Bit-wise Operators, Git

CS 2130: Computer Systems and Organization 1
September 5, 2022

Announcements

- Homework 1 due Monday 9/12/2022
- TA office hours

- In-person: Olsson 001, Wed-Sun, 5-7pm
- Online: Discord, Wed-Sun, varies
- Discord is now available

- My office hours

- Tuesday, 4-5pm, Discord/Zoom
- Wednesday, 4:30-6pm, Rice 210 (masks requested)
- Thursday, 11am-12pm, Discord/Zoom

Floating Point in Binary

3
.0 loltl &

We must store 3 components

- sign (1-bit): 1if negative, 0 if positive
- fraction or mantissa: (?-bits): bits after binary point
- exponent (?-bits): how far to move binary point

[0'\ kaé

Biased Integers

Similar to Two's Complement, but add bias

- Two's Complement: Define 0
as 00...0

- Biased: Define 0 as 0111..1

- Biased wraps from
000...0 to 111..1

O v |

+2 +1 0 0110

1001 1000 0111

Floating Point Example

g s)
,g\\ % g/‘\/\ .
- 101.011,
5 L3
2<5
-
|—1,’1
/LZ’I.
g
24 %

Floating Point Example

s \
4

101.011, 2
D 3

. .ol 1% L

felealn

Floating Point Example
\ KR *l’," \6
\

What does the following encode?

2o ¢ 50

ZO& [1][001170][1010101 ~3/L'" |
N) Jo 1) |
17;/:, —]'lb\blOl K/Z_/ J,U\h“\;
44O Ol ovG |27
o |l

Floating Point Example

What does the following encode?

001110][1010101

What about 0?

Floating Point Numbers

Four cases:

- Normalized: What we have seen today

s eeee ffff = £1.ffff x Heeee—bias

- Denormalized: Exponent bits all 0

s eeee ffff = O.ffff x 21~

- Infinity: Exponent bits all 1, fraction bits all 0 (i.e., +00)
- Not a Number (NaN): Exponent bits all 1, fraction bits not all 0

Operations So Far

So far, we have discussed:

- Addition: x +y

- Can get multiplication
- Subtraction: x — y

- Can get division, but more difficult
- Unary minus (negative): —x

- Flip the bits and add 1

Operations (on Integers)

Olovll VO
Bit vector: fixed-length sequence of bits (ex: bits in an integer)

- Manipulated by bitwise operations Vo [es Le

Bitwise operations: opera\tiover the bits in a bit vector
N ~
- Bitwise not: ~ x - flips all bits (unary)
- Bitwise and: x&y - set bit to 1if x,y have 1in same bit

- Bitwise or: x|y - set bit to 1if either x or y have 1
- Bitwise xor: x"y - set bit to 1if x, y bit differs

1

Example: Bitwise AND

11001010
g 01111160

Example: Bitwise OR

11001010
| 01111100

13

Example: Bitwise XOR

11001010
") 01111100

14

Your Turn!

whatis: Ox1a " 0x72

15

Operations (on Integers)

- Logical not: Ix
- 10=1Tand Ix=0,Vx#0
- Useful in C, no booleans
- Some languages name this one differently

- Left shift: x << y - move bits to the left
- Effectively multiply by powers of 2
- Right shift: x >> y - move bits to the right

- Effectively divide by powers of 2
- Signed (extend sign bit) vs unsigned (extend 0)

16

Right Bit-shift Example

01011010 >> 3

7

Left Bit-shift Example

01011010 << 2

18

Computing bit-shift effectively multiplies/divides by powers of 2

Consider decimal:

2130 << 2 = 213000 = 2130 x 100

2130 >>p 1 = 213 = 2130 / 10

19

Right Bit-shift Example

For signed integers, extend the sign bit

- Keeps negative value (if applicable)
- Approximates divide by powers of 2

11001010 >> 1

20

22

23

2%

