Toy Instruction Set Architecture

CS 2130: Computer Systems and Organization 1
February 15, 2023

Announcements

- Homework 3 due next Monday at 11pm on Gradescope

Encoding Instructions

Encoding of Instructions
- 3-bit icode (which operation to perform)
- Numeric mapping from icode to operation
- Which registers to use (2 bits each)
- Reserved bit for future expansion

icode a b

LN\(\ a ¥ w\f\ef e

High-level Instructions

In general, 3 kinds of instructions

- moves - move values around without doing “work”
- math - broadly doing “work”
- jumps - jump to a new place in the code

icodes 5and 6

Special property of icodes 5-6: only one register used

b
-
7 6 5 4 3 2 1) o
Toy ISA 3-bit icode fﬁ—/

icode a

icode | b | action
5 O|rA = ~rA
1/ rA = -rA
2| rA = IrA
3| rA = pc

icodes 5and 6

Special property of 5-6: only one register used

icode a b

0

7 6 5 4 3 2 1 0

- Side effect: all bytes between 0 and 127 are valid instructions!
- As long as high-order bitis 0
- No syntax errors, any instruction given is valid

Immediate values

icode 6 provides literals, immediate values

Toy ISA 3-bit icode

icode | b | action
6 0 | rA = read from memory at pc + 1
1| rA +=read from memory at pc + 1 }
- !
2 | rA &=read from memory at pc + 1 [(—Pr f"\[ﬂfl&m 1
3

rA = read from memory at the address stored at pc + 1
For icode 6, increasé pc by 2 at end of instruction

Encoding Instructions

meaning
O—— 1 rA = B
! rA += rB
2 | rA&=rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA
1| rA=-rA -
2 | rA = IrA
N 3 | rA = pc
(6 ~_0 | rA=read from memoryatpc + 1

__ 1| rA+=readfrom memoryatpc + 1
2 | TA &= read from memory at pc + 1
3 | rA =read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2's-complement to
if rA <= Osetpc = rB
else increment pc as normal (05 I 3

Encoding Instructions

icode b | meaning Ex 2: M[0X82] += 13
0 rA = rB
@ rA += rB ea) memory at address 0x82, add r3,
2 rA &= rB i
{% rA = read from memory at address rB Wr|te ioack to memory at same address
L4 wrlte o TA to ‘to memory at address B PR i c
5 0| rA = ~rA 1"1- 05(32_ :L{Q:Li—a Oxge
1| rA=-rA <z 4
2| rA = 1rA Z _ M[rjl,} 3_1] 10 6
3 | rA = pc (- ";'_’-‘5.-:_ —T
6 0 r{jead from memory at pc + 1 0 Ofi— [
1 | rA+=read from memory atpc + 1 Y— 2 + = (S F)_/_;_L—__ L
2 | rA &=read from memory atpc + 1 |]
3 | rA = read from memory at the address stored at tpc + 1 [O Q:I
“For icode 6, increase pc by 2 at tend of instruction M[} l] = 2 -
7 Compare rA as 8-bit 2's-complement to —= A

if rA <= Osetpc = rB
else increment pc as normal

Gﬁ gL 39 1R U\Ol 8

- Moves and math are large portion of our code
- We also need control constructs

- Change what we are going to do next
- 1f,while, for, functions, ...

- Jumps provide mechanism to perform these control constructs
- We jump by assigning a new value to the program counter PC

e —

For example, consider an if

oy —
i —
y N T

Toy ISA 3-bit icode

icode | meaning

7 | Compare rA as 8-bit 2's-complement to 0
ifrA <= Osetpc = rB
else increment pc as normal

Instruction icode 7 provides a conditional jump

- Real code will also provide an unconditional jump, but a
conditional jump Is sufficient

1

Writing Code

We can now write any* program!

- When you run code, it is being turned into instructions like ours

- Modern computers use a larger pool of instructions than we have
(we will get there)

*we do have some limitations, since we can only represent 8-bit values and some operations may be
tedious.

Our code to this machine code

How do we turn our control constructs into jump statements?

13

if/else to jump

14

while to jump

15

Encoding Instructions

icode b | meaning
0 TA = 18 Ex3:1f r0 < 9 jump to
1 rA += rB
2 rA 6= rB Ox42
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0| rA = ~rA
1| rA=-rA
2 | rA = IrA
3 | rA = pc
6 0 | rA =read from memoryatpc + 1
1 | rA +=read from memoryatpc + 1
2 | rA &=read from memory atpc + 1
3 | rA =read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2's-complement to
if rA <= Osetpc = rB
else increment pc as normal

16

7

Example

icode b | meaning

0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 rA = ~rA
rA = -rA
rA = IrA
rA = pc

rA = read from memory atpc + 1

rA += read from memory at pc + 1

rA &= read from memory at pc + 1

rA = read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction

7 Compare rA as 8-bit 2's-complement to

if rA <= Osetpc = rB

else increment pc as normal

[e)]
W N P OlWwW N -, O

18

Function Calls

19

What kinds of things do we put in memory?

- Code: binary code like instructions in our example ISA

- Intel/AMD compatible: x86_64

- Apple Mx and Ax, ARM: ARM

- And others!
- Variables: we may have more variables that will fit in registers
- Data Structures: organized data, collection of data

- Arrays, lists, heaps, stacks, queues, ...

20

Dealing with Variables and Memory

What if we have many variables? Compute: X += vy

21

