Binary Arithmetic

CS 2130: Computer Systems and Organization 1 August 31, 2022

Announcements

- Quiz 0 due Friday at 5pm (when Quiz 1 opens)
- TA office hours start tonight!
 - · In-person: Olsson 001, Wed-Sun, 5-7pm
 - · Online: Discord, Wed-Sun, varies
 - · Office hour page has been updated
- My office hours start Thursday!
 - Tuesday, 4-5pm, Discord/Zoom
 - Wednesday, 4:30-6pm, Rice 210 (masks requested)
 - Thursday, 11am-12pm, Discord/Zoom
- · Lab 1 late check-off through Monday
- Covid-19 make-up policies: stay home, check-off lab later

Numbers

From our oldest cultures, how do we mark numbers?

- Arabic numerals
 - Positional numbering system

Numbers

From our oldest cultures, how do we mark numbers?

- Arabic numerals
 - Positional numbering system
 - The **10** is significant:
 - 10 symbols, using 10 as base of exponent

Numbers

From our oldest cultures, how do we mark numbers?

- Arabic numerals
 - Positional numbering system
 - The **10** is significant:
 - 10 symbols, using 10 as base of exponent
 - The 10 is arbitrary
 - We can use other bases! π , 2130, 2, ...

Base-8 Example

48 8 2 1 8

Try to turn 134_{18} into base-10:

$$[.8^{2} + 3.8] + 4.8^{\circ}$$

 $[.64 + 3.8 + 4] = 92_{10}$

Bases

We will discuss a few in this class

- Base-10 (decimal) talking to humans
- · Base-8 (octal) shows up occasionally
- Base-2 (binary) most important! (we've been discussing 2 things!)
- · Base-16 (hexadecimal) nice grouping of bits

Binary

2 digits: <u>0, 1</u>

Try to turn 1100101_2 into base-10:

$$64 + 32 + 4 + 1 = 101$$

Binary

Any downsides to binary?

Turn 2130_{10} into base-2: hint: find largest power of 2 and subtract

$$\begin{array}{r}
 2130 \\
 -2048 \\
 \hline
 0082
 \end{array}
 = 2"
 \\
 \hline
 18 \\
 -16 \\
 \hline
 2 \\
 -7 \\
 \end{array}$$

How do we deal with numbers too long to read?

How do we deal with numbers too long to read?

Group them by 3 (right to left)

How do we deal with numbers too long to read?

- Group them by 3 (right to left)
- · In decimal, use commas: ,
- · Numbers between commas: 000 999

How do we deal with numbers too long to read?

- Group them by 3 (right to left)
- · In decimal, use commas: ,
- · Numbers between commas: 000 999
- Effectively base-1000

Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?

Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?
- We can use a separate symbol per group
- How many do we need for groups of 3?

$$2^{2} 2^{1} 2^{0}$$
 $0 | 0 = 2$
 $+2^{2} 2^{1} 2^{0}$
 $| 0 0 = 4$

Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?
- · We can use a separate symbol per group
- How many do we need for groups of 3?
- Turn each group into decimal representation

100001010010

Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?
- · We can use a separate symbol per group
- How many do we need for groups of 3?
- Turn each group into decimal representation
- Converts binary to octal

Making binary more readable

- Groups of 4 more common
- How many symbols do we need for groups of 4? 16

100001010010

Making binary more readable

- · Groups of 4 more common
- How many symbols do we need for groups of 4? 16
- Converts binary to hexadecimal
- Base-16 is very common in computing

Hexadecimal

Need more than 10 digits. What next?

```
C=12
e = 14
f = 15
```

Hexadecimal Exercise

Consider the following hexadecimal number:

Is it even or odd?

Using Different Bases in Code

	Old Languages	New Languages
binary	no way	06101001
octal	0273	0.273
decimal	2130	2130
hexadecimal	0x 42a	0x 42a

Representing negative integers

• Can we use the minus sign?

- · Can we use the minus sign?
- In binary we only have 2 symbols, must do something else!
- · Almost all hardware uses the following observation:

- Computers store numbers in fixed number of wires
- Ex: consider 4-digit decimal numbers

- Computers store numbers in fixed number of wires
- Ex: consider 4-digit decimal numbers
- Throw away the last borrow:
 - · 0000 0001 = 9999
 - · 9999 0001 = 9998
 - Normal subtraction/addition still works

- Computers store numbers in fixed number of wires
- Ex: consider 4-digit decimal numbers
- Throw away the last borrow:
 - · 0000 0001 = 9999
 - · 9999 0001 = 9998
 - Normal subtraction/addition still works
- This works the same in binary

Two's Complement

This scheme is called **Two's Complement**

- More generically, a signed integer
- There is a break as far away from 0 as possible
- First bit acts vaguely like a minus sign
- Works as long as we do not pass number too large to represent

