
64-bit and Endianness

CS 2130: Computer Systems and Organization 1
October 7, 2022



Announcements

• Homework 4 due Monday, 11pm on Gradescope
• Quiz 5 opens at 5pm, due Monday by 8am
• Exam 1 scores released after class

1



Exam 1

Statistics
Mean 75.4
Median 77.0
Std. Dev. 15.4

2



Exam 1: Most Missed Questions

Suppose we extended the ISA simulator you wrote in Lab 4 with the following code:

if (reserved == 1 && icode == 4) {
R[a] = R[b] & M[oldPC + 1];
return oldPC + ___;

}

Using the new instruction above at least once, write a program that determines if the contents of
register 2 is a negative number in two’s complement and stores the result in register 0. That is, if the
high order bit of register 2’s value is a 1, your program should store a 0x01 in register 0. Answer in
hexadecimal bytes, separated by spaces. Hint: you may need to write additional instructions.

3



Exam 1: Most Missed Questions

icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

4



Exam 1: Most Missed Questions

In class, we discussed a 4-bit increment circuit below that added 1 to the input.

How can we change this circuit to instead increment by 2, i.e., x += 2? Draw the new circuit below.
Note: you should not use more gates than the original circuit.

5



Patents and Copyright

Can we patent our ISA? Should we?
icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

6



Patents and Copyright

Copyright

• “Everyone is a copyright owner. Once you create an original work
and fix it, like taking a photograph, writing a poem or blog, or
recording a new song, you are the author and the owner.”

from https://www.copyright.gov/what-is-copyright/

Patent

• “Whoever invents or discovers any new and useful process,
machine, manufacture, or composition of matter, or any new and
useful improvement thereof, may obtain a patent therefor, subject
to the conditions and requirements of this title.”

from 35 U.S.C. 101
7

https://www.copyright.gov/what-is-copyright/


Patents

In software and hardware, patents become messy

• Code is a description of a process we want the computer to do
• Do not have to implement the process to patent it

Question: Should we patent something like our ISA?

8



Patents

In software and hardware, patents become messy

• Code is a description of a process we want the computer to do
• Do not have to implement the process to patent it

Question: Should we patent something like our ISA?

What is the current state of the art?

8



Common Approaches to Software

How can we get value from what we create?

• Copyright - distribute closed source software
• License Agreements (in contract law)
• Always innovate

9



Moving On
icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

So far, we’ve been dealing with an 8-bit machine!
10



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access?
• Late 70s - 16 bits:
• 80s - 32 bits:
• Today’s processors - 64 bits:

11



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access?

• Late 70s - 16 bits:
• 80s - 32 bits:
• Today’s processors - 64 bits:

11



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes

• Late 70s - 16 bits:
• 80s - 32 bits:
• Today’s processors - 64 bits:

11



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits:

• 80s - 32 bits:
• Today’s processors - 64 bits:

11



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes

• 80s - 32 bits:
• Today’s processors - 64 bits:

11



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits:

• Today’s processors - 64 bits:

11



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits: ≈ 4 billion bytes

• Today’s processors - 64 bits:

11



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits: ≈ 4 billion bytes
• Today’s processors - 64 bits:

11



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits: ≈ 4 billion bytes
• Today’s processors - 64 bits: 264 addresses

11



Aside: Powers of Two

Powers of Two
Value base-10 Short form Pronounced
210 1024 Ki Kilo
220 1,048,576 Mi Mega
230 1,073,741,824 Gi Giga
240 1,099,511,627,776 Ti Tera
250 1,125,899,906,842,624 Pi Peta
260 1,152,921,504,606,846,976 Ei Exa

Example: 227 bytes

12



Aside: Powers of Two

Powers of Two
Value base-10 Short form Pronounced
210 1024 Ki Kilo
220 1,048,576 Mi Mega
230 1,073,741,824 Gi Giga
240 1,099,511,627,776 Ti Tera
250 1,125,899,906,842,624 Pi Peta
260 1,152,921,504,606,846,976 Ei Exa

Example: 227 bytes = 27 × 220 bytes

12



Aside: Powers of Two

Powers of Two
Value base-10 Short form Pronounced
210 1024 Ki Kilo
220 1,048,576 Mi Mega
230 1,073,741,824 Gi Giga
240 1,099,511,627,776 Ti Tera
250 1,125,899,906,842,624 Pi Peta
260 1,152,921,504,606,846,976 Ei Exa

Example: 227 bytes = 27 × 220 bytes = 27 MiB = 128 MiB

12



64-bit Machines

How much can we address with 64-bits?

• 16 EiB (264 addresses = 24 × 260)
• But I only have 8 GiB of RAM

13



64-bit Machines

How much can we address with 64-bits?

• 16 EiB (264 addresses = 24 × 260)

• But I only have 8 GiB of RAM

13



64-bit Machines

How much can we address with 64-bits?

• 16 EiB (264 addresses = 24 × 260)
• But I only have 8 GiB of RAM

13



A Challenge

There is a disconnect:

• Registers: 64-bits values
• Memory: 8-bit values (i.e., 1 byte values)

• Each address addresses an 8-bit value in memory
• Each address points to a 1-byte slot in memory

• How do we store a 64-bit value in an 8-bit spot?

14



A Challenge

There is a disconnect:

• Registers: 64-bits values
• Memory: 8-bit values (i.e., 1 byte values)

• Each address addresses an 8-bit value in memory
• Each address points to a 1-byte slot in memory

• How do we store a 64-bit value in an 8-bit spot?

14



Rules

Rules to break “big values” into bytes (memory)

1. Break it into bytes
2. Store them adjacently
3. Address of the overall value = smallest address of its bytes
4. Order the bytes

• If parts are ordered (i.e., array), first goes in smallest address
• Else, hardware implementation gets to pick (!!)

• Little-endian
• Big-endian

15



Ordering Values

Little-endian

• Store the low order part/byte first
• Most hardware today is little-endian

Big-endian

• Store the high order part/byte first

16



Example

Store [0x1234, 0x5678] at address 0xF00

17



Endianness

Why do we study endianness?

• It is everywhere
• It is a source of weird bugs
• Ex: It’s likely your computer uses:

• Little-endian from CPU to memory
• Big-endian from CPU to network
• File formats are roughly half and half

18



Time to take over the world!

18



Backdoors

Backdoor: secret way in to do new unexpected things

• Get around the normal barriers of behavior
• Ex: a way in to allow me to take complete control of your computer

Exploit - a way to use a vulnerability or backdoor that has been created

• Our exploit today: a malicious payload
• A passcode and program
• If it ever gets in memory, run my program regardless of what you want to do

19



Our Hardware Backdoor

Our backdoor will have 2 components

• Passcode: need to recognize when we see the passcode
• Program: do something bad when I see the passcode

20



Our Hardware Backdoor

21


