
CS 2130 Final Exam, Fall 2022 Page 1 of 16 UVa userid:

CS 2130 Final Exam

Name

You MUST write your e-mail ID on EACH page and put your name on the top of this page, too.

If you are still writing when “pens down” is called, your exam will not be graded – even if you
are still writing the honor pledge. So please do that first. Sorry to have to be strict on this!

There are 16 pages to this exam. Once the exam starts, please make sure you have all the pages.
Questions are worth different amounts of points, so be sure to look over all the questions and
plan your time accordingly.

This exam is CLOSED text book, closed-notes, closed-cell phone, closed-smart watch, closed-
computer, closed-neighbor, etc. You may not discuss this exam with anyone until after all the
exam times have ended. Please write and sign the honor pledge below.

*** stack smashing detected ***: terminated
Aborted (core dumped)

CS 2130 Final Exam, Fall 2022 Page 2 of 16 UVa userid:

Page 2: C to ISA

Throughout the semester, we took a bottom-up approach, building from electricity on wires to
C. The next few questions take a top down approach to Computer Systems and Organization.

Consider the following C function to sum the elements in an array.

int sumArray(int *x, size_t n) {
int sum = 0;
for (int i = 0; i < n; i++) {

sum += ____________;
}
return sum;

}

1. [4 points] Which of the following could be used in the blank above to correctly calculate the
sum of all elements in the array? (Fill in the circle completely for all that apply)

x[i]

x.i

x->i

x + i

x + 4*i

*(x + i)

*(x + 4*i)

&(x[0]) + i

CS 2130 Final Exam, Fall 2022 Page 3 of 16 UVa userid:

Page 3: C to ISA, continued

2. [10 points] Rearrange the following assembly instructions so that they implement sumArray
function in x86-64 assembly. Write the number corresponding to each instruction on the
lines provided to the right; you do not need to rewrite the entire instruction. Some order
has been provided for you. While all blanks will be used, not all instructions will be used.

1. addl 4(%rcx,%rdi), %eax

2. addl 4(%rdi,%rcx), %eax

3. addl (%rcx,%rdi,4), %eax

4. addl (%rdi,%rcx,4), %eax

5. addq $1, %rcx

6. addq $1, %rdi

7. addq $1, %rsi

8. cmpq %rcx, %rsi

9. je label2

10. jne label1

11. label1:

12. label2:

13. retq

14. sumArray:

15. testq %rsi, %rsi

16. xorl %eax, %eax

17. xorl %ecx, %ecx

18. xorl %edi, %edi

14 sumArray:

11 label1:

13 retq

CS 2130 Final Exam, Fall 2022 Page 4 of 16 UVa userid:

Page 4: C to ISA, continued

3. [10 points] Implement sumArray using our Toy ISA. Part of the code has been provided for
you; fill in the missing instructions. In this implementation, the array is stored at memory
address 0x50, storing only 1-byte values; the program ends by saving the sum to memory at
address 0x99; and the program is loaded at memory address 0x00. Our Toy ISA is described
on page 16.

r0 = 0x09 // n = 9
r1 = 0x50 // address of array
r2 = 0x00 // result
r3 = 0x15
if r0 <= 0, set pc = r3
// Complete the following instructions (scratch space)

// Update loop condition

// Read from array and add

// Increment counter(s)

// Check condition and jump
r3 = 0x0C
if r0 <= 0, set pc = r3
r3 = 99
M[r3] = r2 // store result
halt

Write your program in binary below. Only the final program below will be graded for this
question. If you use fewer instructions, use no-ops to fill in the rest. We have filled in some of
the instructions and immediate values already.

60 09 64 50 68 00 6C 15
00 01 02 03 04 05 06 07 08 09 0a 0b 0c

0C 99 80 00
0d 0e 0f 10 11 12 13 14 15 16 17 18 19

CS 2130 Final Exam, Fall 2022 Page 5 of 16 UVa userid:

Page 5: Binary

4. [3 points] Convert the 6-bit two’s complement binary number 100111 into decimal.

Answer

5. [3 points] What is 0x8675E094 & 0x12345678? Answer in hexadecimal.

Answer

6. [3 points] Which of the following C expressions are equivalent to x | y, where x and y are
declared as ints? (Fill in the circle completely for all that apply)

~x & ~y

~x ^ ~y

!(!x & !y)

~(~x & ~y)

!(!x ^ !y)

~(x + y)

CS 2130 Final Exam, Fall 2022 Page 6 of 16 UVa userid:

Page 6: Circuits

7. [8 points] In the space below, draw a circuit with three 1-bit inputs and one 1-bit output.
Label the inputs x, y, and s. Construct the circuit using only wires and gates from the set
{and, or, not, xor}. If s is 1, output x ^ y; if s is 0, output x. That is, draw a circuit of
gates that does the same as (s ? x ^ y : x). Hint: writing out a truth table can help
you design and/or check your circuit.

