
Dynamic Memory
Allocation:

Basic Concepts

Today

• Basic concepts
• Implicit free lists

Memory Layout

Dynamic Memory Allocation
• Allocator maintains heap as collection of variable

sized blocks, which are either allocated or free
• Types of allocators
• Explicit allocator: application allocates and frees space

• E.g., malloc and free in C
• Implicit allocator: application allocates, but does not

free space
• E.g. garbage collection in Java, and Lisp

• Will discuss simple explicit memory allocation
today

The malloc Package
#include <stdlib.h>

void* *malloc(size_t size)

• Successful:
• Returns a pointer to a memory block of at least size bytes

aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
• If size == 0, returns NULL

• Unsuccessful: returns NULL (0) and sets errno
void* free(void *p)

• Returns the block pointed at by p to pool of available memory
• p must come from a previous call to malloc or realloc

Other functions
• calloc: Version of malloc that initializes allocated block to

zero.
• realloc: Changes the size of a previously allocated block.
• sbrk: Used internally by allocators to grow or shrink the heap

Example (Anti Pattern)
#include <stdio.h>
#include <stdlib.h>
#define MAXN 15213

int array[MAXN]

int main(){
int i, n;
scanf("%d, &n);
If (n > MAXN){

app_error("Input file too big");
}
for(i = 0; i <n; i++){

scanf("%d". &array[i]);
}

}

Example (Anti Pattern)
#include <stdio.h>
#include <stdlib.h>

int main(){
Int *array, i, n;
scanf("%d, &n);
array = (int *) Malloc(n*sizeof(int));
for(i = 0; i <n; i++){

scanf("%d". &array[i]);
}

}

Assumptions Made in This Lecture

• Memory is word addressed.
• Words are int-sized.

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

malloc Example
#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return allocated block to the heap */
free(p);

}

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

• i.e., can only place allocated blocks in free memory
• Must align blocks so they satisfy all alignment requirements

• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes
• Can manipulate and modify only free memory
• Can’t move the allocated blocks once they are malloc’d

• i.e., compaction is not allowed

Fragmentation

• Poor memory utilization caused by fragmentation
• internal fragmentation
• external fragmentation

Internal Fragmentation
• For a given block, internal fragmentation occurs if payload is smaller

than block size

• Caused by
• Overhead of maintaining heap data structures
• Padding for alignment purposes
• Explicit policy decisions

(e.g., to return a big block to satisfy a small request)

• Depends only on the pattern of previous requests
• Thus, easy to measure

Payload Internal
fragmentation

Block

Internal
fragmentation

External Fragmentation

• Occurs when there is enough aggregate heap
memory, but no single free block is large enoughp1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

Implementation Issues

• How do we know how much memory to free given
just a pointer?

• How do we keep track of the free blocks?

• What do we do with the extra space when
allocating a structure that is smaller than the free
block it is placed in?

• How do we pick a block to use for allocation --
many might fit?

Knowing How Much to Free

• Standard method
• Keep the length of a block in the word preceding the

block.
• This word is often called the header field or header

• Requires an extra word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size payload

5

Keeping Track of Free Blocks
• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using
pointers

5 4 26

5 4 26

