CS 2130: Computer Systems and Organization 1
October 19, 2022

Announcements

- Homework 5 due tonight at 11pm
- Homework 6 due Monday at 11pm (binary bomb phases)

Our Hardware Backdoor

r-\mlll\[u") q@fb"&

leu\‘::\l&]ﬂﬁm]““ ’—1

e N—

?‘-!5(_3}1&- f’fbjl'_kh
et F |
I("},b adl c:""‘Yﬁ

Our Hardware Backdoor

Will you notice this on your chip?

Our Hardware Backdoor

Will you notice this on your chip?

- Modern chips have billions of transistors
- We're talking adding a few hundred transistors

Our Hardware Backdoor

Will you notice this on your chip?

- Modern chips have billions of transistors
- We're talking adding a few hundred transistors
- Maybe with a microscope? But you’'d need to know where to [0OR!

Our Hardware Backdoor

Have you heard about something like this before?

Our Hardware Backdoor

Have you heard about something like this before?

- Sounds like something from the movies

Our Hardware Backdoor

Have you heard about something like this before?

- Sounds like something from the movies
- People claim this might be happening

Our Hardware Backdoor

Have you heard about something like this before?

- Sounds like something from the movies
- People claim this might be happening

- To the best of my knowledge, no one has ever admitted to falling
In this trap

Ethics, Business, Tech

Are there reasons to do this? Not to do this?

- No technical reason not to, it's easy to do!

Ethics, Business, Tech

Are there reasons to do this? Not to do this?

- No technical reason not to, it's easy to do!
- Ethical implications
- Business implications (lawsuits, PR, etc)

Ethics, Business, Tech

Are there reasons to do this? Not to do this?

- No technical reason not to, it's easy to do!
- Ethical implications
- Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can't break it?

Ethics, Business, Tech

Are there reasons to do this? Not to do this?

- No technical reason not to, it's easy to do!
- Ethical implications
- Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can't break it?

- Code reviews, double checks, verification systems, automated
verification systems, ...

Why does this work?

Why does this work?

- It's all bytes!
- Everything we store in computers are bytes
- We store code and data in the same place: memory

Now back to compilation and C

C is a thin wrapper around assembly

- This is by design!
- Invented to write an operating system
- Can write inline assembly in C

- Many other languages decided to look like C

Simple C Example

int main() {
int y = 5;
return 0;

Compilation Pipeline

Earlier, we saw:

. C files (. c) compiled to assembly (. s)
- Assembly (. s) assembled into object files (. 0)
- Object files (. 0) linked into a program / executable

Compiling C to Assembly

Multiple stages to compile C to assembly

- Preprocess - produces C

- Cis actually implemented as 2 languages:
C preprocessor language, C language
- Removes comments, handles preprocessor directives (#)
- #include, #define, #if, #telse, ..
- Lex - breaks input into individual tokens
- Parse - assembles tokens into intended meaning (parse tree)
- Type check - ensures types match, adds casting as needed

- Code generation - creates assembly from parse tree

Compiling C to Assembly

. e
K ind Tos0) L S
int QMO { " C; >) 5,1.;‘,{“7‘ /\’“47 R ‘ fq:m
l\ P ot £ R e > x W
f;‘;_oh"'\v‘* (reqro=y) >) i AN chetke)
| el X2, rehin xxt e (a% % 3
3 5 A r
. _____j = e
T 3 N
c [. o -
/
refm
£
%
T
;
S
2.3 <<
L ++
K-J r
e

Compiling C to Assembly

Clmu?. ?‘,‘

l}H— =G = - L b
Lﬁ ’ /|| C\!\ e

x=y S P

1

Errors

Compile-time errors

- Errors we can catch during compilation (this process)
- Before running our program

Runtime errors

- Errors that occur when running our programs

Simple C Example

int main() {
return 0;

The main function

- Start running the main() function
- mailn must return an integer - exit code

- 0 = everything went okay
- Anything else = something went wrong

- There should be arguments to main

13

Example

