
Binary Arithmetic

CS 2130: Computer Systems and Organization 1
September 2, 2022



Announcements

• Quiz 0 due tonight at 5pm (when Quiz 1 opens)
• Quiz 1 opens at 5pm (due Monday at 8am)
• Lab 1 late check-off through Monday
• TA office hours start tonight!

• In-person: Olsson 001, Wed-Sun, 5-7pm
• Online: Discord, Wed-Sun, varies
• Discord is now available

• My office hours
• Tuesday, 4-5pm, Discord/Zoom
• Wednesday, 4:30-6pm, Rice 210 (masks requested)
• Thursday, 11am-12pm, Discord/Zoom

1



Negative Integers

Representing negative integers

• Can we use the minus sign?
• In binary we only have 2 symbols, must do something else!
• Almost all hardware uses the following observation:

2



Negative Integers

Representing negative integers

• Computers store numbers in fixed number of wires
• Ex: consider 4-digit decimal numbers
• Throw away the last borrow:

• 0000 - 0001 = 9999
• 9999 - 0001 = 9998
• Normal subtraction/addition still works

• This works the same in binary

3



Two’s Complement

This scheme is called Two’s Complement

• More generically, a signed
integer

• There is a break as far away
from 0 as possible

• First bit acts vaguely like a
minus sign

• Works as long as we do not
pass number too large to
represent

4



Questions?

4



Two’s Complement

5



Values of Two’s Complement Numbers

Consider the following 8-bit binary number in Two’s Complement:

11010011

What is its value in decimal?

1. Flip all bits
2. Add 1

6



Values of Two’s Complement Numbers

Consider the following 8-bit binary number in Two’s Complement:

11010011

What is its value in decimal?

1. Flip all bits
2. Add 1

6



7



What about other kinds of numbers?

7



Non-Integer Numbers

Floating point numbers

• Decimal: 3.14159

• Binary: 11.10110
• With integers, the point is always fixed after all digits
• With floating point numbers, the point can move!

8



Non-Integer Numbers

Floating point numbers

• Decimal: 3.14159
• Binary: 11.10110

• With integers, the point is always fixed after all digits
• With floating point numbers, the point can move!

8



Non-Integer Numbers

Floating point numbers

• Decimal: 3.14159
• Binary: 11.10110
• With integers, the point is always fixed after all digits
• With floating point numbers, the point can move!

8



Non-Integer Numbers

Floating point numbers

• Decimal: 3.14159
• Binary: 11.10110
• With integers, the point is always fixed after all digits
• With floating point numbers, the point can move!

Challenge! only 2 symbols in binary

8



Scientific Notation

Convert the following decimal to scientific notation:

2130

9



Scientific Notation

Convert the following binary to scientific notation:

101101

10



Something to Notice

An interesting phenomenon:

• Decimal: first digit can be any number except 0

2.13× 103

• Binary: first digit can be any number except 0 Wait!

1.01101× 25

• First digit can only be 1

11



Something to Notice

An interesting phenomenon:

• Decimal: first digit can be any number except 0

2.13× 103

• Binary: first digit can be any number except 0 Wait!

1.01101× 25

• First digit can only be 1

11



Something to Notice

An interesting phenomenon:

• Decimal: first digit can be any number except 0

2.13× 103

• Binary: first digit can be any number except 0 Wait!

1.01101× 25

• First digit can only be 1

11



Floating Point in Binary

We must store 3 components

• sign (1-bit): 1 if negative, 0 if positive
• fraction or mantissa: (?-bits): bits after binary point
• exponent (?-bits): how far to move binary point

We do not need to store the value before the binary point. Why?

12



Floating Point in Binary

How do we store them?

• Originally many different systems
• IEEE standardized system (IEEE 754 and IEEE 854)
• Agreed-upon order, format, and number of bits for each

1.01101× 25

13



Example

A rough example in Decimal:

6.42× 103

14



Exponent

How do we store the exponent?

• Exponents can be negative

2−3 =
1
23 =

1
8

• Need positive and negative ints (but no minus sign)

• Don’t we always use Two’s Complement?
• Biased integers

• Make comparison operations run more smoothly
• Hardware more efficient to build
• Other valid reasons

15



Exponent

How do we store the exponent?

• Exponents can be negative

2−3 =
1
23 =

1
8

• Need positive and negative ints (but no minus sign)
• Don’t we always use Two’s Complement?

• Biased integers

• Make comparison operations run more smoothly
• Hardware more efficient to build
• Other valid reasons

15



Exponent

How do we store the exponent?

• Exponents can be negative

2−3 =
1
23 =

1
8

• Need positive and negative ints (but no minus sign)
• Don’t we always use Two’s Complement? Unfortunately Not

• Biased integers

• Make comparison operations run more smoothly
• Hardware more efficient to build
• Other valid reasons

15



Exponent

How do we store the exponent?

• Exponents can be negative

2−3 =
1
23 =

1
8

• Need positive and negative ints (but no minus sign)
• Don’t we always use Two’s Complement? Unfortunately Not
• Biased integers

• Make comparison operations run more smoothly
• Hardware more efficient to build
• Other valid reasons

15



Biased Integers

Similar to Two’s Complement, but add bias

• Two’s Complement: Define 0
as 00...0

• Biased: Define 0 as 0111...1
• Biased wraps from
000...0 to 111...1

16



Biased Integers

Two’s Complement Biased

17



Biased Integers Example

Calculate value of biased integers (4-bit example)

0010

18



Biased Integers

19



Floating Point Example

101.0112

20



Floating Point Example

101.0112

21



Floating Point Example

What does the following encode?

1 001110 1010101

22



Floating Point Example

What does the following encode?

1 001110 1010101

23



24



What about 0?

24



Floating Point Numbers

Four cases:

• Normalized: What we have seen today

s eeee ffff = ±1.ffff× 2eeee−bias

• Denormalized: Exponent bits all 0

s eeee ffff = ±0.ffff× 21−bias

• Infinity: Exponent bits all 1, fraction bits all 0 (i.e., ±∞)
• Not a Number (NaN): Exponent bits all 1, fraction bits not all 0

25



26



27



28


