
Exam Review

CS 2130: Computer Systems and Organization 1
November 2, 2022



Announcements

• Exam 2 Friday (in class)
• Closed book, closed notes, closed neighbor, closed internet, closed
smart-watch

• Please bring pen or pencil, we will have scratch paper if needed
• For SDAC accommodations, please schedule a time with their testing center
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Struct Example

typedef struct {
long x;
long y;
long *array;
long length;

} foo;
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Struct Example

long sum2(foo *arg) {
long ans = arg->x;
for(long i = 0; i < arg->length; i += 1)

ans += arg->y * arg->array[i];
return ans;

}

sum2:
movq (%rdi), %rax
movq 24(%rdi), %r8
testq %r8, %r8
jle .LBB1_3
movq 8(%rdi), %rdx
movq 16(%rdi), %rsi
xorl %edi, %edi

.LBB1_2:
movq (%rsi,%rdi,8), %rcx
imulq %rdx, %rcx
addq %rcx, %rax
incq %rdi
cmpq %rdi, %r8
jne .LBB1_2

.LBB1_3:
retq
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Struct Example

long sum1(foo arg) {
long ans = arg.x;
for(long i = 0; i < arg.length; i += 1)

ans += arg.y * arg.array[i];
return ans;

}

sum1:
movq 8(%rsp), %rax
movq 32(%rsp), %r8
testq %r8, %r8
jle LBB0_3
movq 16(%rsp), %rdx
movq 24(%rsp), %rsi
xorl %edi, %edi

.LBB0_2:
movq (%rsi,%rdi,8), %rcx
imulq %rdx, %rcx
addq %rcx, %rax
incq %rdi
cmpq %rdi, %r8
jne .LBB0_2

.LBB0_3:
retq
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Topics

So far, we have discussed

• Instruction Set Architectures (ISAs)
• Endianness
• The Stack
• Backdoors
• Patents vs Copyrights
• x86-64 Assembly
• C (compilation, how connects to Assembly, writing C)
• Not included: structs
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Instruction Set Architecture

Backwards compatibility

• Include flexibility to add additional instructions later
• Original instructions will still work
• Same program can be run on PC from 10+ years ago and new PC
today

Most manufacturers choose an ISA and stick with it

• Notable Exception: Apple

7



Our Instruction Set Architecture

What about our ISA?

• Enough instructions to compute what we need
• As is, lot of things that are painful to do

• This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)
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The Stack

Stack - a last-in-first-out (LIFO) data structure

• The solution for solving this problem

rsp - Special register - the stack pointer

• Points to a special location in memory
• Two operations most ISAs support:

• push - put a new value on the stack
• pop - return the top value off the stack
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The Stack: Push and Pop

push r0

• Put a value onto the “top” of the stack
rsp -= 1
M[rsp] = r0

pop r2

• Read value from “top”, save to register
r2 = M[rsp]
rsp += 1
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Patents and Copyright

Copyright

• “Everyone is a copyright owner. Once you create an original work
and fix it, like taking a photograph, writing a poem or blog, or
recording a new song, you are the author and the owner.”

from https://www.copyright.gov/what-is-copyright/

Patent

• “Whoever invents or discovers any new and useful process,
machine, manufacture, or composition of matter, or any new and
useful improvement thereof, may obtain a patent therefor, subject
to the conditions and requirements of this title.”

from 35 U.S.C. 101
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Patents

In software and hardware, patents become messy

• Code is a description of a process we want the computer to do
• Do not have to implement the process to patent it

Question: Should we patent something like our ISA?
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Patents

In software and hardware, patents become messy

• Code is a description of a process we want the computer to do
• Do not have to implement the process to patent it

Question: Should we patent something like our ISA?

What is the current state of the art?
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Common Approaches to Software

How can we get value from what we create?

• Copyright - distribute closed source software
• License Agreements (in contract law)
• Always innovate
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Backdoors

Backdoor: secret way in to do new unexpected things

• Get around the normal barriers of behavior
• Ex: a way in to allow me to take complete control of your computer

Exploit - a way to use a vulnerability or backdoor that has been created

• Our exploit today: a malicious payload
• A passcode and program
• If it ever gets in memory, run my program regardless of what you want to do
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Our Hardware Backdoor

Our backdoor will have 2 components

• Passcode: need to recognize when we see the passcode
• Program: do something bad when I see the passcode
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Our Hardware Backdoor
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Our Hardware Backdoor

Will you notice this on your chip?

• Modern chips have billions of transistors
• We’re talking adding a few hundred transistors
• Maybe with a microscope? But you’d need to know where to look!
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Our Hardware Backdoor

Have you heard about something like this before?

