
Assembly: x86-64

CS 2130: Computer Systems and Organization 1
October 12, 2022

Announcements

• Homework 5 due Wednesday 10/19 at 11pm
• Prof Hott office hours tomorrow: 4-6pm

1

Quiz Review

2

Instructions

Instructions have different versions depending on number of bits to
use

• movq - 64-bit move
• q = quad word

• movl - 32-bit move
• l = long

• There are encodings for shorter things, but we will mostly see 32-
and 64-bit

3

Instruction Operands

Instructions can move/operate between memory and register

• movq %rax, %rcx - register to register
• Remember our icode 0

• movq (%rax), %rcx - memory to register
• Remember our icode 3

• movq %rax, (%rcx) - register to memory
• Remember our icode 4

• movq $21, %rax - Immediate to register
• Remember our icode 6 (b=0)

Note: at most one memory address per instruction

4

Other Instructions

Other instructions work the same way

• addq %rax, %rcx — rcx += rax
• subq (%rbx), %rax — rax -= M[rbx]
• xor, and, and others work the same way!
• Assembly has virtually no 3-argument instructions

• All will be modifying something (i.e., +=, &=, ...)

5

Jumps

jmp foo

• Unconditional jump to foo
• foo is a label or memory address
• Need jmp* to use register value

Conditional jumps

• jl, jle, je, jne, jg, jge, ja, jb, js, jo

Unlike our Toy ISA, these do not compare given register to 0

6

Jumps

Condition codes - 1-bit registers set by every math operation, cmp, and
test

• Result for the operation compared to 0 (if no overflow)
• Example:
addq $-5, %rax
// ...code that doesn't set condition codes...
je foo

• Sets condition codes from doing math (subtract 5 from rax)
• Tells whether result was positive, negative, 0, if there was overflow, ...
• Then jump if the result of that operation should have been = 0

7

Jumps: compare and test

cmpq %rax, %rdx

• Compare checks result of -= and sets condition codes
• How rdx - rax compares with 0
• Be aware of ordering!

• if rax is bigger, sets < flag
• if rdx is bigger, sets > flag

testq %rax, %rdx

• Sets the condition codes based on rdx & rax
• Less common

Neither save their result, just set condition codes!
8

Example: Loops

while (i < 10)
i += 1

9

Functions

f(x,y):
...
...
return 4

...
z = f(2,5)

10

Function Calls

callq myfun

• Push return address to stack, then jump to myfun

retq

• Pop return address from stack and jump back

This is similar to our Toy ISA’s function calls in homework 4

11

Calling Conventions: Parameters

Calling conventions - recommendations for making function calls

• Where to put arguments/parameters for the function call?
• First 6 arguments (in order): rdi, rsi, rdx, rcx, r8, r9
• If more arguments, push onto stack (last to first)

• Where to put return value? in rax before calling retq
• What happens to values in the registers?

• Callee-save - The function should ensure the values in these registers are
unchanged when the function returns

• rbx, rsp, rbp, r12, r13, r14, r15
• Caller-save - Before making a function call, save the value, since the
function may change it

12

The Stack

pushq %rax
popq %rdx

13

example.s

13

Compilation Pipeline

Turning our code into something that runs

• Pipeline - a sequence of steps in which each builds off the last

14

Most Common Instructions

• mov - =
• lea - load effective address
• call - push PC and jump to address
• add - +=
• cmp - set flags as if performing subtract
• jmp - unconditional jump
• test - set flags as if performing &
• je - jump iff flags indicate == 0
• pop - pop value from stack
• push - push value onto stack
• ret - pop PC from the stack

15

