Exam Review

CS 2130: Computer Systems and Organization 1
February 22, 2023

Announcements

- Exam 1 Friday (in class)
- Closed book, closed notes, closed neighbor, closed internet, closed smart-watch
- Please bring pen or pencil, we will have scratch paper if needed
- For SDAC accommodations, please schedule a time with their testing center
- Homework 3 due tonight
- Homework 4 available after the exam

Topics

So far, we have electricity on wire to building a computer and programming it!

- Logic: Operations, Gates, Truth tables
- Numbers: Binary, Octal, Decimal, Hexadecimal
- Bitwise Operations: and, or, bitwise not, logical not, xor, ...
- Binary Arithmetic: addition, subtraction
- Binary Representations: biased integers, two's complement, floating point (8-bit)
- Circuits: adder, subtractor, incrementer, registers, clocks
- High-level how these pieces fit together to form a computer
- Instruction Set Architectures (ISAs) and how to write instructions with our ISA

Today's Agenda

1-bit Logic Gates

- and, or, not
- nand, nor, xor
- Transistors and how to make these gates (high level)

Trinary operator - Mux

- Python: $x=b$ if a else c
- Java: $x=a \operatorname{b}: c$

Numbers

From our oldest cultures, how do we mark numbers?

- Arabic numerals
- Positional numbering system
- The 10 is significant:
- 10 symbols, using 10 as base of exponent
- The 10 is arbitrary
- We can use other bases! $\pi, 2130,2, \ldots$

Base-8 Example

Try to turn 134_{8} into base-10:

Long Numbers in Binary

Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?
- We can use a separate symbol per group
- How many do we need for groups of 3?
- Turn each group into decimal representation
- Converts binary to octal

100001010010

Long Numbers in Binary

Making binary more readable

- Groups of 4 more common
- How many symbols do we need for groups of 4 ?
- Converts binary to hexadecimal
- Base-16 is very common in computing

100001010010

Negative Integers

Representing negative integers

- Computers store numbers in fixed number of wires
- Ex: consider 4-digit decimal numbers
- Throw away the last borrow:
- 0000-0001 = 9999
- 9999-0001 = 9998
- Normal subtraction/addition still works
- This works the same in binary

Two's Complement

This scheme is called Two's Complement

- More generically, a signed integer
- There is a break as far away from 0 as possible
- First bit acts vaguely like a minus sign
- Works as long as we do not pass number too large to represent

Values of Two's Complement Numbers

Consider the following 8-bit two's complement binary number:

11010011

What is its value in decimal?

1. Flip all bits
2. Add 1

Biased Integers

Similar to Two's Complement, but add bias

- Two's Complement: Define 0 as 00... 0
- Biased: Define 0 as 0111... 1
- Biased wraps from 000... 0 to 111... 1

Biased Integers

Two's Complement

Biased

Non-Integer Numbers

Floating point numbers

- Decimal: 3.14159
- Binary: 11.10110
- With integers, the point is always fixed after all digits
- With floating point numbers, the point can move!

Challenge! only 2 symbols in binary

Floating Point in Binary

We must store 3 components

- sign (1-bit): 1 if negative, 0 if positive
- fraction or mantissa: (?-bits): bits after binary point
- exponent (?-bits): how far to move binary point

We do not need to store the value before the binary point. Why?

Floating Point in Binary

How do we store them?

- Originally many different systems
- IEEE standardized system (IEEE 754 and IEEE 854)
- Agreed-upon order, format, and number of bits for each

1.01101×2^{5}

Exponent

How do we store the exponent?

- Exponents can be negative

$$
2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}
$$

- Need positive and negative ints (but no minus sign)
- Don't we always use Two's Complement? Unfortunately Not
- Biased integers
- Make comparison operations run more smoothly
- Hardware more efficient to build
- Other valid reasons

Floating Point Numbers

Four cases:

- Normalized: What we have seen today

$$
\text { seeeeffff }= \pm 1 . f f f f \times 2^{e e e e-b i a s}
$$

- Denormalized: Exponent bits all 0

$$
\text { seeeeffff }= \pm 0 . f f f f \times 2^{1-\text { bias }}
$$

- Infinity: Exponent bits all 1, fraction bits all 0
- Not a Number (NaN): Exponent bits all 1, fraction bits not all 0

Operations So Far

So far, we have discussed:

- Addition: $x+y$
- Can get multiplication
- Subtraction: $x-y$
- Can get division, but more difficult
- Unary minus (negative): $-x$
- Flip the bits and add 1

Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)

- Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector

- Bitwise not: $\sim x$ - flips all bits (unary)
- Bitwise and: $x \& y$ - set bit to 1 if x, y have 1 in same bit
- Bitwise or: $x \mid y$ - set bit to 1 if either x or y have 1
- Bitwise xor: $x^{\wedge} y-$ set bit to 1 if x, y bit differs

Example: Bitwise AND

11001010
 \& 01111100

Example: Bitwise OR

11001010 01111100

Example: Bitwise XOR

11001010
 ^ 01111100

Your Turn!