• Sounds like something from the movies
• People claim this might be happening
• To the best of my knowledge, no one has ever admitted to falling
in this trap
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Ethics, Business, Tech

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!

• Ethical implications
• Business implications (lawsuits, PR, etc)

• Code reviews, double checks, verification systems, automated
verification systems, ...
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Ethics, Business, Tech

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!
• Ethical implications
• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?

• Code reviews, double checks, verification systems, automated
verification systems, ...
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Ethics, Business, Tech

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!
• Ethical implications
• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?

• Code reviews, double checks, verification systems, automated
verification systems, ...
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Why?

Why does this work?

• It’s all bytes!
• Everything we store in computers are bytes
• We store code and data in the same place: memory
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64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access?
• Late 70s - 16 bits:
• 80s - 32 bits:
• Today’s processors - 64 bits:
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• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes

• 80s - 32 bits:
• Today’s processors - 64 bits:
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64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits: ≈ 4 billion bytes
• Today’s processors - 64 bits: 264 addresses
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Aside: Powers of Two

Powers of Two
Value base-10 Short form Pronounced
210 1024 Ki Kilo
220 1,048,576 Mi Mega
230 1,073,741,824 Gi Giga
240 1,099,511,627,776 Ti Tera
250 1,125,899,906,842,624 Pi Peta
260 1,152,921,504,606,846,976 Ei Exa

Example: 227 bytes

22



Aside: Powers of Two

Powers of Two
Value base-10 Short form Pronounced
210 1024 Ki Kilo
220 1,048,576 Mi Mega
230 1,073,741,824 Gi Giga
240 1,099,511,627,776 Ti Tera
250 1,125,899,906,842,624 Pi Peta
260 1,152,921,504,606,846,976 Ei Exa

Example: 227 bytes = 27 × 220 bytes

22



Aside: Powers of Two

Powers of Two
Value base-10 Short form Pronounced
210 1024 Ki Kilo
220 1,048,576 Mi Mega
230 1,073,741,824 Gi Giga
240 1,099,511,627,776 Ti Tera
250 1,125,899,906,842,624 Pi Peta
260 1,152,921,504,606,846,976 Ei Exa

Example: 227 bytes = 27 × 220 bytes = 27 MiB = 128 MiB
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64-bit Machines

How much can we address with 64-bits?

• 16 EiB (264 addresses = 24 × 260)
• But I only have 8 GiB of RAM
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A Challenge

There is a disconnect:

• Registers: 64-bits values
• Memory: 8-bit values (i.e., 1 byte values)

• Each address addresses an 8-bit value in memory
• Each address points to a 1-byte slot in memory

• How do we store a 64-bit value in an 8-bit spot?
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Rules

Rules to break “big values” into bytes (memory)

1. Break it into bytes
2. Store them adjacently
3. Address of the overall value = smallest address of its bytes
4. Order the bytes

• If parts are ordered (i.e., array), first goes in smallest address
• Else, hardware implementation gets to pick (!!)

• Little-endian
• Big-endian
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Ordering Values

Little-endian

• Store the low order part/byte first
• Most hardware today is little-endian

Big-endian

• Store the high order part/byte first
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Example

Store [0x1234, 0x5678] at address 0xF00
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Assembly

Features of assembly

• Automatic addresses - use labels to keep track of addresses
• Assembler will remember location of labels and use where appropriate
• Labels will not exist in machine code

• Metadata - data about data
• Data that helps turn assembly into code the machine can use

• As complicated as machine instructions (like we have been
writing)

• There are a lot of instructions, and it is one-to-one!
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Assembly Languages

There are many assembly languages

• But, they’re backed by hardware!
• Two big ones these days: x86-64 and ARM

• You likely have machines that use one of these

• Others: RISC-V, MIPS, ...

We will focus on x86-64
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x86-64

x86-64 has a weird and long history

• Expansion of the 8086 series (Intel)
• 8086, 8286, 8386, 8486, x86

• AMD expanded it with AMD64
• Intel decide to use same build, but called it x86-64
• Backwards compatible with the 8086 series
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x86-64

Two dialects - two ways to write the same thing

• Intel - likely using with Windows
mov QWORD PTR [rdx+0x227],rax

• AT&T - likely using with anything else
movq %rax,0x227(%rdx)

We will use AT&T dialect
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AT&T x86-84 Assembly

instruction source, destination

• Instruction followed by 0 or more operands (arguments)
• 4 types of operands:

• Number (immediate value): $0x123
• Register: %rax
• Address of memory: (%rax) or 24 or labelname
• Value at an address in memory: (%rax) or 24 or labelname

mylabelname:

• Label - remember the address of next thing to use later
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AT&T x86-84 Assembly

