numbers

• Decimal: 3.14159
• Binary: 11.10110
• With integers, the point is always fixed after all digits
• With floating point numbers, the point can move!

Challenge! only 2 symbols in binary

13

Floating Point in Binary

We must store 3 components

• sign (1-bit): 1 if negative, 0 if positive
• fraction or mantissa: (?-bits): bits after binary point
• exponent (?-bits): how far to move binary point

We do not need to store the value before the binary point. Why?

14

Floating Point in Binary

How do we store them?

• Originally many different systems
• IEEE standardized system (IEEE 754 and IEEE 854)
• Agreed-upon order, format, and number of bits for each

1.01101× 25

15

Exponent

How do we store the exponent?

• Exponents can be negative

2−3 =
1
23 =

1
8

• Need positive and negative ints (but no minus sign)
• Don’t we always use Two’s Complement? Unfortunately Not
• Biased integers

• Make comparison operations run more smoothly
• Hardware more efficient to build
• Other valid reasons

16

Floating Point Numbers

Four cases:

• Normalized: What we have seen today

seeeeffff = ±1.ffff× 2eeee−bias

• Denormalized: Exponent bits all 0

seeeeffff = ±0.ffff× 21−bias

• Infinity: Exponent bits all 1, fraction bits all 0
• Not a Number (NaN): Exponent bits all 1, fraction bits not all 0

17

Operations So Far

So far, we have discussed:

• Addition: x+ y
• Can get multiplication

• Subtraction: x− y
• Can get division, but more difficult

• Unary minus (negative): −x
• Flip the bits and add 1

18

Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)

• Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector

• Bitwise not: ∼ x - flips all bits (unary)
• Bitwise and: x&y - set bit to 1 if x, y have 1 in same bit
• Bitwise or: x|y - set bit to 1 if either x or y have 1
• Bitwise xor: xˆy - set bit to 1 if x, y bit differs

19

Example: Bitwise AND

11001010
& 01111100

20

Example: Bitwise OR

11001010
| 01111100

21

Example: Bitwise XOR

11001010
^ 01111100

22

Your Turn!

What is: 0x1a ^ 0x72

23

Operations (on Integers)

• Logical not: !x
• !0 = 1 and !x = 0, ∀x ̸= 0
• Useful in C, no booleans
• Some languages name this one differently

• Left shift: x << y - move bits to the left
• Effectively multiply by powers of 2

• Right shift: x >> y - move bits to the right
• Effectively divide by powers of 2
• Signed (extend sign bit) vs unsigned (extend 0)

24

Right Bit-shift Example 2

For signed integers, extend the sign bit (1)

• Keeps negative value (if applicable)
• Approximates divide by powers of 2

11001010 >> 1

25

Ripple-Carry Adder

26

Ripple-Carry Adder

27

Ripple-Carry Adder

28

Increment Circuit

29

1-bit Register Circuit

30

Another Circuit

+

31

Code to Build Circuits from Gates

Write code to build circuits from gates

• Gates we already know: &, |, ^, ~
• Operations we can build from gates: +, -
• Others we can build:
• Ternary operator: ? :

32

Equals

Equals: =
• Attach with a wire (i.e., connect things)
• Ex: z = x * y
• What about the following?
x = 1
x = 0

• Single assignment: each variable can only be assigned a value
once

33

Indexing

Indexing with square brackets: []
• Register bank (or register file) - an array of registers

• Can programmatically pick one based on index
• I.e., can determine which register while running

• Two important operations:
x = R[i] - Read from a register
R[j] = y - Write to a register

34

Reading

x = R[i] - connect output of registers to x based on index i

R

0

1

2

3

35

Writing

R[j] = y - connect y to input of registers based on index j

R

0

1

2

3

36

Memory and Storage

Registers ≈ KiB

• 6 gates each, ≈ 24 transistors
• Efficient, fast
• Expensive!
• Ex: local variables

Memory ≈ GiB

• Two main types: SRAM, DRAM
• DRAM: 1 transistor, 1 capacitor per bit
• DRAM is cheaper, simpler to build
• Ex: data structures, local variables

These do not persist between power cycles 37

Memory and Storage

Disk ≈ GiB-TiB

• Two main types: flash (solid state), magnetic disk
• Magnetic drive

• Platter with physical arm above and below
• Cheap to build
• Very slow! Physically move arm while disk spins

• Ex: files

Data on disk does persist between power cycles
38

Bookkeeping

What do we need to keep track of?

