
Assembly: x86-64, Back Doors

CS 2130: Computer Systems and Organization 1
October 14, 2022

Announcements

• Homework 5 due Wednesday 10/19 at 11pm
• Quiz 6 out tonight, due Monday at 8am

1

Functions

f(x,y):
...
...
return 4

...
z = f(2,5)

2

Function Calls

callq myfun

• Push return address to stack, then jump to myfun

retq

• Pop return address from stack and jump back

This is similar to our Toy ISA’s function calls in homework 4

3

Calling Conventions: Parameters

Calling conventions - recommendations for making function calls

• Where to put arguments/parameters for the function call?
• First 6 arguments (in order): rdi, rsi, rdx, rcx, r8, r9
• If more arguments, push onto stack (last to first)

• Where to put return value? in rax before calling retq
• What happens to values in the registers?

• Callee-save - The function should ensure the values in these registers are
unchanged when the function returns

• rbx, rsp, rbp, r12, r13, r14, r15
• Caller-save - Before making a function call, save the value, since the
function may change it

4

The Stack

pushq %rax
popq %rdx

5

example.s

5

example.s

.globl main
main:

pushq %rbp
movq $0, %rbp

condition:
cmpq $42, %rbp
jg after
movq %rbp, %rsi
leaq fmtstring(%rip), %rdi
callq printf
addq $1, %rbp
jmp condition

after:
xorl %eax, %eax
popq %rbp
retq

fmtstring:
.asciz "i = %ld\n" 6

Compilation Pipeline

Turning our code into something that runs

• Pipeline - a sequence of steps in which each builds off the last

7

Most Common Instructions

• mov - =
• lea - load effective address
• call - push PC and jump to address
• add - +=
• cmp - set flags as if performing subtract
• jmp - unconditional jump
• test - set flags as if performing &
• je - jump iff flags indicate == 0
• pop - pop value from stack
• push - push value onto stack
• ret - pop PC from the stack

8

