
Fetch, Decode, Execute
Instruction Set Architecture

CS 2130: Computer Systems and Organization 1
February 10, 2023

Announcements

• Quiz 3 available today, due Sunday by 11:59pm
• Homework 2 due Monday

1

Our story so far

• Information modeled by voltage through wires (1 vs 0)
• Transistors
• Gates: & | ~ ^
• Multi-bit values: representing integers
• Floating point
• Multi-bit operations using circuits
• Storing results using registers
• Memory

2

Code

How do we run code? What do we need?

Example Code
...
8: x = 16
9: y = x
10: x += y
...

What is the value of x after line 10?

3

Bookkeeping

What do we need to keep track of?

• Code - the program we are running
• RAM (Random Access Memory)

• State - things that may change value (i.e., variables)
• Register file - can read and write values each cycle

• Program Counter (PC) - where we are in our code
• Single register - byte number in memory for next instruction

4

Building a Computer
Random Access MemoryCode

Register
File
(RF)

0

1

3

2

5

Encoding Instructions

Encoding of Instructions (icode or opcode)

• Numeric mapping from icode to operation
Example 3-bit icode

icode meaning
0 rA = rB
1 rA += rB
2 rA &= rB
... ...

 icode a b

7 6 5 4 3 2 1 0
6

Building a Computer

+1

Random Access MemoryCode

Register
File
(RF)

0

1

3

2

 icode dest src

7

8

Question

What happens if we get the 0-byte instruction? 00

9

Our Computer’s Instructions
Toy ISA 3-bit icode

icode meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
... ...
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

10

Our Computer’s Instructions
Toy ISA 3-bit icode
icode b action
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction

11

High-level Instructions

In general, 3 kinds of instructions

• moves - move values around without doing “work”
• math - broadly doing “work”
• jumps - jump to a new place in the code

12

Moves

Few forms

• Register to register (icode 0), x = y
• Register to/from memory (icodes 3-4), x = M[b], M[b] = x

Memory

• Address: an index into memory.
• Addresses are just (large) numbers
• Usually we will not look at the number and trust it exists and is stored in a
register

13

Moves

Toy ISA 3-bit icode
icode b action
0 rA = rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 3 rA = pc
6 0 rA = read from memory at pc + 1

3 rA = read from memory at the address stored at pc + 1

14

Math

Broadly doing work
Toy ISA 3-bit icode

icode b meaning
1 rA += rB
2 rA &= rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA

6 1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1

Note: We can implement other operations using these things! 15

icodes 5 and 6

Special property of icodes 5-6: only one register used
 icode a b

7 6 5 4 3 2 1 0

Toy ISA 3-bit icode
icode b action
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

16

icodes 5 and 6

Special property of 5-6: only one register used

 icode a b

7 6 5 4 3 2 1 0

• Side effect: all bytes between 0 and 127 are valid instructions!
• As long as high-order bit is 0
• No syntax errors, any instruction given is valid

17

Immediate values

icode 6 provides literals, immediate values
Example 3-bit icode
icode b action
6 0 rA = read from memory at pc + 1

1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction

 icode a b

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

18

Encoding Instructions

Example 1: r1 += 19

19

Instructions

icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

20

Encoding Instructions

Example 2: M[0x82] += r3
Read memory at address 0x82, add r3, write back to memory at same address

21

Instructions

icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

22

Jumps

• Moves and math are large portion of our code
• We also need control constructs

• Change what we are going to do next
• if, while, for, functions, ...

• Jumps provide mechanism to perform these control constructs
• We jump by assigning a new value to the program counter PC

23

Jumps

For example, consider an if

24

Jumps

Example 3-bit icode
icode meaning
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Instruction icode 7 provides a conditional jump

• Real code will also provide an unconditional jump, but a
conditional jump is sufficient

25

Writing Code

We can now write any∗ program!

• When you run code, it is being turned into instructions like ours
• Modern computers use a larger pool of instructions than we have
(we will get there)

∗we do have some limitations, since we can only represent 8-bit values and some operations may be
tedious.

26

Our code to this machine code

How do we turn our control constructs into jump statements?

27

if/else to jump

28

while to jump

29

Function Calls

30

Encoding Instructions

Example 3: if r0 < 9 jump to 0x42

31

Instructions

icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

32

