
Endianness, Assembly

CS 2130: Computer Systems and Organization 1
March 1, 2023

Announcements

• Homework 4 due Friday at 11pm on Gradescope
• Exam 1 scores released

Statistics
Mean 75.2
Median 78.0
Std. Dev. 18.66

1

Our Hardware Backdoor

2

Our Hardware Backdoor

Will you notice this on your chip?

• Modern chips have billions of transistors
• We’re talking adding a few hundred transistors
• Maybe with a microscope? But you’d need to know where to look!

3

Our Hardware Backdoor

Will you notice this on your chip?

• Modern chips have billions of transistors
• We’re talking adding a few hundred transistors

• Maybe with a microscope? But you’d need to know where to look!

3

Our Hardware Backdoor

Will you notice this on your chip?

• Modern chips have billions of transistors
• We’re talking adding a few hundred transistors
• Maybe with a microscope? But you’d need to know where to look!

3

Our Hardware Backdoor

Have you heard about something like this before?

• Sounds like something from the movies
• People claim this might be happening
• To the best of my knowledge, no one has ever admitted to falling
in this trap

4

Our Hardware Backdoor

Have you heard about something like this before?

• Sounds like something from the movies

• People claim this might be happening
• To the best of my knowledge, no one has ever admitted to falling
in this trap

4

Our Hardware Backdoor

Have you heard about something like this before?

• Sounds like something from the movies
• People claim this might be happening

• To the best of my knowledge, no one has ever admitted to falling
in this trap

4

Our Hardware Backdoor

Have you heard about something like this before?

• Sounds like something from the movies
• People claim this might be happening
• To the best of my knowledge, no one has ever admitted to falling
in this trap

4

Ethics, Business, Tech

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!

• Ethical implications
• Business implications (lawsuits, PR, etc)

• Code reviews, double checks, verification systems, automated
verification systems, ...

5

Ethics, Business, Tech

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!
• Ethical implications
• Business implications (lawsuits, PR, etc)

• Code reviews, double checks, verification systems, automated
verification systems, ...

5

Ethics, Business, Tech

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!
• Ethical implications
• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?

• Code reviews, double checks, verification systems, automated
verification systems, ...

5

Ethics, Business, Tech

Are there reasons to do this? Not to do this?

• No technical reason not to, it’s easy to do!
• Ethical implications
• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?

• Code reviews, double checks, verification systems, automated
verification systems, ...

5

Why does this work?

5

Why?

Why does this work?

• It’s all bytes!
• Everything we store in computers are bytes
• We store code and data in the same place: memory

6

It’s all bytes

Memory, Code, Data... It’s all bytes!

• Enumerate - pick the meaning for each possible byte
• Adjacency - store bigger values together (sequentially)
• Pointers - a value treated as address of thing we are interested in

7

Enumerate

Enumerate - pick the meaning for each possible byte
What is 8-bit 0x54?

Unsigned integer eighty-four
Signed integer positive eighty-four
Floating point w/ 4-bit exponent twelve
ASCII capital letter T: T
Bitvector sets The set {2, 3, 5}
Our example ISA Flip all bits of value in r1

8

Adjacency

Adjacency - store bigger values together (sequentially)

• An array: build bigger values out of many copies of the same type
of small values

• Store them next to each other in memory
• Arithmetic to find any given value based on index

• Records, structures, classes
• Classes have fields! Store them adjacently
• Know how to access (add offsets from base address)
• If you tell me where object is, I can find fields

9

Pointers

Pointers - a value treated as address of thing we are interested in

• A value that really points to another value
• Easy to describe, hard to use properly
• We’ll be talking about these a lot in this class!
• Give us strange new powers (represent more complicated things),
e.g.,

• Variable-sized lists
• Values that we don’t know their type without looking
• Dictionaries, maps

10

Programs Use These!

How do our programs use these?

• Enumerated icodes, numbers
• Ajacently stored instructions (PC+1)
• Pointers of where to jump/goto (addresses in memory)

11

Moving On
icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

So far, we’ve been dealing with an 8-bit machine!
12

64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access?
• Late 70s - 16 bits:
• 80s - 32 bits:
• Today’s processors - 64 bits:

13

64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access?

