
Assembly, Patents, Copyright

CS 2130: Computer Systems and Organization 1
March 17, 2023



Announcements

• Homework 5 due Monday 3/20 at 11pm
• Quiz 5 opens tonight, due Sunday

1



Patents and Copyright

Can we patent our ISA? Should we?
icode b meaning
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

2



Patents and Copyright

Copyright

• “Everyone is a copyright owner. Once you create an original work
and fix it, like taking a photograph, writing a poem or blog, or
recording a new song, you are the author and the owner.”

from https://www.copyright.gov/what-is-copyright/

Patent

• “Whoever invents or discovers any new and useful process,
machine, manufacture, or composition of matter, or any new and
useful improvement thereof, may obtain a patent therefor, subject
to the conditions and requirements of this title.”

from 35 U.S.C. 101
3

https://www.copyright.gov/what-is-copyright/


Patents

In software and hardware, patents become messy

• Code is a description of a process we want the computer to do
• Do not have to implement the process to patent it

Question: Should we patent something like our ISA?

4



Patents

In software and hardware, patents become messy

• Code is a description of a process we want the computer to do
• Do not have to implement the process to patent it

Question: Should we patent something like our ISA?

What is the current state of the art?

4



Common Approaches to Software

How can we get value from what we create?

• Copyright - distribute closed source software
• License Agreements (in contract law)
• Always innovate

5



Back to Assembly

5



Compilation Pipeline

Turning our code into something that runs

• Pipeline - a sequence of steps in which each builds off the last

6



Most Common Instructions

• mov - =
• lea - load effective address
• call - push PC and jump to address
• add - +=
• cmp - set flags as if performing subtract
• jmp - unconditional jump
• test - set flags as if performing &
• je - jump iff flags indicate == 0
• pop - pop value from stack
• push - push value onto stack
• ret - pop PC from the stack

7


