
Toy Instruction Set Architecture

CS 2130: Computer Systems and Organization 1
February 17, 2023

Announcements

• Homework 3 due Wednesday at 11pm on Gradescope
• Quiz 4 available today, due Sunday at 11:59pm (submit early)
• Exam 1 next Friday in class, Review on Wednesday

1

Encoding Instructions

Encoding of Instructions

• 3-bit icode (which operation to perform)
• Numeric mapping from icode to operation

• Which registers to use (2 bits each)
• Reserved bit for future expansion

 icode a b

7 6 5 4 3 2 1 0

2

High-level Instructions

In general, 3 kinds of instructions

• moves - move values around without doing “work”
• math - broadly doing “work”
• jumps - jump to a new place in the code

3

Jumps

• Moves and math are large portion of our code
• We also need control constructs

• Change what we are going to do next
• if, while, for, functions, ...

• Jumps provide mechanism to perform these control constructs
• We jump by assigning a new value to the program counter PC

4

Jumps

Toy ISA 3-bit icode
icode meaning
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Instruction icode 7 provides a conditional jump

• Real code will also provide an unconditional jump, but a
conditional jump is sufficient

5

Writing Code

We can now write any∗ program!

• When you run code, it is being turned into instructions like ours
• Modern computers use a larger pool of instructions than we have
(we will get there)

∗we do have some limitations, since we can only represent 8-bit values and some operations may be
tedious.

6

Our code to this machine code

How do we turn our control constructs into jump statements?

7

if/else to jump

8

while to jump

9

Encoding Instructions

icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Ex 3: if r0 < 9 jump to
0x42

10

Example

11

Example

icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

12

Function Calls

13

Memory

What kinds of things do we put in memory?

• Code: binary code like instructions in our example ISA
• Intel/AMD compatible: x86_64
• Apple Mx and Ax, ARM: ARM
• And others!

• Variables: we may have more variables that will fit in registers
• Data Structures: organized data, collection of data

• Arrays, lists, heaps, stacks, queues, ...

14

Dealing with Variables and Memory

What if we have many variables? Compute: x += y

15

Arrays

Array: a sequence of values (collection of variables)

In Java, arrays have the following properties:

• Fixed number of values
• Not resizable
• All values are the same type

16

Arrays

Array: a sequence of values (collection of variables)

In Java, arrays have the following properties:

• Fixed number of values
• Not resizable
• All values are the same type

How do we store them in memory?

16

Arrays

17

Storing Arrays

In memory, store array sequentially

• Pick address to store array
• Subsequent elements stored at following addresses
• Access elements with math

Example: Store array arr at 0x90

• Access arr[3] as 0x90 + 3 assuming 1-byte values

18

What’s Missing?

What are we missing?

• Nothing says “this is an array” in memory
• Nothing says how long the array is

19