• Late 70s - 16 bits:
• 80s - 32 bits:
• Today’s processors - 64 bits:

13

64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes

• Late 70s - 16 bits:
• 80s - 32 bits:
• Today’s processors - 64 bits:

13

64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits:

• 80s - 32 bits:
• Today’s processors - 64 bits:

13

64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes

• 80s - 32 bits:
• Today’s processors - 64 bits:

13

64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits:

• Today’s processors - 64 bits:

13

64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits: ≈ 4 billion bytes

• Today’s processors - 64 bits:

13

64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits: ≈ 4 billion bytes
• Today’s processors - 64 bits:

13

64-bit Machines

64-bit machine: The registers are 64-bits

• i.e., r0, but also PC

Important to have large values. Why?

• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits: ≈ 4 billion bytes
• Today’s processors - 64 bits: 264 addresses

13

Aside: Powers of Two

Powers of Two
Value base-10 Short form Pronounced
210 1024 Ki Kilo
220 1,048,576 Mi Mega
230 1,073,741,824 Gi Giga
240 1,099,511,627,776 Ti Tera
250 1,125,899,906,842,624 Pi Peta
260 1,152,921,504,606,846,976 Ei Exa

Example: 227 bytes

14

Aside: Powers of Two

Powers of Two
Value base-10 Short form Pronounced
210 1024 Ki Kilo
220 1,048,576 Mi Mega
230 1,073,741,824 Gi Giga
240 1,099,511,627,776 Ti Tera
250 1,125,899,906,842,624 Pi Peta
260 1,152,921,504,606,846,976 Ei Exa

Example: 227 bytes = 27 × 220 bytes

14

Aside: Powers of Two

Powers of Two
Value base-10 Short form Pronounced
210 1024 Ki Kilo
220 1,048,576 Mi Mega
230 1,073,741,824 Gi Giga
240 1,099,511,627,776 Ti Tera
250 1,125,899,906,842,624 Pi Peta
260 1,152,921,504,606,846,976 Ei Exa

Example: 227 bytes = 27 × 220 bytes = 27 MiB = 128 MiB

14

64-bit Machines

How much can we address with 64-bits?

• 16 EiB (264 addresses = 24 × 260)
• But I only have 8 GiB of RAM

15

64-bit Machines

How much can we address with 64-bits?

• 16 EiB (264 addresses = 24 × 260)

• But I only have 8 GiB of RAM

15

64-bit Machines

How much can we address with 64-bits?

• 16 EiB (264 addresses = 24 × 260)
• But I only have 8 GiB of RAM

15

A Challenge

There is a disconnect:

• Registers: 64-bits values
• Memory: 8-bit values (i.e., 1 byte values)

• Each address addresses an 8-bit value in memory
• Each address points to a 1-byte slot in memory

• How do we store a 64-bit value in an 8-bit spot?

16

A Challenge

There is a disconnect:

• Registers: 64-bits values
• Memory: 8-bit values (i.e., 1 byte values)

• Each address addresses an 8-bit value in memory
• Each address points to a 1-byte slot in memory

• How do we store a 64-bit value in an 8-bit spot?

16

Rules

Rules to break “big values” into bytes (memory)

1. Break it into bytes
2. Store them adjacently
3. Address of the overall value = smallest address of its bytes
4. Order the bytes

• If parts are ordered (i.e., array), first goes in smallest address
• Else, hardware implementation gets to pick (!!)

• Little-endian
• Big-endian

17

Ordering Values

Little-endian

• Store the low order part/byte first
• Most hardware today is little-endian

Big-endian

• Store the high order part/byte first

18

Example

Store [0x1234, 0x5678] at address 0xF00

19

Endianness

Why do we study endianness?

• It is everywhere
• It is a source of weird bugs
• Ex: It’s likely your computer uses:

• Little-endian from CPU to memory
• Big-endian from CPU to network
• File formats are roughly half and half

20

Moving up!

20

Assembly

General principle of all assembly languages

• Code (text, not binary!)
• 1 line of code = 1 machine instruction
• One-to-one reversible mapping between binary and assembly

• We do not need to remember binary encodings!
• A program will turn text to binary for us!

21

Assembly

Features of assembly

• Automatic addresses - use labels to keep track of addresses
• Assembler will remember location of labels and use where appropriate
• Labels will not exist in machine code

• Metadata - data about data
• Data that helps turn assembly into code the machine can use

• As complicated as machine instructions (like we have been
writing)

• There are a lot of instructions, and it is one-to-one!

