
C

CS 2130: Computer Systems and Organization 1
October 19, 2022



Announcements

• Homework 5 due tonight at 11pm
• Homework 6 due Monday at 11pm (binary bomb phases)

1



Our Hardware Backdoor

7



Our Hardware Backdoor

Will you notice this on your chip?

• Modern chips have billions of transistors
• We’re talking adding a few hundred transistors
• Maybe with a microscope? But you’d need to know where to look!

2



Our Hardware Backdoor

Will you notice this on your chip?

• Modern chips have billions of transistors
• We’re talking adding a few hundred transistors

• Maybe with a microscope? But you’d need to know where to look!

2



Our Hardware Backdoor

Will you notice this on your chip?

• Modern chips have billions of transistors
• We’re talking adding a few hundred transistors
• Maybe with a microscope? But you’d need to know where to look!

2



Our Hardware Backdoor

Have you heard about something like this before?

• Sounds like something from the movies
• People claim this might be happening
• To the best of my knowledge, no one has ever admitted to falling
in this trap

3



Our Hardware Backdoor

Have you heard about something like this before?

• Sounds like something from the movies

• People claim this might be happening
• To the best of my knowledge, no one has ever admitted to falling
in this trap

3



Our Hardware Backdoor

Have you heard about something like this before?

• Sounds like something from the movies
• People claim this might be happening

• To the best of my knowledge, no one has ever admitted to falling
in this trap

3



Our Hardware Backdoor

Have you heard about something like this before?

• Sounds like something from the movies
• People claim this might be happening
• To the best of my knowledge, no one has ever admitted to falling
in this trap

3



Ethics, Business, Tech

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!

• Ethical implications
• Business implications (lawsuits, PR, etc)

• Code reviews, double checks, verification systems, automated
verification systems, ...

4



Ethics, Business, Tech

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!
• Ethical implications
• Business implications (lawsuits, PR, etc)

• Code reviews, double checks, verification systems, automated
verification systems, ...

4



Ethics, Business, Tech

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!
• Ethical implications
• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?

• Code reviews, double checks, verification systems, automated
verification systems, ...

4



Ethics, Business, Tech

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!
• Ethical implications
• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?

• Code reviews, double checks, verification systems, automated
verification systems, ...

4



Why does this work?

4



Why?

Why does this work?

• It’s all bytes!
• Everything we store in computers are bytes
• We store code and data in the same place: memory

5



Now back to compilation and C

5



C

C is a thin wrapper around assembly

• This is by design!
• Invented to write an operating system

• Can write inline assembly in C

• Many other languages decided to look like C

6



Simple C Example

int main() {
int y = 5;
return 0;

}

7



Compilation Pipeline

Earlier, we saw:

• C files (.c) compiled to assembly (.s)
• Assembly (.s) assembled into object files (.o)
• Object files (.o) linked into a program / executable

8



Compiling C to Assembly

Multiple stages to compile C to assembly

• Preprocess - produces C
• C is actually implemented as 2 languages:
C preprocessor language, C language

• Removes comments, handles preprocessor directives (#)
• #include, #define, #if, #else, ...

• Lex - breaks input into individual tokens
• Parse - assembles tokens into intended meaning (parse tree)
• Type check - ensures types match, adds casting as needed
• Code generation - creates assembly from parse tree

9



Compiling C to Assembly

10



Compiling C to Assembly

11



Errors

Compile-time errors

• Errors we can catch during compilation (this process)
• Before running our program

Runtime errors

• Errors that occur when running our programs

12



Simple C Example

int main() {
return 0;

}

The main function

• Start running the main() function
• main must return an integer - exit code

• 0 = everything went okay
• Anything else = something went wrong

• There should be arguments to main

13



Example

13