• Code - the program we are running
• RAM (Random Access Memory)

• State - things that may change value (i.e., variables)
• Register file - can read and write values each cycle

• Program Counter (PC) - were we are in our code
• Single register - byte number in memory for next instruction

39

Building a Computer

Random Access Memory

Code

Register
File
(RF)

40

Building a Computer

+1

Random Access MemoryCode

Register
File
(RF)

0

1

3

2

 icode dest src

41

Our Instruction Set Architecture
icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

 icode a b

7 6 5 4 3 2 1 0
42

High-level Instructions

In general, 3 kinds of instructions

• moves - move values around without doing “work”
• math - broadly doing “work”
• jumps - jump to a new place in the code

43

Moves

Few forms

• Register to register (icode 0), x = y
• Register to/from memory (icodes 3-4), x = M[b], M[b] = x

Memory

• Address: an index into memory.
• Addresses are just (large) numbers
• Usually we will not look at the number and trust it exists and is stored in a
register

44

Math

Broadly doing work
Example 3-bit icode

icode b meaning
1 rA += rB
2 rA &= rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA

6 1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1

Note: I can implement other operations using these things! 45

Jumps

• Moves and math are large portion of our code
• We also need control constructs

• Change what we are going to do next
• if, while, for, functions, ...

• Jumps provide mechanism to perform these control constructs
• We jump by assigning a new value to the program counter PC

46

Immediate values

icode 6 provides literals, immediate values
Example 3-bit icode
icode b action
6 0 rA = read from memory at pc + 1

1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction

 icode a b

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

47

Jumps

Example 3-bit icode
icode meaning
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Instruction icode 7 provides a conditional jump

• Real code will also provide an unconditional jump, but a
conditional jump is sufficient

48

Writing Code

We can now write any∗ program!

• When you run code, it is being turned into instructions like ours
• Modern computers use a larger pool of instructions than we have
(we will get there)

∗we do have some limitations, since we can only represent 8-bit values and some operations may be
tedious.

49

Arrays

Array: a sequence of values (collection of variables)

In Java, arrays have the following properties:

• Fixed number of values
• Not resizable
• All values are the same type

How do we store them in memory?

50

Storing Arrays

In memory, store array sequentially

• Pick address to store array
• Subsequent elements stored at following addresses
• Access elements with math

Example: Store array arr at 0x90

• Access arr[3] as 0x90 + 3 assuming 1-byte values

51

What’s Missing?

What are we missing?

• Nothing says “this is an array” in memory
• Nothing says how long the array is

52

53

54

55

56

57

58

59

60

61

62

Continuing from last time

62

Instruction Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer
defining how the CPU is controlled by software

• Provides an abstraction layer between:
• Everything computer is really doing (hardware)
• What programmer using the computer needs to know (software)

• Hardware and Software engineers have freedom of design, if
conforming to ISA

• Can change the machine without breaking any programs

CSO: covering many of the times we’ll need to think across this barrier

63

Instruction Set Architecture

Backwards compatibility

• Include flexibility to add additional instructions later
• Original instructions will still work
• Same program can be run on PC from 10+ years ago and new PC
today

Most manufacturers choose an ISA and stick with it

• Notable Exception: Apple

64

Our Instruction Set Architecture

What about our ISA?

• Enough instructions to compute what we need
• As is, lot of things that are painful to do

• This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

65

Our Instruction Set Architecture

What about our ISA?

• Enough instructions to compute what we need
• As is, lot of things that are painful to do

• This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

65

Our Instruction Set Architecture

icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

66

What about real ISAs?

66

Our Instruction Set Architecture

What about our ISA?

• Enough instructions to compute what we need
• As is, lot of things that are painful to do

• This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)
• Missing something important: Help to put variables in memory

67

Storing Variables in Memory

So far... we/compiler chose location for variable

Consider the following example:

f(x):
a = x
if (x <= 0) return 0
else return f(x-1) + a

Recursion

• The formal study of a function that calls itself

68

Storing Variables in Memory

f(x):
a = x
if (x <= 0) return 0
else return f(x-1) + a

Where do we store a?

69

The Stack

Stack - a last-in-first-out (LIFO) data structure

• The solution for solving this problem

rsp - Special register - the stack pointer

• Points to a special location in memory
• Two operations most ISAs support:

• push - put a new value on the stack
• pop - return the top value off the stack

70

The Stack: Push and Pop

push r0

• Add a value onto the stack
M[rsp] = r0
rsp += 1

pop r2

• Read top value, save to register
rsp -= 1
r2 = M[rsp]

71

The Stack: Push and Pop

72

The Stack: Push and Pop

73