22

Assembly Languages

There are many assembly languages

• But, they’re backed by hardware!
• Two big ones these days: x86-64 and ARM

• You likely have machines that use one of these

• Others: RISC-V, MIPS, ...

We will focus on x86-64

23

x86-64

x86-64 has a weird and long history

• Expansion of the 8086 series (Intel)
• 8086, 8286, 8386, 8486, x86

• AMD expanded it with AMD64
• Intel decide to use same build, but called it x86-64
• Backwards compatible with the 8086 series

24

x86-64

Two dialects - two ways to write the same thing

• Intel - likely using with Windows
mov QWORD PTR [rdx+0x227],rax

• AT&T - likely using with anything else
movq %rax,0x227(%rdx)

We will use AT&T dialect

25

AT&T x86-84 Assembly

instruction source, destination

• Instruction followed by 0 or more operands (arguments)
• 4 types of operands:

• Number (immediate value): $0x123
• Register: %rax
• Address of memory: (%rax) or 24 or labelname
• Value at an address in memory: (%rax) or 24 or labelname

mylabelname:

• Label - remember the address of next thing to use later

26

AT&T x86-84 Assembly

.something something

• Metadirective - extra information that is not code
• How the code works with other things (i.e., talk to OS)
• Ex: .globl main

// we can have comments!

27

Addressing Memory

2130(%rax, %rsp, 8)

• Address can have up to 4 parts: 2 numbers, 2 registers
• Combines as: 2130 + %rax + (%rsp * 8)
• Common usage from this example:

• rax - address of an object in memory
• 2130 - offset of an array into the object
• rsp - index into the array
• 8 - size of the values in the array

• Don’t need all parts: (%rax) or (%rax, 4) or 4(%rax)
• This is all one operand (one memory address)

28

hello.s example

28

Registers

rax is a 64-bit register

29

Instructions

Instructions have different versions depending on number of bits to
use

• movq - 64-bit move
• q = quad word

• movl - 32-bit move
• l = long

• There are encodings for shorter things, but we will mostly see 32-
and 64-bit

30

More powerful than our ISA

Instructions can move/operate between memory and register

• movq %rax, %rcx - register to register
• Remember our icode 0

• movq (%rax), %rcx - memory to register
• Remember our icode 3

• movq %rax, (%rcx) - register to memory
• Remember our icode 4

• movq $21, %rax - Immediate to register
• Remember our icode 6 (b=0)

Note: at most one memory address per instruction

31

Other Instructions

Other instructions work the same way

• addq %rax, %rcx — rcx += rax
• subq (%rbx), %rax — rax -= M[rbx]
• xor, and, and others work the same way!
• Assembly has virtually no 3-argument instructions

• All will be modifying something (i.e., +=, &=, ...)

32

Jumps

jmp foo

• Unconditional jump to foo
• foo is a label or memory address
• Need jmp* to use register value

Conditional jumps

• jl, jle, je, jne, jg, jge, ja, jb, js, jo

Unlike our Toy ISA, these do not compare given register to 0

33

Jumps

Condition codes - 4 1-bit registers set by every math operation, cmp,
and test

• Result for the operation compared to 0 (if no overflow)
• Example:
addq $-5, %rax
// ...code that doesn't set condition codes...
je foo

• Sets condition codes from doing math (subtract 5 from rax)
• Tells whether result was positive, negative, 0, if there was overflow, ...
• Then jump if the result of that operation should have been = 0

34

Jumps: compare and test

cmpq %rax, %rdx

• Compare checks result of -= and sets condition codes
• How rdx - rax compares with 0
• Be aware of ordering!

• if rax is bigger, sets < flag
• if rdx is bigger, sets > flag

testq %rax, %rdx

• Sets the condition codes based on rdx & rax
• Less common

Neither save their result, just set condition codes!
35

Function Calls: Calling Conventions

callq myfun

• Push return address, then jump to myfun
• Convention: Store arguments in registers and stack before call

• First 6 arguments (in order): rdi, rsi, rdx, rcx, r8, r9
• If more arguments, pushed onto stack (last to first)

retq

• Pop return address from stack and jump back
• Convention: store return value in rax before calling retq

This is similar to our Toy ISA’s function calls in homework 4

36

Debugger

Debugger - step through code!

• You will be using this for lab tomorrow
• Experience seeing results of these instructions step-by-step
• Please read the x86-64 summary reading before lab!

37