What is: $0 x 1 \mathrm{a} \wedge 0 \times 72$

Operations (on Integers)

- Logical not: !x
- $!0=1$ and $!x=0, \forall x \neq 0$
- Useful in C, no booleans
- Some languages name this one differently
- Left shift: $x \ll y$ - move bits to the left
- Effectively multiply by powers of 2
- Right shift: $x \gg y$ - move bits to the right
- Effectively divide by powers of 2
- Signed (extend sign bit) vs unsigned (extend 0)

Right Bit-shift Example 2

For signed integers, extend the sign bit (1)

- Keeps negative value (if applicable)
- Approximates divide by powers of 2

11001010 >> 1

Ripple-Carry Adder

Ripple-Carry Adder

Ripple-Carry Adder

Increment Circuit

1-bit Register Circuit

Another Circuit

Code to Build Circuits from Gates

Write code to build circuits from gates

- Gates we already know: \&, I, ^, ~
- Operations we can build from gates: +, -
- Others we can build:
- Ternary operator: ? :

Equals

Equals: =

- Attach with a wire (i.e., connect things)
- Ex: z = x * y
-What about the following?
$x=1$
$x=0$
- Single assignment: each variable can only be assigned a value once

Indexing

Indexing with square brackets: []

- Register bank (or register file) - an array of registers
- Can programmatically pick one based on index
- I.e., can determine which register while running
- Two important operations:
$x=R[i]$ - Read from a register
$R[j]=y$-Write to a register

Reading

$$
x=R[i] \text { - connect output of registers to } x \text { based on index } i
$$

Writing

$R[j]=y$-connect y to input of registers based on index j

Memory and Storage

Registers

- 6 gates each, ≈ 24 transistors
- Efficient, fast
- Expensive!
- Ex: local variables

Memory $\approx G i B$

- Two main types: SRAM, DRAM
- DRAM: 1 transistor, 1 capacitor per bit
- DRAM is cheaper, simpler to build
- Ex: data structures, local variables

These do not persist between power cycles

Memory and Storage

Disk

- Two main types: flash (solid state), magnetic disk
- Magnetic drive
- Platter with physical arm above and below
- Cheap to build
- Very slow! Physically move arm while disk spins
- Ex: files

Data on disk does persist between power cycles

Bookkeeping

What do we need to keep track of?

- Code - the program we are running
- RAM (Random Access Memory)
- State - things that may change value (i.e., variables)
- Register file - can read and write values each cycle
- Program Counter (PC) - were we are in our code
- Single register - byte number in memory for next instruction

Building a Computer

Random Access Memory

Code

Building a Computer

Our Instruction Set Architecture

icode	b	meaning
0		$r A=r B$
1		$r A+=r B$
2		$r A \delta=r B$
3		$r A=$ read from memory at address $r B$
4		write rA to memory at address rB
5	0	$\mathrm{rA}=\sim \mathrm{rA}$
	1	$r \mathrm{~A}=-r \mathrm{~A}$
	2	$r \mathrm{~A}=!\mathrm{rA}$
	3	$\mathrm{rA}=\mathrm{pc}$
6	0	$\mathrm{rA}=$ read from memory at pc + 1
	1	$r A+=$ read from memory at $\mathrm{pc}+1$
	2	rA \& = read from memory at pc + 1
	3	$\mathrm{rA}=$ read from memory at the address stored at pc +1 For icode 6 , increase pc by 2 at end of instruction
7		```Compare rA as 8-bit 2's-complement to 0 if rA <= 0 set pc = rB else increment pc as normal```

High-level Instructions

In general, 3 kinds of instructions

- moves - move values around without doing "work"
- math - broadly doing "work"
- jumps - jump to a new place in the code

Moves

Few forms

- Register to register (icode 0), $\mathrm{x}=\mathrm{y}$
- Register to/from memory (icodes 3-4), $x=M[b], M[b]=x$

Memory

- Address: an index into memory.
- Addresses are just (large) numbers
- Usually we will not look at the number and trust it exists and is stored in a register

Math

Broadly doing work

Example 3-bit icode

icode	b	meaning
1		rA $+=r B$
2		rA $\&=r B$
5	0	rA $=\sim r A$
	1	rA $=-r A$
	2	rA $=$! rA
6	1	rA + read from memory at $p c+1$
	2	rA $\&=$ read from memory at $p c+1$

Note: I can implement other operations using these things!

Jumps

- Moves and math are large portion of our code
- We also need control constructs
- Change what we are going to do next
- if, while, for, functions, ...
- Jumps provide mechanism to perform these control constructs
- We jump by assigning a new value to the program counter PC

Immediate values

icode 6 provides literals, immediate values

Example 3-bit icode

icode	b	action
6	0	rA = read from memory at $\mathrm{pc}+1$
	1	$\mathrm{rA}+=$ read from memory at $\mathrm{pc}+1$
2	$\mathrm{rA}=$ read from memory at $\mathrm{pc}+1$	
	3	rA = read from memory at the address stored at $\mathrm{pc}+1$
	For icode 6, increase pc by 2 at end of instruction	

Jumps

Example 3-bit icode

icode	meaning
7	Compare rA as 8 -bit 2's-complement to 0
	if $\mathrm{rA}<=0$ set $\mathrm{pc}=\mathrm{rB}$
	else increment pc as normal

Instruction icode 7 provides a conditional jump

- Real code will also provide an unconditional jump, but a conditional jump is sufficient

Writing Code

We can now write any* program!

- When you run code, it is being turned into instructions like ours
- Modern computers use a larger pool of instructions than we have (we will get there)
*we do have some limitations, since we can only represent 8-bit values and some operations may be tedious.

Arrays

Array: a sequence of values (collection of variables)
In Java, arrays have the following properties:

- Fixed number of values
- Not resizable
- All values are the same type

How do we store them in memory?

Storing Arrays

In memory, store array sequentially

- Pick address to store array
- Subsequent elements stored at following addresses
- Access elements with math

Example: Store array arr at 0×90

- Access arr[3] as $0 \times 90+3$ assuming 1-byte values

What's Missing?

What are we missing?

- Nothing says "this is an array" in memory
- Nothing says how long the array is

$$
62
$$

