
Stacks and Functions, Backdoors

CS 2130: Computer Systems and Organization 1
February 27, 2023



Announcements

• Homework 4 due Friday at 11pm on Gradescope
• Lab tomorrow (git and assembly)
• Exam 1 grades coming soon

1



Our Instruction Set Architecture

icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

2



What about real ISAs?

2



Our Instruction Set Architecture

What about our ISA?

• Enough instructions to compute what we need
• As is, lot of things that are painful to do

• This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)
• Missing something important: Help to put variables in memory

3



Storing Variables in Memory

So far... we/compiler chose location for variable

Consider the following example:

f(x):
a = x
if (x <= 0) return 0
else return f(x-1) + a

Recursion

• The formal study of a function that calls itself

4



Storing Variables in Memory

f(x):
a = x
if (x <= 0) return 0
else return f(x-1) + a

Where do we store a?

5



The Stack

Stack - a last-in-first-out (LIFO) data structure

• The solution for solving this problem

rsp - Special register - the stack pointer

• Points to a special location in memory
• Two operations most ISAs support:

• push - put a new value on the stack
• pop - return the top value off the stack

6



The Stack: Push and Pop

push r0

• Put a value onto the “top” of the stack
rsp -= 1
M[rsp] = r0

pop r2

• Read value from “top”, save to register
r2 = M[rsp]
rsp += 1

7



The Stack: Push and Pop

8



Function Calls

9



A short aside...
Time to take over the world!

9



Backdoors

Backdoor: secret way in to do new unexpected things

• Get around the normal barriers of behavior
• Ex: a way in to allow me to take complete control of your computer

Exploit - a way to use a vulnerability or backdoor that has been created

• Our exploit today: a malicious payload
• A passcode and program
• If it ever gets in memory, run my program regardless of what you want to do

10



Our Hardware Backdoor

Our backdoor will have 2 components

• Passcode: need to recognize when we see the passcode
• Program: do something bad when I see the passcode

11



Our Hardware Backdoor

12



Our Hardware Backdoor

Will you notice this on your chip?

• Modern chips have billions of transistors
• We’re talking adding a few hundred transistors
• Maybe with a microscope? But you’d need to know where to look!

13



Our Hardware Backdoor

Will you notice this on your chip?

• Modern chips have billions of transistors
• We’re talking adding a few hundred transistors

• Maybe with a microscope? But you’d need to know where to look!

13



Our Hardware Backdoor

Will you notice this on your chip?

• Modern chips have billions of transistors
• We’re talking adding a few hundred transistors
• Maybe with a microscope? But you’d need to know where to look!

13



Our Hardware Backdoor

Have you heard about something like this before?

• Sounds like something from the movies
• People claim this might be happening
• To the best of my knowledge, no one has ever admitted to falling
in this trap

14



Our Hardware Backdoor

Have you heard about something like this before?

• Sounds like something from the movies

• People claim this might be happening
• To the best of my knowledge, no one has ever admitted to falling
in this trap

14



Our Hardware Backdoor

Have you heard about something like this before?

• Sounds like something from the movies
• People claim this might be happening

• To the best of my knowledge, no one has ever admitted to falling
in this trap

14



Our Hardware Backdoor

Have you heard about something like this before?

• Sounds like something from the movies
• People claim this might be happening
• To the best of my knowledge, no one has ever admitted to falling
in this trap

14



Ethics, Business, Tech

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!

• Ethical implications
• Business implications (lawsuits, PR, etc)

• Code reviews, double checks, verification systems, automated
verification systems, ...

15



Ethics, Business, Tech

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!
• Ethical implications
• Business implications (lawsuits, PR, etc)

• Code reviews, double checks, verification systems, automated
verification systems, ...

15



Ethics, Business, Tech

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!
• Ethical implications
• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?

• Code reviews, double checks, verification systems, automated
verification systems, ...

15



Ethics, Business, Tech

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!
• Ethical implications
• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?

• Code reviews, double checks, verification systems, automated
verification systems, ...

15



Why does this work?

15



Why?

Why does this work?

• It’s all bytes!
• Everything we store in computers are bytes
• We store code and data in the same place: memory

16



It’s all bytes

Memory, Code, Data... It’s all bytes!

• Enumerate - pick the meaning for each possible byte
• Adjacency - store bigger values together (sequentially)
• Pointers - a value treated as address of thing we are interested in

17



Enumerate

Enumerate - pick the meaning for each possible byte
What is 8-bit 0x54?

