Binary Arithmetic

CS 2130: Computer Systems and Organization 1 August 31, 2022

Announcements

- Quiz 0 due Friday at 5pm (when Quiz 1 opens)
- TA office hours start tonight!
 - In-person: Olsson 001, Wed-Sun, 5-7pm
 - Online: Discord, Wed-Sun, varies
 - \cdot Office hour page has been updated
- My office hours start Thursday!
 - Tuesday, 4-5pm, Discord/Zoom
 - Wednesday, 4:30-6pm, Rice 210 (masks requested)
 - Thursday, 11am-12pm, Discord/Zoom
- Lab 1 late check-off through Monday
- Covid-19 make-up policies: stay home, check-off lab later

From our oldest cultures, how do we mark numbers?

- Arabic numerals
 - Positional numbering system

From our oldest cultures, how do we mark numbers?

- Arabic numerals
 - Positional numbering system
 - The **10** is significant:
 - 10 symbols, using 10 as base of exponent

From our oldest cultures, how do we mark numbers?

- Arabic numerals
 - Positional numbering system
 - The 10 is significant:
 - 10 symbols, using 10 as base of exponent
 - The **10** is arbitrary
 - We can use other bases! $\pi, 2130, 2, \ldots$

Base-8 Example

2 8 8 Try to turn 134_8 into base-10:

9/

О

We will discuss a few in this class

- Base-10 (decimal) talking to humans
- Base-8 (octal) shows up occasionally
- Base-2 (binary) most important! (we've been discussing 2 things!)
- Base-16 (hexadecimal) nice grouping of bits

2 digits: 0, 1

64+32+4+1 =101

Binary

Any downsides to binary? Turn 2130₁₀ into base-2: hint: find largest power of 2 and subtract

100001010010

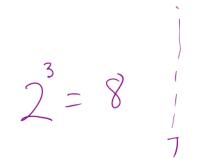
• Group them by 3 (right to left)

- Group them by 3 (right to left)
- \cdot In decimal, use commas: ,
- Numbers between commas: 000 999

- Group them by 3 (right to left)
- In decimal, use commas: ,
- Numbers between commas: 000 999
- Effectively base-1000

Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas *Why*?

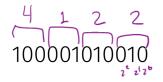


Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?
- We can use a separate symbol per group
- How many do we need for groups of 3?

Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?
- We can use a separate symbol per group
- How many do we need for groups of 3? \Im
- Turn each group into decimal representation



Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?
- We can use a separate symbol per group
- How many do we need for groups of 3?
- Turn each group into decimal representation
- Converts binary to **octal**

Making binary more readable

- \cdot Groups of 4 more common
- How many symbols do we need for groups of 4?

Making binary more readable

- \cdot Groups of 4 more common
- How many symbols do we need for groups of 4?
- Converts binary to hexadecimal
- Base-16 is very common in computing

Hexadecimal

Need more than 10 digits. What next?

$$\frac{8421}{1110} = e_{10}$$

$$q = 10$$

 $b = 11$
 $c = 12$
 $d = 13$
 $e = 14$
 $f = 15$

Consider the following hexadecimal number:

Is it even or odd?

	Old Languages	New Languages
binary	No Way	06 100101
octal	0235	00 235
decimal	2130	2130
hexadecimal	0x 43a	0×43a

Negative Integers

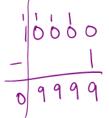
Negative Integers

Representing negative integers

• Can we use the minus sign?

- 256 - 101011

- Can we use the minus sign?
- In binary we only have 2 symbols, must do something else!
- Almost all hardware uses the following observation:



Negative Integers

- Computers store numbers in fixed number of wires
- Ex: consider 4-digit decimal numbers

Negative Integers

- Computers store numbers in fixed number of wires
- Ex: consider 4-digit decimal numbers
- Throw away the last borrow:
 - 0000 0001 = 9999
 - 9999 0001 = 9998
 - Normal subtraction/addition still works

- Computers store numbers in fixed number of wires
- Ex: consider 4-digit decimal numbers
- Throw away the last borrow:
 - 0000 0001 = 9999
 - 9999 0001 = 9998
 - Normal subtraction/addition still works
- \cdot This works the same in binary |

Two's Complement

This scheme is called Two's Complement

- More generically, a *signed* integer
- There is a break as far away from 0 as possible
- First bit acts vaguely like a minus sign
- Works as long as we do not pass number too large to represent

