Assembly: x86-64

CS 2130: Computer Systems and Organization 1
October 12, 2022

Announcements

- Homework 5 due Wednesday 10/19 at 11pm
- Prof Hott office hours tomorrow: 4-6pm

Quiz Review

-_> - -
'L,_\ 3 are [3)

Hx G4
+ 3 S

D¢ 5T

: e =73 iz
q 4'_}_’3_{’_ (A

q&ér‘ + qh‘-

Instructions

Instructions have different versions depending on number of bits to
use

- movg - 64-bit move
- = quad word
- mov'l - 32-bit move

- 1=long
- There are encodings for shorter things, but we will mostly see 32-
and 64-bit

Instruction Operands

Instructions can mov%/operate between memory and register
S
- movqg %rax, %rcx - registerto register cex = reX

- Remember our icode 0

- movq (%rax), %rcx- memory to register
- Remember our icode 3

- movq %rax, (%rcx) - register to memory
- Remember our icode 4

- movq $21, %rax - Immediate to register
- Remember our icode 6 (b=0)

Note: at most one memory address per instruction

Other Instructions

Other instructions work the same way -

- addq %rax, %rcx — rcx +=rax
- subg (%rbx), %rax — rax -= M[rbx]

- xor, and, and others work the same way!
- Assembly has virtually no 3-argument instructions
- All will be modifying something (i.e., +=, &=, ...)

jmp foo

- Unconditional jJump to foo
- foo is a label or memory address
- Need jmp=* to use register value

Conditional jJumps 7,{_ ~
s \,L\a‘J
+JL Jle, Je, Jjne, jg jge, Ja, Jb, Js, Jjo
0) =0 -0 >0 2 =0 Unw u}wcz e “\J"Dl’"!

Unlike our Toy ISA, these do not compare given register to 0

Condition codes - 1-bit registers set by every math operation, cmp, and

test
- Result for the operation compared to 0 (if no overflow)
- Example: o
addq $-5, %rax e A= 5
// ...code that doesn't set condition codes...
je foo

- Sets condition codes from doing math (subtract 5 from rax)
- Tells whether result was positive, negative, 0, if there was overflow, ...
- Then jump if the result of that operation should have been =0

Jumps: compare and test

cmpq %rax, %rdx rdv —= T
Compam checks result of -= and sets condition codes
HoWrdx-—ra&xompamswnhO 7
- Be aware of ordering! Ay —rey =0

- if rax is bigger, setg < flag [-1t <o

- if TEL(is bigger, sets > flag
testq %rax, %rdx
— —_—

- Sets the condition codes based on rdx & rax

- Less common —

Neither save their result, just set condition codes!

Example: Loops

L 2T (o
. . > C’liesy
while (i < 10) i,
1 += 1 i
O [0 Tk
top: o .
/] check Coaditon | yumgp cmp g, ﬁ[g , O cax
i,(‘([?'—lo\ deend —m 0 ——7
9 J9e end
cr=| \ % rax
s back b kg aclJL S !

oto e Jme e
E)‘\;: e..né'.

Functions

'F(Xry):__"“_ ‘P’

_wetq

return 4

O S PR

Function Calls

callg myfun

- Push return address to stack, then jump to myfun
retq

- Pop return address from stack and jump back

This is similar to our Toy ISA’s function calls in homework 4

1

Calling Conventions: Parameters

Calling conventions - recommendations for making function calls

- Where to put arguments/parameters for the function call?
- First 6 arguments (in order): @_l Eé_lj rdx, rcx, r8, r9
- If more arguments, push onto stack (last to first)

- Where to put return value? in rax before calling retq

- What happens to values in the registers?

- Callee-save - The function should ensure the values in these registers are
unchanged when the function returns

- rbx, rsp, rbp, r12,r13, ri14, ri15
- Caller-save - Before making a function call, save the value, since the
function may change it

The Stack

pushqg %rax
popq %rdx

13

example.s

Compilation Pipeline

Turning our code into something that runs

- Pipeline - a sequence of steps in which each builds off the last

14

Most Common Instructions

* mov - =

- lea - load effective address

- call - push PCand jump to address
- add - +=

- cmp - set flags as if performing subtract
- jmp - unconditional jump

- test - setflags as if performing &

-+ je - jump iff flags indicate ==

- pop - pop value from stack

- push - push value onto stack

- ret - pop PC from the stack

15

