Assembly: x86-64, Back Doors

CS 2130: Computer Systems and Organization 1
October 14, 2022

Announcements

- Homework 5 due Wednesday 10/19 at 11pm
- Quiz 6 out tonight, due Monday at 8am

Functions

f(X,Y)i E'.

return 4 Y\O‘%

z ‘F(2,5) Oallg F

Function Calls

callg myfun

- Push return address to stack, then jump to myfun
retq

- Pop return address from stack and jump back

This is similar to our Toy ISA’s function calls in homework 4

Calling Conventions: Parameters

Calling conventions - recommendations for making function calls

- Where to put arguments/parameters for the function call?
- First 6 arguments (in order): rdi, rsi, rdx, rcx, r8, r9
- If more arguments, push onto stack (last to first)

- Where to put return value? in rax before calling retq

- What happens to values in the registers?
_- Callee-save - The function should ensure the values in these registers are
unchanged when the function returns

igaf.
- rbx, rsp, rbp, r12,r13, ri14, ri15
—_Caller-save - Before making a function call, save the value, since the
A function may change it RAk s
iy, § -
ot L
ey’ ~_ 4

The Stack

8.}5«\ | %o ex

pu% g ‘f/cirax

popq V,dx
_. L. M
P . P : . \ L#
Y
] [Degd) | okls
(%) ot “ e

example.s

example.s

.globl main rod], (7) j?of
FrilL. MI__ o *
movg $0, %rbp
condition: ;ﬂ 0
cmpq $42, %rbp — e — 1T
% Jg after

movq %rbp, %rsi
leaq [ftmtstring(%rip), %rdi
callq printf T
addq $1, %rbp
jmp condition

after:
xorl %eax, %eax
popq %rbp
retq

s fmtstring:

.asciz "i = %ld\n"

Compilation Pipeline

Turning our code into something that runs

- Pipeline - a sequence of steps in which each builds off the last

Qﬁla)ﬂ“'}

et s
C "' P(55"-"5171 —-\ G dse~fple ﬁ,& ,A\er_.-—- Py

Most Common Instructions

* mov - =

- lea - load effective address

- call - push PCand jump to address
- add - +=

- cmp - set flags as if performing subtract
- jmp - unconditional jump

- test - setflags as if performing &

-+ je - jump iff flags indicate ==

- pop - pop value from stack

- push - push value onto stack

- ret - pop PC from the stack