.something something

• Metadirective - extra information that is not code
• How the code works with other things (i.e., talk to OS)
• Ex: .globl main

// we can have comments!
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Addressing Memory

2130(%rax, %rsp, 8)

• Address can have up to 4 parts: 2 numbers, 2 registers
• Combines as: 2130 + %rax + (%rsp * 8)
• Common usage from this example:

• rax - address of an object in memory
• 2130 - offset of an array into the object
• rsp - index into the array
• 8 - size of the values in the array

• Don’t need all parts: (%rax) or (%rax, 4) or 4(%rax)
• This is all one operand (one memory address)
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Registers

rax is a 64-bit register
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Instructions

Instructions have different versions depending on number of bits to
use

• movq - 64-bit move
• q = quad word

• movl - 32-bit move
• l = long

• There are encodings for shorter things, but we will mostly see 32-
and 64-bit
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More powerful than our ISA

Instructions can move/operate between memory and register

• movq %rax, %rcx - register to register
• Remember our icode 0

• movq (%rax), %rcx - memory to register
• Remember our icode 3

• movq %rax, (%rcx) - register to memory
• Remember our icode 4

• movq $21, %rax - Immediate to register
• Remember our icode 6 (b=0)

Note: at most one memory address per instruction
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Other Instructions

Other instructions work the same way

• addq %rax, %rcx — rcx += rax
• subq (%rbx), %rax — rax -= M[rbx]
• xor, and, and others work the same way!
• Assembly has virtually no 3-argument instructions

• All will be modifying something (i.e., +=, &=, ...)
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Jumps

jmp foo

• Unconditional jump to foo
• foo is a label or memory address
• Need jmp* to use register value

Conditional jumps

• jl, jle, je, jne, jg, jge, ja, jb, js, jo

Unlike our Toy ISA, these do not compare given register to 0
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Jumps

Condition codes - 4 1-bit registers set by every math operation, cmp,
and test

• Result for the operation compared to 0 (if no overflow)
• Example:
addq $-5, %rax
// ...code that doesn't set condition codes...
je foo

• Sets condition codes from doing math (subtract 5 from rax)
• Tells whether result was positive, negative, 0, if there was overflow, ...
• Then jump if the result of that operation should have been = 0
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Jumps: compare and test

cmpq %rax, %rdx

• Compare checks result of -= and sets condition codes
• How rdx - rax compares with 0
• Be aware of ordering!

• if rax is bigger, sets < flag
• if rdx is bigger, sets > flag

testq %rax, %rdx

• Sets the condition codes based on rdx & rax
• Less common

Neither save their result, just set condition codes!
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Example: Loops

while (i < 10)
i += 1
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Functions

f(x,y):
...
...
return 4

...
z = f(2,5)
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Function Calls

callq myfun

• Push return address to stack, then jump to myfun

retq

• Pop return address from stack and jump back

This is similar to our Toy ISA’s function calls in homework 4
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Calling Conventions: Parameters

Calling conventions - recommendations for making function calls

• Where to put arguments/parameters for the function call?
• First 6 arguments (in order): rdi, rsi, rdx, rcx, r8, r9
• If more arguments, push onto stack (last to first)

• Where to put return value? in rax before calling retq
• What happens to values in the registers?

• Callee-save - The function should ensure the values in these registers are
unchanged when the function returns

• rbx, rsp, rbp, r12, r13, r14, r15
• Caller-save - Before making a function call, save the value, since the
function may change it

45



The Stack

pushq %rax
popq %rdx
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Compilation Pipeline

Turning our code into something that runs

• Pipeline - a sequence of steps in which each builds off the last
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Most Common Instructions

• mov - =
• lea - load effective address
• call - push PC and jump to address
• add - +=
• cmp - set flags as if performing subtract
• jmp - unconditional jump
• test - set flags as if performing &
• je - jump iff flags indicate == 0
• pop - pop value from stack
• push - push value onto stack
• ret - pop PC from the stack
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C

C is a thin wrapper around assembly

• This is by design!
• Invented to write an operating system

• Can wirte inline assembly in C

• Many other languages decided to look like C
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Compilation Pipeline

Earlier, we saw:

• C files (.c) compiled to assembly (.s)
• Assembly (.s) assembled into object files (.o)
• Object files (.o) linked into a program / executable
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Compiling C to Assembly

Multiple stages to compile C to assembly

• Preprocess - produces C
• C is actually implemented as 2 languages:
C preprocessor language, C language

• Removes comments, handles preprocessor directives (#)
• #include, #define, #if, #else, ...

