
Exam Review

CS 2130: Computer Systems and Organization 1
February 22, 2023

Announcements

• Exam 1 Friday (in class)
• Closed book, closed notes, closed neighbor, closed internet, closed
smart-watch

• Please bring pen or pencil, we will have scratch paper if needed
• For SDAC accommodations, please schedule a time with their testing center

• Homework 3 due tonight
• Homework 4 available after the exam

1

Topics

So far, we have electricity on wire to building a computer and programming it!

• Logic: Operations, Gates, Truth tables

• Numbers: Binary, Octal, Decimal, Hexadecimal

• Bitwise Operations: and, or, bitwise not, logical not, xor, ...

• Binary Arithmetic: addition, subtraction

• Binary Representations: biased integers, two’s complement, floating point (8-bit)

• Circuits: adder, subtractor, incrementer, registers, clocks

• High-level how these pieces fit together to form a computer

• Instruction Set Architectures (ISAs) and how to write instructions with our ISA

2

Today’s Agenda

3

4

1-bit Logic Gates

• and, or, not
• nand, nor, xor
• Transistors and how to make these gates (high level)

Trinary operator - Mux

• Python: x = b if a else c
• Java: x = a ? b : c

5

Numbers

From our oldest cultures, how do we mark numbers?

• Arabic numerals
• Positional numbering system
• The 10 is significant:

• 10 symbols, using 10 as base of exponent

• The 10 is arbitrary
• We can use other bases! π, 2130, 2, ...

6

Base-8 Example

Try to turn 1348 into base-10:

7

Long Numbers in Binary

Making binary more readable

• Typical to group by 3 or 4 bits
• No need for commas Why?
• We can use a separate symbol per group
• How many do we need for groups of 3?
• Turn each group into decimal representation
• Converts binary to octal

100001010010

8

Long Numbers in Binary

Making binary more readable

• Groups of 4 more common
• How many symbols do we need for groups of 4?
• Converts binary to hexadecimal
• Base-16 is very common in computing

100001010010

9

Negative Integers

Representing negative integers

• Computers store numbers in fixed number of wires
• Ex: consider 4-digit decimal numbers
• Throw away the last borrow:

• 0000 - 0001 = 9999
• 9999 - 0001 = 9998
• Normal subtraction/addition still works

• This works the same in binary

10

Two’s Complement

This scheme is called Two’s Complement

• More generically, a signed
integer

• There is a break as far away
from 0 as possible

• First bit acts vaguely like a
minus sign

• Works as long as we do not
pass number too large to
represent

11

Values of Two’s Complement Numbers

Consider the following 8-bit two’s complement binary number:

11010011

What is its value in decimal?

1. Flip all bits
2. Add 1

12

Biased Integers

Similar to Two’s Complement, but add bias

• Two’s Complement: Define 0
as 00...0

• Biased: Define 0 as 0111...1
• Biased wraps from
000...0 to 111...1

13

Biased Integers

Two’s Complement Biased

14

Non-Integer Numbers

Floating point numbers

• Decimal: 3.14159
• Binary: 11.10110
• With integers, the point is always fixed after all digits
• With floating point numbers, the point can move!

Challenge! only 2 symbols in binary

15

Floating Point in Binary

We must store 3 components

• sign (1-bit): 1 if negative, 0 if positive
• fraction or mantissa: (?-bits): bits after binary point
• exponent (?-bits): how far to move binary point

We do not need to store the value before the binary point. Why?

16

Floating Point in Binary

How do we store them?

• Originally many different systems
• IEEE standardized system (IEEE 754 and IEEE 854)
• Agreed-upon order, format, and number of bits for each

1.01101× 25

17

Exponent

How do we store the exponent?

• Exponents can be negative

2−3 =
1
23 =

1
8

• Need positive and negative ints (but no minus sign)
• Don’t we always use Two’s Complement? Unfortunately Not
• Biased integers

• Make comparison operations run more smoothly
• Hardware more efficient to build
• Other valid reasons

18

Floating Point Numbers

Four cases:

• Normalized: What we have seen today

seeeeffff = ±1.ffff× 2eeee−bias

• Denormalized: Exponent bits all 0

seeeeffff = ±0.ffff× 21−bias

• Infinity: Exponent bits all 1, fraction bits all 0
• Not a Number (NaN): Exponent bits all 1, fraction bits not all 0

19

Operations So Far

So far, we have discussed:

• Addition: x+ y
• Can get multiplication

• Subtraction: x− y
• Can get division, but more difficult

• Unary minus (negative): −x
• Flip the bits and add 1

20

Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)

• Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector

• Bitwise not: ∼ x - flips all bits (unary)
• Bitwise and: x&y - set bit to 1 if x, y have 1 in same bit
• Bitwise or: x|y - set bit to 1 if either x or y have 1
• Bitwise xor: xˆy - set bit to 1 if x, y bit differs

21

Example: Bitwise AND

11001010
& 01111100

22

Example: Bitwise OR

11001010
| 01111100

23

Example: Bitwise XOR

11001010
^ 01111100

24

Your Turn!