CS 2130 Final Exam, Fall 2022 Page 7 of 16 UVa userid:

Page 7: C

8. [3 points] Consider the following declarations and initialization of variables named x. For
which would C consider x to be true? (Fill in the circle completely for all that apply)

long x = 10;

int x = 0;

double x = 0.1;

char x = ’\0’;

char x = ’0’;

char *x = NULL;

9. [3 points] Select the statement that will correctly print the first two command line arguments
to stdout. For example, the correct output for

./a.out 1 two three five

is: “1 two”. (Fill in the circle completely)

printf(argv[0], argv[1]);

printf(argv[1], argv[2]);

printf("%s %s\n", argv[0], argv[1]);

printf("%d %d\n", argv[0], argv[1]);

printf("%s %s\n", argv[1], argv[2]);

printf("%d %d\n", argv[1], argv[2]);

10. [3 points] In this course, we primarily used the CS department portal to compile and run
our code. Assuming that you have written code in a file named csofinal.c, write the
command to compile your code with 2 levels of optimization and debugging information.

mst3k@portal03:~$

CS 2130 Final Exam, Fall 2022 Page 8 of 16 UVa userid:

Page 8: Memory

Consider the following code, shown with line numbers which are not part of the code itself. The
code contains one or more memory errors. Use this code for Questions 11-13.

1. // Determine if a number is odd
2. int isOdd(int *x) {
3. return (*x) % 2;
4. }
5.
6. // Sum up to the first n even numbers
7. int sumFirstEvens(int *array, int n) {
8. int *cpy = (int *)malloc(sizeof(n));
9. int *sum = (int *)malloc(sizeof(int));
10. int *cpy2 = cpy;
11. int *sum2 = sum;
12. for (int i = 0; i < n; i++)
13. cpy[i] = array[i];
14. while (!isOdd(cpy)) {
15. *sum += *cpy;
16. cpy += 1;
17. }
18. free(sum);
19. return *sum2;
20. }

11. [3 points] The code above has one memory leak. After which line should we add a free?
For example, if we should free after return (*x) % 2;, write 3.

Answer

12. [3 points] What should be freed? That is, what should we pass to the call free();?

Answer

CS 2130 Final Exam, Fall 2022 Page 9 of 16 UVa userid:

Page 9: Memory and C

13. [6 points] For each of the following memory errors, give the line where the error occurs in
the code on the previous page. If the error does not occur, put an X in on the line.

___ Accesses uninitialized memory

___ Accidentally casts to a pointer

___ Possible stack buffer overflow

___ Possible heap buffer overflow

___ Uses after free

___ Fails to use sizeof or uses sizeof incorrectly

14. [3 points] Assume the struct examInfo is defined as follows. What is sizeof(examInfo[10])?
See the assumptions on page 16 to compute an exact number.

typedef struct {
long minutesAllowed;
int maxScore;
int score;
char *studentName;

} examInfo;

Answer

15. [3 points] Remember that printf, puts, and other functions invoke write to do the actual
output to a file, socket, or the terminal. How does the write function output? (Fill in the
circle completely)

Setting specific bytes of memory that represent the screen or file contents

Calling (with call assembly instruction) a function stored in user memory

Calling (with call assembly instruction) a function stored in kernel memory

Using the special syscall assembly instruction

CS 2130 Final Exam, Fall 2022 Page 10 of 16 UVa userid:

Page 10: Writing C
16. [12 points] Implement the strnsep function, included in the manual page on this exam.

You may not use strsep or any library functions (except strlen()).

char *strnsep(char **stringp, const char *delim, size_t n) {

}

CS 2130 Final Exam, Fall 2022 Page 11 of 16 UVa userid:

Page 11: More Questions

17. [4 points] Answer the following True/False questions by writing either T or F in the blank
provided.

___ Each process has its own view of all of memory.

___ The lower addresses (close to 0) are reserved for kernel memory.

___ Garbage collectors (like in Java) are able to free all garbage in memory.

___ When accessing struct baz through a pointer p, the following are both valid meth-
ods for accessing field d: p->d and (*p).d

18. [3 points] Suppose you found a security vulnerability in code that you did not write. When
should you publish the vulnerability to a public repository of vulnerabilities (such as CVE)?

