
ISAs, Stacks, and Endianness

CS 2130: Computer Systems and Organization 1
October 5, 2022



Announcements

• Homework 4 due Monday, 11pm on Gradescope

1



Instruction Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer
defining how the CPU is controlled by software

• Provides an abstraction layer between:
• Everything computer is really doing (hardware)
• What programmer using the computer needs to know (software)

• Hardware and Software engineers have freedom of design, if
conforming to ISA

• Can change the machine without breaking any programs

CSO: covering many of the times we’ll need to think across this barrier

2



Instruction Set Architecture

Backwards compatibility

• Include flexibility to add additional instructions later
• Original instructions will still work
• Same program can be run on PC from 10+ years ago and new PC
today

Most manufacturers choose an ISA and stick with it

• Notable Exception: Apple

3



Our Instruction Set Architecture

What about our ISA?

• Enough instructions to compute what we need
• As is, lot of things that are painful to do

• This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

4



Our Instruction Set Architecture

What about our ISA?

• Enough instructions to compute what we need
• As is, lot of things that are painful to do

• This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

4



Our Instruction Set Architecture

icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

5



What about real ISAs?

5



Our Instruction Set Architecture

What about our ISA?

• Enough instructions to compute what we need
• As is, lot of things that are painful to do

• This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)
• Missing something important: Help to put variables in memory

6



Storing Variables in Memory

So far... we/compiler chose location for variable

Consider the following example:

f(x):
a = x
if (x <= 0) return 0
else return f(x-1) + a

Recursion

• The formal study of a function that calls itself

7



Storing Variables in Memory

f(x):
a = x
if (x <= 0) return 0
else return f(x-1) + a

Where do we store a?

8



The Stack

Stack - a last-in-first-out (LIFO) data structure

• The solution for solving this problem

rsp - Special register - the stack pointer

• Points to a special location in memory
• Two operations most ISAs support:

• push - put a new value on the stack
• pop - return the top value off the stack

9



The Stack: Push and Pop

push r0

• Put a value onto the “top” of the stack
rsp -= 1
M[rsp] = r0

pop r2

• Read value from “top”, save to register
r2 = M[rsp]
rsp += 1

10



The Stack: Push and Pop

11



The Stack: Push and Pop

12



Patents and Copyright

Can we patent our ISA? Should we?
icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

13



Patents and Copyright

Copyright

• “Everyone is a copyright owner. Once you create an original work
and fix it, like taking a photograph, writing a poem or blog, or
recording a new song, you are the author and the owner.”

from https://www.copyright.gov/what-is-copyright/

Patent

• “Whoever invents or discovers any new and useful process,
machine, manufacture, or composition of matter, or any new and
useful improvement thereof, may obtain a patent therefor, subject
to the conditions and requirements of this title.”

from 35 U.S.C. 101
14

https://www.copyright.gov/what-is-copyright/


Patents

In software and hardware, patents become messy

• Code is a description of a process we want the computer to do
• Do not have to implement the process to patent it

Question: Should we patent something like our ISA?

15



Patents

In software and hardware, patents become messy

• Code is a description of a process we want the computer to do
• Do not have to implement the process to patent it

Question: Should we patent something like our ISA?

What is the current state of the art?

15



Common Approaches to Software

How can we get value from what we create?

• Copyright - distribute closed source software
• License Agreements (in contract law)
• Always innovate

16