What is: 0x1a ^ 0x72

25

Operations (on Integers)

• Logical not: !x
• !0 = 1 and !x = 0, ∀x ̸= 0
• Useful in C, no booleans
• Some languages name this one differently

• Left shift: x << y - move bits to the left
• Effectively multiply by powers of 2

• Right shift: x >> y - move bits to the right
• Effectively divide by powers of 2
• Signed (extend sign bit) vs unsigned (extend 0)

26

Right Bit-shift Example 2

For signed integers, extend the sign bit (1)

• Keeps negative value (if applicable)
• Approximates divide by powers of 2

11001010 >> 1

27

Ripple-Carry Adder

28

Ripple-Carry Adder

29

Ripple-Carry Adder

30

Increment Circuit

31

1-bit Register Circuit

32

Another Circuit

+

33

Code to Build Circuits from Gates

Write code to build circuits from gates

• Gates we already know: &, |, ^, ~
• Operations we can build from gates: +, -
• Others we can build:
• Ternary operator: ? :

34

Equals

Equals: =
• Attach with a wire (i.e., connect things)
• Ex: z = x * y
• What about the following?
x = 1
x = 0

• Single assignment: each variable can only be assigned a value
once

35

Indexing

Indexing with square brackets: []
• Register bank (or register file) - an array of registers

• Can programmatically pick one based on index
• I.e., can determine which register while running

• Two important operations:
x = R[i] - Read from a register
R[j] = y - Write to a register

36

Reading

x = R[i] - connect output of registers to x based on index i

R

0

1

2

3

37

Writing

R[j] = y - connect y to input of registers based on index j

R

0

1

2

3

38

Memory and Storage

Registers ≈ KiB

• 6 gates each, ≈ 24 transistors
• Efficient, fast
• Expensive!
• Ex: local variables

Memory ≈ GiB

• Two main types: SRAM, DRAM
• DRAM: 1 transistor, 1 capacitor per bit
• DRAM is cheaper, simpler to build
• Ex: data structures, local variables

These do not persist between power cycles 39

Memory and Storage

Disk ≈ GiB-TiB

• Two main types: flash (solid state), magnetic disk
• Magnetic drive

• Platter with physical arm above and below
• Cheap to build
• Very slow! Physically move arm while disk spins

• Ex: files

Data on disk does persist between power cycles
40

Bookkeeping

What do we need to keep track of?

• Code - the program we are running
• RAM (Random Access Memory)

• State - things that may change value (i.e., variables)
• Register file - can read and write values each cycle

• Program Counter (PC) - were we are in our code
• Single register - byte number in memory for next instruction

41

Building a Computer

Random Access Memory

Code

Register
File
(RF)

42

Building a Computer

+1

Random Access MemoryCode

Register
File
(RF)

0

1

3

2

 icode dest src

43

Our Instruction Set Architecture
icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

 icode a b

7 6 5 4 3 2 1 0
44

High-level Instructions

In general, 3 kinds of instructions

• moves - move values around without doing “work”
• math - broadly doing “work”
• jumps - jump to a new place in the code

45

Moves

Few forms

• Register to register (icode 0), x = y
• Register to/from memory (icodes 3-4), x = M[b], M[b] = x

Memory

• Address: an index into memory.
• Addresses are just (large) numbers
• Usually we will not look at the number and trust it exists and is stored in a
register

46

Math

Broadly doing work
Example 3-bit icode

icode b meaning
1 rA += rB
2 rA &= rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA

6 1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1

Note: I can implement other operations using these things! 47

Jumps

• Moves and math are large portion of our code
• We also need control constructs

• Change what we are going to do next
• if, while, for, functions, ...

• Jumps provide mechanism to perform these control constructs
• We jump by assigning a new value to the program counter PC

48

Immediate values

icode 6 provides literals, immediate values
Example 3-bit icode
icode b action
6 0 rA = read from memory at pc + 1

1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction

 icode a b

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

49

Jumps

Example 3-bit icode
icode meaning
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Instruction icode 7 provides a conditional jump

• Real code will also provide an unconditional jump, but a
conditional jump is sufficient

50

Writing Code

We can now write any∗ program!

• When you run code, it is being turned into instructions like ours
• Modern computers use a larger pool of instructions than we have
(we will get there)

∗we do have some limitations, since we can only represent 8-bit values and some operations may be
tedious.

51

Arrays

Array: a sequence of values (collection of variables)

In Java, arrays have the following properties:

• Fixed number of values
• Not resizable
• All values are the same type

How do we store them in memory?

52

Storing Arrays

In memory, store array sequentially

• Pick address to store array
• Subsequent elements stored at following addresses
• Access elements with math

Example: Store array arr at 0x90

• Access arr[3] as 0x90 + 3 assuming 1-byte values

53

What’s Missing?

What are we missing?

• Nothing says “this is an array” in memory
• Nothing says how long the array is

54

55

56

57

58

59

60

61

62

63

64