Unsigned integer eighty-four
Signed integer positive eighty-four
Floating point w/ 4-bit exponent twelve
ASCII capital letter T: T
Bitvector sets The set {2, 3, 5}
Our example ISA Flip all bits of value in r1

18



Adjacency

Adjacency - store bigger values together (sequentially)

• An array: build bigger values out of many copies of the same type
of small values

• Store them next to each other in memory
• Arithmetic to find any given value based on index

• Records, structures, classes
• Classes have fields! Store them adjacently
• Know how to access (add offsets from base address)
• If you tell me where object is, I can find fields

19



Pointers

Pointers - a value treated as address of thing we are interested in

• A value that really points to another value
• Easy to describe, hard to use properly
• We’ll be talking about these a lot in this class!
• Give us strange new powers (represent more complicated things),
e.g.,

• Variable-sized lists
• Values that we don’t know their type without looking
• Dictionaries, maps

20



Programs Use These!

How do our programs use these?

• Enumerated icodes, numbers
• Ajacently stored instructions (PC+1)
• Pointers of where to jump/goto (addresses in memory)

21



Moving On
icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

So far, we’ve been dealing with an 8-bit machine!
22



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access?
• Late 70s - 16 bits:
• 80s - 32 bits:
• Today’s processors - 64 bits:

23



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access?

• Late 70s - 16 bits:
• 80s - 32 bits:
• Today’s processors - 64 bits:

23



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes

• Late 70s - 16 bits:
• 80s - 32 bits:
• Today’s processors - 64 bits:

23



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits:

• 80s - 32 bits:
• Today’s processors - 64 bits:

23



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes

• 80s - 32 bits:
• Today’s processors - 64 bits:

23



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits:

• Today’s processors - 64 bits:

23



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits: ≈ 4 billion bytes

• Today’s processors - 64 bits:

23



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits: ≈ 4 billion bytes
• Today’s processors - 64 bits:

23



64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits: ≈ 4 billion bytes
• Today’s processors - 64 bits: 264 addresses

23



Aside: Powers of Two

Powers of Two
Value base-10 Short form Pronounced
210 1024 Ki Kilo
220 1,048,576 Mi Mega
230 1,073,741,824 Gi Giga
240 1,099,511,627,776 Ti Tera
250 1,125,899,906,842,624 Pi Peta
260 1,152,921,504,606,846,976 Ei Exa

Example: 227 bytes

24



Aside: Powers of Two

Powers of Two
Value base-10 Short form Pronounced
210 1024 Ki Kilo
220 1,048,576 Mi Mega
230 1,073,741,824 Gi Giga
240 1,099,511,627,776 Ti Tera
250 1,125,899,906,842,624 Pi Peta
260 1,152,921,504,606,846,976 Ei Exa

Example: 227 bytes = 27 × 220 bytes

24



Aside: Powers of Two

Powers of Two
Value base-10 Short form Pronounced
210 1024 Ki Kilo
220 1,048,576 Mi Mega
230 1,073,741,824 Gi Giga
240 1,099,511,627,776 Ti Tera
250 1,125,899,906,842,624 Pi Peta
260 1,152,921,504,606,846,976 Ei Exa

Example: 227 bytes = 27 × 220 bytes = 27 MiB = 128 MiB

24



64-bit Machines

How much can we address with 64-bits?

• 16 EiB (264 addresses = 24 × 260)
• But I only have 8 GiB of RAM

25



64-bit Machines

How much can we address with 64-bits?

• 16 EiB (264 addresses = 24 × 260)

• But I only have 8 GiB of RAM

25



64-bit Machines

How much can we address with 64-bits?

• 16 EiB (264 addresses = 24 × 260)
• But I only have 8 GiB of RAM

25



A Challenge

There is a disconnect:

• Registers: 64-bits values
• Memory: 8-bit values (i.e., 1 byte values)

• Each address addresses an 8-bit value in memory
• Each address points to a 1-byte slot in memory

• How do we store a 64-bit value in an 8-bit spot?

26



A Challenge

There is a disconnect:

• Registers: 64-bits values
• Memory: 8-bit values (i.e., 1 byte values)

• Each address addresses an 8-bit value in memory
• Each address points to a 1-byte slot in memory

• How do we store a 64-bit value in an 8-bit spot?

26



Rules

Rules to break “big values” into bytes (memory)

1. Break it into bytes
2. Store them adjacently
3. Address of the overall value = smallest address of its bytes
4. Order the bytes

• If parts are ordered (i.e., array), first goes in smallest address
• Else, hardware implementation gets to pick (!!)

• Little-endian
• Big-endian

27



Ordering Values

Little-endian

• Store the low order part/byte first
• Most hardware today is little-endian

Big-endian

• Store the high order part/byte first

28



Example

Store [0x1234, 0x5678] at address 0xF00

29



Endianness

Why do we study endianness?

• It is everywhere
• It is a source of weird bugs
• Ex: It’s likely your computer uses:

• Little-endian from CPU to memory
• Big-endian from CPU to network
• File formats are roughly half and half

30


