
Bit-wise Operators, Git

CS 2130: Computer Systems and Organization 1

September 5, 2022



Announcements

• Homework 1 due Monday 9/12/2022
• TA office hours

• In-person: Olsson 001, Wed-Sun, 5-7pm
• Online: Discord, Wed-Sun, varies
• Discord is now available

• My office hours
• Tuesday, 4-5pm, Discord/Zoom
• Wednesday, 4:30-6pm, Rice 210 (masks requested)
• Thursday, 11am-12pm, Discord/Zoom

1



Floating Point in Binary

We must store 3 components

• sign (1-bit): 1 if negative, 0 if positive

• fraction or mantissa: (?-bits): bits after binary point

• exponent (?-bits): how far to move binary point

2



Biased Integers

Similar to Two’s Complement, but add bias

• Two’s Complement: Define 0
as 00...0

• Biased: Define 0 as 0111...1

• Biased wraps from
000...0 to 111...1

3



Floating Point Example

101.0112

4



Floating Point Example

101.0112

5



Floating Point Example

What does the following encode?

1 001110 1010101

6



Floating Point Example

What does the following encode?

1 001110 1010101

7



8



What about 0?

8



Floating Point Numbers

Four cases:

• Normalized: What we have seen today

s eeee ffff = ±1.ffff× 2eeee−bias

• Denormalized: Exponent bits all 0

s eeee ffff = ±0.ffff× 21−bias

• Infinity: Exponent bits all 1, fraction bits all 0 (i.e., ±∞)

• Not a Number (NaN): Exponent bits all 1, fraction bits not all 0

9



Operations So Far

So far, we have discussed:

• Addition: x+ y
• Can get multiplication

• Subtraction: x− y
• Can get division, but more difficult

• Unary minus (negative): −x
• Flip the bits and add 1

10



Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)

• Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector

• Bitwise not: ∼ x - flips all bits (unary)

• Bitwise and: x&y - set bit to 1 if x, y have 1 in same bit

• Bitwise or: x|y - set bit to 1 if either x or y have 1
• Bitwise xor: xˆy - set bit to 1 if x, y bit differs

11



Example: Bitwise AND

11001010
& 01111100

12



Example: Bitwise OR

11001010
| 01111100

13



Example: Bitwise XOR

11001010
^ 01111100

14



Your Turn!

What is: 0x1a ^ 0x72

15



Operations (on Integers)

• Logical not: !x
• !0 = 1 and !x = 0, ∀x ̸= 0
• Useful in C, no booleans
• Some languages name this one differently

• Left shift: x << y - move bits to the left
• Effectively multiply by powers of 2

• Right shift: x >> y - move bits to the right
• Effectively divide by powers of 2
• Signed (extend sign bit) vs unsigned (extend 0)

16



Right Bit-shift Example

01011010 >> 3

17



Left Bit-shift Example

01011010 << 2

18



Bit-shift

Computing bit-shift effectively multiplies/divides by powers of 2

Consider decimal:

2130 <<10 2 = 213000 = 2130 × 100

2130 >>10 1 = 213 = 2130 / 10

19



Right Bit-shift Example

For signed integers, extend the sign bit

• Keeps negative value (if applicable)
• Approximates divide by powers of 2

11001010 >> 1

20



21



git

21



22



23



24




