
x86-64 Assembly

CS 2130: Computer Systems and Organization 1
March 13, 2023

Announcements

• Homework 5 available, due next Monday at 11pm on Gradescope
• Updated extension policy available on the website
• Results from regrade requests should be available by next week
• No Prof. Hott office hours this week!
• Lab tomorrow: using the lldb debugger

1

Assembly

General principle of all assembly languages

• Code (text, not binary!)
• 1 line of code = 1 machine instruction
• One-to-one reversible mapping between binary and assembly

• We do not need to remember binary encodings!
• A program will turn text to binary for us!

2

AT&T x86-84 Assembly

• instruction source, destination
• Instruction followed by 0 or more operands (arguments)

• mylabelname:
• Label - remember the address of next thing to use later

• .something something
• Metadirective - extra information that is not code

• // comments!
• Address Calculations: 2130(%rax, %rsp, 8)

• Combines as: 2130 + %rax + (%rsp * 8)
• This is all one operand (one memory address)

3

Registers

rax is a 64-bit register

4

Instructions

Instructions have different versions depending on number of bits to
use

• movq - 64-bit move
• q = quad word

• movl - 32-bit move
• l = long

• There are encodings for shorter things, but we will mostly see 32-
and 64-bit

5

More powerful than our ISA

Instructions can move/operate between memory and register

• movq %rax, %rcx - register to register
• Remember our icode 0

• movq (%rax), %rcx - memory to register
• Remember our icode 3

• movq %rax, (%rcx) - register to memory
• Remember our icode 4

• movq $21, %rax - Immediate to register
• Remember our icode 6 (b=0)

Note: at most one memory address per instruction

6

Other Instructions

Other instructions work the same way

• addq %rax, %rcx — rcx += rax
• subq (%rbx), %rax — rax -= M[rbx]
• xor, and, and others work the same way!
• Assembly has virtually no 3-argument instructions

• All will be modifying something (i.e., +=, &=, ...)

Load effective address: leaq 4(%rcx), %rax

• Performs memory address calculation
• Stores address, not value at the address in memory

7

Jumps

jmp foo

• Unconditional jump to foo
• foo is a label or memory address
• Need jmp* to use register value

Conditional jumps

• jl, jle, je, jne, jg, jge, ja, jb, js, jo

Unlike our Toy ISA, these do not compare given register to 0

8

Jumps

Condition codes - 4 1-bit registers set by every math operation, cmp,
and test

• Result for the operation compared to 0 (if no overflow)
• Example:
addq $-5, %rax
// ...code that doesn't set condition codes...
je foo

• Sets condition codes from doing math (subtract 5 from rax)
• Tells whether result was positive, negative, 0, if there was overflow, ...
• Then jump if the result of that operation should have been = 0

9

Jumps: compare and test

cmpq %rax, %rdx

• Compare checks result of -= and sets condition codes
• How rdx - rax compares with 0
• Be aware of ordering!

• if rax is bigger, sets < flag
• if rdx is bigger, sets > flag

testq %rax, %rdx

• Sets the condition codes based on rdx & rax
• Less common

Neither save their result, just set condition codes!
10

Function Calls: Calling Conventions

callq myfun

• Push return address, then jump to myfun
• Convention: Store arguments in registers and stack before call

• First 6 arguments (in order): rdi, rsi, rdx, rcx, r8, r9
• If more arguments, pushed onto stack (last to first)

retq

• Pop return address from stack and jump back
• Convention: store return value in rax before calling retq

This is similar to our Toy ISA’s function calls in homework 4

11

Debugger

Debugger - step through code!

• Similar experience to our ToyISA simulators
• You will be using lldb for lab tomorrow
• Experience seeing results of these instructions step-by-step
• Please read the x86-64 summary reading before lab!

12

example with lldb

12

