Bit-wise Operators, Git

CS 2130: Computer Systems and Organization 1
September 5, 2022

Announcements

- Homework 1 due Monday 9/12/2022
- TA office hours

- In-person: Olsson 001, Wed-Sun, 5-7pm
- Online: Discord, Wed-Sun, varies
- Discord is now available

- My office hours

- Tuesday, 4-5pm, Discord/Zoom
- Wednesday, 4:30-6pm, Rice 210 (masks requested)
- Thursday, 11am-12pm, Discord/Zoom

Floating Point in Binary

lllfor'bul VL\

We must store 3 components

- sign (1-bit): 1if negative, 0 if positive
- fraction or mantissa: (?-bits): bits after binary point
- exponent (?-bits): how far to move binary point

0D \’:/j v\

¥4 __C\ 2

Biased Integers

Similar to Two's Complement, but add bias

- Two's Complement: Define 0
as 00...0

- Biased: Define 0 as 0111..1

- Biased wraps from
000...0 to 111..1

1001 1000

Floating Point Example

3(1 "‘{\,0 5 ?4/5 cige |
'0}1\-1 101.01121 exg
Z.Z: y | @l% L Feee
:;':T’x\ ’ g
3°35°73% Yoo I \oi<’)ll)
100\ AN

(0 [TosT)TSTL :

Floating Point Example

101.011,

Floating Point Example

What does the following encode? { o 18 ke (O “
G -7 \ \\l\)’\.
ol v 1 0O
001110][1010101] — o1 1 | v Lies
_ {_/b/o[o/ x L ()lbtbb\
¥\o6 6 | =17

~0-%0666660606606600651 15 6]\ :

Floating Point Example

What does the following encode?

001110][1010101

What about 0?

Floating Point Numbers

Four cases:

- Normalized: What we have seen today

s eeee ffff = £1.ffff x Heeee—bias

- Denormalized: Exponent bits all 0

s eeee ffff = O.ffff x 21~

- Infinity: Exponent bits all 1, fraction bits all 0 (i.e., +00)
- Not a Number (NaN): Exponent bits all 1, fraction bits not all 0

Operations So Far

So far, we have discussed:

- Addition: x +y

- Can get multiplication
- Subtraction: x — y

- Can get division, but more difficult
- Unary minus (negative): —x

- Flip the bits and add 1

Operations (on Integers)

: . o . . ‘
Bit vector: fixed-length sequence of bits (ex: bits in an integer) fe r 16"

- Manipulated by bitwise operations

L . L . %A
Bitwise operations: operate over the bits in a bit vector

¥~ i\a) de 10
- Bitwise not: ~ x - flips all bits (unary)
- Bitwise and: x&y - set bit to 1if x,y have 1in same bit @V (6

- Bitwise or: x|y - set bit to 1if either x or y have 1 |0V)

- Bitwise xor: x"y - set bit to 1if x, y bit differs

4

1

Example: Bitwise AND

1100101

g 0111110
F 13610060
Ol bo | DS

Example: Bitwise OR

~, 11001010
| 91111100

([T

13

Example: Bitwise XOR

11001010
" 01111100

(0116] [0

14

Your Turn!

whatis: Ox1a " 0x72

15

Operations (on Integers)

- Logical not: Ix
- 10=1Tand Ix=0,Vx#0
- Useful in C, no booleans
- Some languages name this one differently

- Left shift: x << y - move bits to the left
- Effectively multiply by powers of 2
- Right shift: x >> y - move bits to the right

- Effectively divide by powers of 2
- Signed (extend sign bit) vs unsigned (extend 0)

16

Right Bit-shift Example

01011010 >> 3

7

Left Bit-shift Example

01011010 << 2

18

Computing bit-shift effectively multiplies/divides by powers of 2

Consider decimal:

2130 << 2 = 213000 = 2130 x 100

2130 >>p 1 = 213 = 2130 / 10

19

Right Bit-shift Example

For signed integers, extend the sign bit

- Keeps negative value (if applicable)
- Approximates divide by powers of 2

11001010 >> 1

20

21

22

23

2%

