Assembly: x86-64, Back Doors

CS 2130: Computer Systems and Organization 1
October 14, 2022

Announcements

- Homework 5 due Wednesday 10/19 at 11pm
- Quiz 6 out tonight, due Monday at 8am

Functions

f(x,y)e ——————— l);

| |

return 4 ratq,

Z f(2,5) C.au(t -p

Function Calls

callg myfun

- Push return address to stack, then jump to myfun
retq

- Pop return address from stack and jump back

This is similar to our Toy ISA’s function calls in homework 4

Calling Conventions: Parameters

Calling conventions - recommendations for making function calls

- Where to put arguments/parameters for the function call?
- First 6 arguments (in order): rdi, rsi, rdx, rcx, r8, r9
- If more arguments, push onto stack (last to first)

- Where to put return value? in rax before calling retq

- What happens to values in the registers?
- Callee-save - The function should ensure the values in these registers are
unchanged when the function returns
- rbx, rsp, rbp, r12,r13, ri14, ri15
- Caller-save - Before making a function call, save the value, since the
function may change it

_— ru]\-.

i :._(-i(

The Stack

pushg’%rax
popq %rdx

0 LAt -3 DIRE
by S
P |'I r"‘} ravs oy o+ '
’ \

example.s

example.s

.globl main
main:

pushg %rbp

nmq $ G_)T%Ll?__p

condition: 0 _
cmpg $42, %rbp bp —H L
jg after

“movg %rbp,| %rsi
leaq fmtstring(%rip), %rgi

callg printf) _
addq $1' %I'bp K—) ?v\{’.gh":m) - Ui
jmp condition

after:

xorl %eax, %eax
popq %rbp
retq
fmtstring:
.asciz "i = %ld\n"

Compilation Pipeline

Turning our code into something that runs

- Pipeline - a sequence of steps in which each builds off the last

- bl-.aatd Lk | 'Q.OELJL.“L. o
C% FSStwa—i -—’w kia progen

]05)‘"((Qﬁﬁl "o\~

Most Common Instructions

* mov - =

- lea - load effective address

- call - push PCand jump to address
- add - +=

- cmp - set flags as if performing subtract
- jmp - unconditional jump

- test - setflags as if performing &

-+ je - jump iff flags indicate ==

- pop - pop value from stack

- push - push value onto stack

- ret - pop PC from the stack