• Lex - breaks input into individual tokens
• Parse - assembles tokens into intended meaning (parse tree, AST)
• Type check - ensures types match, adds casting as needed
• Code generation - creates assembly from parse tree
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Errors

Compile-time errors

• Errors we can catch during compilation (this process)
• Before running our program

Runtime errors

• Errors that occur when running our programs
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Simple C Example

int main() {
return 0;

}

The main function

• Start running the main() function
• main must return an integer - exit code

• 0 = everything went okay
• Anything else = something went wrong

• There should be arguments to main
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Data Types in C

Integer data types

• char
• short
• int
• long
• long long

Each has 2 versions: signed and unsigned
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Data Types in C

Floating point

• float
• double
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Data Types in C

• Hold the address of a position in memory
• Need to know the kind of information stored at that location
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Data Types in C

Pointers - how C uses addresses!
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• Need to know the kind of information stored at that location
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Example

int main() {
int x = 3;
long y = 4;
int *a = &x;
long *b = &y;
long z = *a;
int w = *b;
return 0;

}
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Example

int main() {
int x = 3;
long y = 4;
int *a = &x;
long *b = &y;
long z = *a;
int w = *b;
return 0;

}

0000000000000000 <main>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: 31 c0 xor %eax,%eax
6: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
d: c7 45 f8 03 00 00 00 movl $0x3,-0x8(%rbp)
14: 48 c7 45 f0 04 00 00 movq $0x4,-0x10(%rbp)
1b: 00
1c: 48 8d 4d f8 lea -0x8(%rbp),%rcx
20: 48 89 4d e8 mov %rcx,-0x18(%rbp)
24: 48 8d 4d f0 lea -0x10(%rbp),%rcx
28: 48 89 4d e0 mov %rcx,-0x20(%rbp)
2c: 48 8b 4d e8 mov -0x18(%rbp),%rcx
30: 48 63 09 movslq (%rcx),%rcx
33: 48 89 4d d8 mov %rcx,-0x28(%rbp)
37: 48 8b 4d e0 mov -0x20(%rbp),%rcx
3b: 48 8b 09 mov (%rcx),%rcx
3e: 89 4d d4 mov %ecx,-0x2c(%rbp)
41: 5d pop %rbp
42: c3 retq
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Example

Swap Example

void swap(int *a, int *b) {
int tmp = *a;
*a = *b;
*b = tmp;

}
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Pointers

• All pointers are the same size: address size in underlying ISA
• Two special int types (defined using typedef)

• size_t - integer the size of a pointer (unsigned)
• ssize_t - integer the size of a pointer (signed)
• With our compiler and ISA, these are both variants of long
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Pointers and Arrays

*x and x[0] are equivalent

• Pointer to single value and pointer to first value in array
• Treat array as pointer to the first value (lowest address)
• Indexing into array: x[n] and *(x+n)

• If x is an int *, then x+1 points to next int in memory
• Adding 1 to pointer adds sizeof() the type we’re pointing to
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Pointers and Arrays

Consider: int **a
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Pointers

Consider the following code:

int x = 10;
int *y = &x;
int *z = y + 2;
long w = ((long)z) - ((long)y);

Why is w = 8?
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Arrays

Array: 0 or more values of same type stored contiguously in memory

• Declare as you would use: int myarr[100];
• sizeof(myarr) = 400 — 100 4-byte integers
• myarr treated as pointer to first element
• Can declare array literals:
int y[5] = {1, 1, 2, 3, 5}
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Other Types and Values

• Literal values - integer literals are implicitly cast
• unsigned long very_big = 9223372036854775808uL
• u for unsigned, L for long

• enum - named integer constants (in ascending order)
• enum { a, b, c, d=100, e };
int foo = e;

• void - a byte with no meaning or ”nothing”
• Pointers: void *p
• Return values: void myfunction();

• Casting - changing type, converting
• Integer: zero- or sign-extend or truncate to space
• Int to float: convert to nearby representable value
• Float to int: truncate remainder (no rounding)
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Structures

struct - Structures in C
• Act like Java classes, but no methods
and all public fields

• Stores fields adjacently in memory
(but may have padding)

• Compiler determines padding, use
sizeof() to get size

• Name of the resulting type includes
word struct

struct foo {
long a;
int b;
short c;
char d;

};

struct foo x;
x.b = 123;
x.c = 4;
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Structure Literals

struct a {
int b;
double c;

};

/* Both of the following initialize b to 0 and c to 1.0 */
struct a x = { 0, 1.0 };
struct a y = { .b = 0, .c = 1.0 };
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typedef

typedef - give new names to any type!

• Fairly common to see several names for same data type to convey
intent

• Ex: unsigned long may be size_t when used in sizes
• Examples:
typedef int Integer;
Integer x = 4;
typedef double ** dpp;

• Used with anonymous structs:
typedef struct { int x; double y; } foo;
foo z = { 42, 17.4 };
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