Immediately upon discovering it

Immediately after reporting it to the author of the software

After providing the author of the software enough time to fix it, whether or not it was
fixed

Only after it is fixed

19. [3 points] Which of the following should not be included in a header (.h) file? That is, which
should we instead put in our .c files? (Fill in the circle completely for all that apply)

unsigned long answer = 42;

struct foo {int x; double d;};

int rand() { return 4; }

#define MAX_LEN 42

void *smartAllocate(size_t numInts);

typedef struct {long g; char *a} bar;

CS 2130 Final Exam, Fall 2022 Page 12 of 16 UVa userid:

Page 12: More Questions

For the next two questions, we want to read and print one character at a time to stdout using the
following code:

void readAndPrintChar() {
char c = ’\0’;
_____________1_____________ {

___________2_________________;
}

}

20. [3 points] Which of the following could we use in the first blank to correctly loop and read
one character at a time (buffered or unbuffered)? (Fill in the circle completely for all that
apply)

while(read(0, char, 1) == 1)

while(read(0, &char, 1) == 1)

while((c = fgetc(stdin)) != EOF)

while(fgets(&c, 1, stdin))

21. [3 points] Which of the following could we use in the second blank to correctly print one
character? (Fill in the circle completely for all that apply)

write(1, &c, 1);

printf("%s", c);

printf("%s", &c);

printf("%c", c);

CS 2130 Final Exam, Fall 2022 Page 13 of 16 UVa userid:

Page 13: Free Points

22. [2 points] (Free Points) We covered a lot of material in the course this semester, from elec-
tricity on wires through most of C. What is one topic you wished we had spent more time
discussing in class or lab?

23. [2 points] (Free Points) My father was 86 years old when he passed this semester, and he
was never great with computers. Explain your favorite part of the course material to him
in a way that he could appreciate and understand. (Only serious answers will receive extra
credit.)

CS 2130 Final Exam, Fall 2022 Page 14 of 16 UVa userid:

Page 14: Man Page

STRSEP(3) Linux Programmer’s Manual STRSEP(3)

NAME
strsep, strnsep - extract token from string

SYNOPSIS

#include <cso1final.h>

char *strsep(char **stringp, const char *delim);

char *strnsep(char **stringp, const char *delim, size_t n);

DESCRIPTION
If *stringp is NULL, the strsep() function returns NULL and does nothing else. Otherwise,
this function finds the first token in the string *stringp, that is delimited by one of the bytes
in the string delim. This token is terminated by overwriting the delimiter with a null byte (’\0’),
and *stringp is updated to point past the token. In case no delimiter was found, the token is
taken to be the entire string *stringp, and *stringp is made NULL.

The strnsep() function is similar, except in the case no delimiter was found in the first n bytes
of *stringp. In this case, the token consists of the first n-1 bytes. This token is terminated
by overwriting the nth byte with a null byte (’\0’), and *stringp is updated to point past the
token.

RETURN VALUE
The strsep() and strnsep() functions returns a pointer to the token, that is, they return the
original value of *stringp.

CS 2130 Final Exam, Fall 2022 Page 15 of 16 UVa userid:

Page 15: Man Page

FGETC(3) Linux Programmer’s Manual FGETC(3)

NAME
fgetc, fgets, getc, getchar, ungetc - input of characters and strings

SYNOPSIS

#include <stdio.h>

int fgetc(FILE *stream);

char *fgets(char *s, int size, FILE *stream);

int getc(FILE *stream);

int getchar(void);

DESCRIPTION
fgetc() reads the next character from stream and returns it as an unsigned char cast to an
int, or EOF on end of file or error.

getc() is equivalent to fgetc() except that it may be implemented as a macro which evaluates
stream more than once.

getchar() is equivalent to getc(stdin).

fgets() reads in at most one less than size characters from stream and stores them into the
buffer pointed to by s. Reading stops after an EOF or a newline. If a newline is read, it is stored
into the buffer. A terminating null byte (‘\0’) is stored after the last character in the buffer.

Calls to the functions described here can be mixed with each other and with calls to other input
functions from the stdio library for the same input stream.

For nonlocking counterparts, see unlocked_stdio(3).

RETURN VALUE
fgetc(), getc() and getchar() return the character read as an unsigned char cast to an
int or EOF on end of file or error.

fgets() returns s on success, and NULL on error or when end of file occurs while no characters
have been read.

CS 2130 Final Exam, Fall 2022 Page 16 of 16 UVa userid:

Page 16: Assumptions and Our ISA

Assumptions. Assume unless otherwise specified:

• All necessary #includes have been used

• char, short, int, and long are 8-, 16-, 32-, and 64-bits long, respectively

• The compiler pads pointers where it is allowed to do so such that sizeof(struct X) is:

– an even multiple of the size of its largest field

– the smallest such multiple big enough to store all its fields

Our Example ISA. This is the ISA described in class and used in Lab 4 and Homework 3. Each
instruction is one (or two) bytes, defined as:

7 6 5 4 3 2 1 0
R icode a b

byte at pc

7 6 5 4 3 2 1 0
immediate

byte at pc + 1

If the reserved bit (bit 7) in our instruction is 0, the following table defines our instruction en-
coding.

icode b behavior
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit two’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

