Toy Instruction Set Architecture

CS 2130: Computer Systems and Organization 1
February 17, 2023

Announcements

- Homework 3 due Wednesday at 11pm on Gradescope
- Quiz 4 available today, due Sunday at 11:59pm (submit early)
- Exam 1 next Friday in class, Review on Wednesday

Encoding Instructions

Encoding of Instructions — ——

- 3-bit icode (which operation to perform)
- Numeric mapping from icode to operation

- Which registers to use (2 bits each)
- Reserved bit for future expansion

High-level Instructions

In general, 3 kinds of instructions

- moves - move values around without doing “work”
- math - broadly doing “work”
- jumps - jump to a new place in the code

- Moves and math are large portion of our code
- We also need control constructs

- Change what we are going to do next
- 1f,while, for, functions, ...

- Jumps provide mechanism to perform these control constructs
- We jump by assigning a new value to the program counter PC

VoL B |..

uEEEIENENEN]

Toy ISA 3-bit icode

icode | meaning

7 | Compare rA as 8-bit 2's-complement to 0
if rA <= O@setpc = rB
else increment pc as normal

Instruction icode 7 provides a conditional jump

- Real code will also provide an unconditional jump, but a
conditional jump Is sufficient

Writing Code

We can now write any* program!

- When you run code, it is being turned into instructions like ours

- Modern computers use a larger pool of instructions than we have
(we will get there)

*we do have some limitations, since we can only represent 8-bit values and some operations may be
tedious.

Our code to this machine code

How do we turn our control constructs into jump statements?

m ' [_
I b el o
. f{ +L»u Lég,,.- <
e ﬂ%r(ﬂ - J’()

?: ’PJV(-) 1)
| TN NS
\,\f\ﬂ%

if/else to jump

Whlle to jump

dile 1) € —H0E() ome b B -

P S

Encoding Instructions

icode b | meaning

0 rA = 1B Ex3:1f r® < 9 jump to

1 rA += rB
2 rA &= rB Ox42
t \‘ 3 rA = read from memory at address rB
’Q?‘\ || 4 write TA to memory at address rB

| 5 0| rA = ~rA
| 1| rA=-rA
2 | rA = _[_:A
_ /"5 rA = pc_

U [rA=read from memory atpc + 1 _) Aol

Q rA +=2bad from memory at pc + 1 § byl o= L’
2 | rA &=read from memoryatpc + 1 \ [prra 7 e ™
3 | rA =read from memory at the address stored at pc + 1 |

For icode 6, increase pc by 2 at end of instruction /
7 Compare rA as 8-bit 2's-complement to

W if rA <= @setpc = rB
\\%}' . else increment pc as normal

: 7 Ocl7 + 0 xl7 + Ox11
—7 08

x = bxl7 * 3 o
:’CL‘;—D- ;<3; ("-,L#) /' 0= O N - ____L____;,a. i
K /o as =2 6H
| s=pe 5= o
(g k= WKl —— é)]_ | 1
\AE T L
. Ji Q Jug ~+>5 7
N ~le=2
:bi—.-—-_;—_ L=0
1

Example

icode b | meaning

0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 rA = ~rA
rA = -rA
rA = IrA
rA = pc

rA = read from memory atpc + 1

rA += read from memory at pc + 1

rA &= read from memory at pc + 1

rA = read from memory at the address stored at pc + 1
For icode 6, increase pc by 2 at end of instruction

7 Compare rA as 8-bit 2's-complement to

if rA <= Osetpc = rB

else increment pc as normal

[e)]
W N P OlWwW N -, O

Function Calls

13

What kinds of things do we put in memory?

- Code: binary code like instructions in our example ISA

- Intel/AMD compatible: x86_64

- Apple Mx and Ax, ARM: ARM

- And others!
- Variables: we may have more variables that will fit in registers
- Data Structures: organized data, collection of data

- Arrays, lists, heaps, stacks, queues, ...

14

Dealing with Variables and Memory

What if we have many variables? Compute: X += vy

15

Array: a sequence of values (collection of variables)

In Java, arrays have the following properties:

- Fixed number of values
- Not resizable
- All values are the same type

16

Array: a sequence of values (collection of variables)

In Java, arrays have the following properties:

- Fixed number of values
- Not resizable
- All values are the same type

How do we store them in memory?

16

7

Storing Arrays

In memory, store array sequentially

- Pick address to store array
- Subsequent elements stored at following addresses
- Access elements with math

Example: Store array arr at 0x90

- Access arr[3] as 0x90 + 3 assuming 1-byte values

18

What's Missing?

What are we missing?

- Nothing says “this is an array” in memory
- Nothing says how long the array is

19

